

PROCEEDINGS OF THE 21ST
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2021

Ruzica Piskac / Michael W. Whalen (Eds.)

P
iskac / W

halen (E
ds.)

PR
O
C
EED

IN
G
S O

F TH
E 21ST C

O
N
FER

EN
C
E O

N
 FO

R
M
A
L

M
ETH

O
D
S IN

 C
O
M
PU
TER-A

ID
ED
 D
ESIG

N
 – FM

C
A
D
 2021

Ruzica Piskac / Michael W. Whalen (Eds.)
PROCEEDINGS OF THE 21ST CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2021

Conference Series: Formal Methods in Computer-Aided Design
Volume 2

Conference Series: Formal Methods in Computer-Aided Design

Series edited by:
Warren A. Hunt, Jr., The University of Texas at Austin
 Austin, TX 78705 | hunt@cs.utexas.edu
Georg Weissenbacher, TU Wien
 Karlsplatz 13, 1040 Wien, Austria | georg.weissenbacher@tuwien.ac.at

The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system
verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical
results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification,
synthesis, and testing.

Information on this publication series and the volumes published therein is available at www.tuwien.ac.at/academicpress.

Volume 2 edited by:
Ruzica Piskac, Yale University
 51 Prospect Street, New Haven, CT 06511, USA | ruzica.piskac@yale.edu
Michael W. Whalen, Amazon Web Services, Inc.
 323 N Washington Ave, Minneapolis, MN 55401, USA | mww@amazon.com

Ruzica Piskac / Michael W. Whalen (Eds.)

PROCEEDINGS OF THE 21ST
CONFERENCE ON FORMAL
METHODS IN COMPUTER-AIDED
DESIGN – FMCAD 2021

This work is licensed under a Creative Commons attribution 4.0 international license (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/

ISBN (online): 978-3-85448-046-4
ISSN (online): 2708-7824

Available online: https://doi.org/10.34727/2021/isbn.978-3-85448-046-4

Media proprietor: TU Wien, Karlsplatz 13, 1040 Wien
Publisher: TU Wien Academic Press
Publication series editor: Warren A. Hunt, Jr. and Georg Weissenbacher
Editors (responsible for the content): Ruzica Piskac and Michael W. Whalen

Cite as:
Piskac, R. & Whalen, M. W. (Eds.). (2021). Proceedings of the 21st Conference on Formal Methods in Computer-Aided
Design – FMCAD 2021. TU Wien Academic Press. https://doi.org/10.34727/2021/isbn.978-3-85448-046-4

TU Wien Academic Press, 2021

c/o TU Wien Bibliothek
TU Wien
Resselgasse 4, 1040 Wien
academicpress@tuwien.ac.at
www.tuwien.at/academicpress

https://www.tuwien.at/academicpress/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4

Preface

These are the proceedings of the twenty-first International Conference on Formal Methods in Computer-Aided
Design (FMCAD), which was held online from October 18 – October 22, 2021 due to the coronavirus. FMCAD
was constituted in 1996 as a conference covering formal aspects of specification, verification, synthesis, testing,
and security, and as a leading forum for researchers and practitioners in academia and industry alike. 2021 marks
the 25th anniversary of that original meeting, and so we wish to celebrate the vision of those original organizers!

The program of FMCAD 2021 is comprised of four tutorials, three invited talks, a student forum, an industry
night, a panel session on “25 years of FMCAD”, and the main program consisting of presentations of 30 accepted
papers. The tutorial day featured four presentations:

• Active Automata Learning: from L∗ to L# by Frits Vaandrager
• Stainless Verification System Tutorial by Viktor Kuncak
• Reactive Synthesis Beyond Realizability by Rayna Dimitrova
• Formal Methods for the Security Analysis of Smart Contracts by Matteo Maffei

and the main conference featured three invited talks:
• From Viewstamped Replication to Blockchains by Barbara Liskov
• Algorithms for the People by Seny Kamara
• Engineering with Full-scale Formal Architecture: Morello, CHERI, Armv8-A, and RISC-V by Peter Sewell
FMCAD’21 also hosted the ninth edition of the Student Forum, which has been held annually since 2013 and

provides a platform for graduate students at any career stage to introduce their research to the FMCAD community.
The FMCAD Student Forum 2021 was organized by Mark Santolucito and featured short presentations of 11
accepted contributions. A detailed description of the Student Forum, listing all accepted contributions, is provided
in the conference proceedings. FMCAD 2021 received 72 submissions out of which the committee decided to
accept 30 for publication. Each submission received at least three reviews. The topics of the accepted papers
include hardware and software verification, SAT, SMT, learning, synthesis, Neural-Network verification, and more.
Out of the accepted papers, 23 are classified as regular papers (20 long and 3 short) and 7 are classified as tool/case
study papers (5 long and 2 short).

Organizing this event would not have been possible without the support of a large number of people and our
sponsors. The program committee members and additional reviewers, listed on the following pages, did an excellent
job providing detailed and insightful reviews, which helped the authors to improve their submissions and guided the
selection of the papers accepted for publication. We thank each and everyone of them for dedicating their time and
providing their expertise. We thank William Hallahan (Yale University) for being the web master, Daniel Schoepe
for being the Sponsorship Chair, and Mark Santolucito for organizing this year’s FMCAD Student Forum. We thank
Georg Weissenbacher (TU Wien) both for his exceptional assistance in organizing the event, communicating to us
the decisions of the steering committee, as well as being the publication chair. Holding a conference like FMCAD
would not be feasible without the financial support of our sponsors. We would like to express our gratitude to
our sponsors (in alphabetical order): Amazon Web Services, Amazon Prime Video, Cadence, Centaur Technology,
Galois, Intel, Mentor Graphics, Novi, and Synopsys.

The conference proceedings are available as Open Access Proceedings published by TU Wien Academic Press,
and through the IEEE Xplore Digital Library. Last but not least, we thank all authors who submitted their papers
to FMCAD 2021 (accepted or not), and whose contributions and presentations form the core of the conference.
We are grateful to everyone who presented their paper, gave a keynote or gave a tutorial. We thank all attendees
of FMCAD for supporting the conference and making FMCAD a stimulating and enjoyable event.

October, 2021 Ruzica Piskac, Yale University
Michael W. Whalen, Amazon Inc. and the University of Minnesota

V

Organizing Committee

Program Co-Chairs

Ruzica Piskac Yale University
Michael W. Whalen Amazon Inc. and the University of Minnesota

Webmaster

William Hallahan Yale University

Student Forum Chair

Mark Santolucito Barnard College of Columbia University

Publication Chair

Georg Weissenbacher TU Wien

Steering Committee

Clark Barrett Stanford University
Armin Biere Johannes Kepler University Linz
Anna Slobodova Centaur Technology
Georg Weissenbacher TU Wien

VI

Program Committee

Erika Abraham RWTH Aachen University
Jade Alglave University College London
Pranav Ashar Real Intent
Per Bjesse Synopsys
Roderick Bloem Graz University of Technology
Ivana Cerna Masaryk University
Supratik Chakraborty IIT Bombay
Sylvain Conchon Université Paris-Sud
Leonardo de Moura Microsoft
Rayna Dimitrova CISPA Helmholtz Center for Information Security
Grigory Fedyukovich Florida State University
Arie Gurfinkel University of Waterloo
Liana Hadarean Amazon Web Services
Ziyad Hanna Cadence Design System
Fei He Tsinghua University
Marijn Heule Carnegie Mellon University
Warren A. Hunt, Jr. The University of Texas at Austin
Alexander Ivrii IBM
Dejan Jovanović Amazon Web Services
Alan Jovic University of Zagreb
Laura Kovacs TU Wien
Ton Chanh Le Stevens Institute of Technology
Rebekah Leslie-Hurd Intel
Kuldeep S. Meel National University of Singapore
Ruzica Piskac Yale University
Elizabeth Polgreen University of California, Berkeley
Andrew Reynolds University of Iowa
Christoph Scholl University of Freiburg
Natasha Sharygina Università della Svizzera italiana (USI Lugano, Switzerland)
Anna Slobodova Centaur Technology
Christoph Sticksel The MathWorks
Murali Talupur Amazon Web Services, Inc.
Jean-Baptiste Tristan Boston College
Yakir Vizel The Technion
Thomas Wahl Northeastern University
Georg Weissenbacher TU Wien
Michael Whalen Amazon Inc. and the University of Minnesota
Thomas Wies New York University
Valentin Wüstholz ConsenSys
Lenore Zuck University of Illinois in Chicago

VII

Additional Reviewers

Asadi, Sepideh
Athanasiou, Konstantinos

Bansal, Suguman
Barnett, Lee
Bendı́k, Jaroslav
Blicha, Martin
Bustan, Doron

Cano, Filip
Chalupa, Marek
Cheang, Kevin
Chen, Hao
Chernigovskaia, Lidiia

Ebrahimi, Masoud

Fan, Hongyu
Fernandez, Matt
Fraer, Ranan

Georgiou, Pamina
Goel, Shilpi
Golia, Priyanka
Grundy, Jim

Hamza, Ameer
Hjort, Håkan
Hoereth, Stefan
Hozzová, Petra
Huang, Daniel
Hyvärinen, Antti

Jacoby, Reily
Jain, Himanshu
Jain, Mitesh
Jin, Hoon Sang
Jonas, Martin

Könighofer, Bettina
Kwan, Carl

Larrauri, Alberto
Le, Nham

Maderbacher, Benedikt
Majumdar, Rupak
Moosbrugger, Marcel
Mora, Federico

Nalbach, Jasper

Otoni, Rodrigo

Ramanathan, Vivek
Rane, Ashay
Reeves, Joseph
Rehak, Vojtech
Ročkai, Petr

Santolucito, Mark
Schoisswohl, Johannes
Seufert, Tobias
Shi, Yunong
Soos, Mate
Stankovic, Miroslav
Strejček, Jan
Strichman, Ofer
Sumners, Rob
Swords, Sol

Tassarotti, Joseph
Temel, Mertcan

Vediramana Krishnan, Hari Govind

Wolfovitz, Guy

VIII

Table of Contents

Tutorials

Reactive Synthesis Beyond Realizability . 1
Rayna Dimitrova

Stainless Verification System Tutorial . 2
Viktor Kuncak and Jad Hamza

Formal Methods for the Security Analysis of Smart Contracts . 8
Matteo Maffei

Active Automata Learning: from L* to L# . 9
Frits Vaandrager

Invited Talks

From Viewstamped Replication to Blockchains . 10
Barbara Liskov

Algorithms for the People . 11
Seny Kamara

Engineering with Full-scale Formal Architecture: Morello, CHERI, Armv8-A, and RISC-V 12
Peter Sewell

Student Forum

The FMCAD 2021 Student Forum . 13
Mark Santolucito

Hardware

CocoAlma: A Versatile Masking Verifier . 14
Vedad Hadžić and Roderick Bloem

End-to-End Formal Verification of a RISC-V Processor Extended with Capability Pointers 24
Dapeng Gao and Tom Melham

Hardware Security Leak Detection by Symbolic Simulation . 34
Neta Bar Kama and Roope Kaivola

Scaling Up Hardware Accelerator Verification using A-QED with Functional Decomposition 42
Saranyu Chattopadhyay, Florian Lonsing, Luca Piccolboni, Deepraj Soni, Peng Wei, Xiaofan
Zhang, Yuan Zhou, Luca Carloni, Deming Chen, Jason Cong, Ramesh Karri, Zhiru Zhang,
Caroline Trippel, Clark Barrett and Subhasish Mitra

Sound and Automated Verification of Real-World RTL Multipliers . 53
Mertcan Temel and Warren Hunt

IX

Model Checking and IC3

IC3 with Internal Signals . 63
Rohit Dureja, Arie Gurfinkel, Alexander Ivrii and Yakir Vizel

Single Clause Assumption without Activation Literals to Speed-up IC3 . 72
Nils Froleyks and Armin Biere

Logical Characterization of Coherent Uninterpreted Programs . 77
Hari Govind Vediramana Krishnan, Sharon Shoham and Arie Gurfinkel

Data-driven Optimization of Inductive Generalization . 86
Nham Le, Xujie Si and Arie Gurfinkel

Model Checking AUTOSAR Components with CBMC . 96
Timothee Durand, Katalin Fazekas, Georg Weissenbacher and Jakob Zwirchmayr

Concurrency and Distributed Systems

Automating System Configuration . 102
Nestan Tsiskaridze, Maxwell Strange, Makai Mann, Kavya Sreedhar, Qiaoyi Liu, Mark Horowitz
and Clark Barrett

Towards an Automatic Proof of Lamport’s Paxos . 112
Aman Goel and Karem A. Sakallah

Refinement-Based Verification of Device-to-Device Information Flow . 123
Ning Dong, Roberto Guanciale and Mads Dam

Celestial: A Smart Contracts Verification Framework . 133
Samvid Dharanikota, Suvam Mukherjee, Chandrika Bhardwaj, Aseem Rastogi and Akash Lal

The Civl Verifier . 143
Bernhard Kragl and Shaz Qadeer

Applied Verification and Synthesis

Synthesizing Pareto-Optimal Interpretations for Black-Box Models . 153
Hazem Torfah, Shetal Shah, Supratik Chakraborty, S. Akshay and Sanjit A. Seshia

Dynamic Partial Order Reduction for Spinloops . 163
Michalis Kokologiannakis, Xiaowei Ren and Viktor Vafeiadis

Robustness between Weak Memory Models . 173
Soham Chakraborty

Pruning and Slicing Neural Networks using Formal Verification . 183
Ori Lahav and Guy Katz

Towards Scalable Verification of Deep Reinforcement Learning. 193
Guy Amir, Michael Schapira and Guy Katz

X

SAT Solving

Exploiting Isomorphic Subgraphs in SAT . 204
Alexander Ivrii and Ofer Strichman

On Decomposition of Maximal Satisfiable Subsets . 212
Jaroslav Bendı́k

Designing Samplers is Easy: The Boon of Testers . 222
Priyanka Golia, Mate Soos, Sourav Chakraborty and Kuldeep S. Meel

SAT-Inspired Eliminations for Superposition . 231
Petar Vukmirović, Jasmin Blanchette and Marijn Heule

SAT Solving in the Serverless Cloud . 241
Alex Ozdemir, Haoze Wu and Clark Barrett

SMT and First-Order Logic

Induction with Recursive Definitions in Superposition . 246
Marton Hajdu, Petra Hozzová, Laura Kovacs and Andrei Voronkov

Fair and Adventurous Enumeration of Quantifier Instantiations . 256
Mikolas Janota, Haniel Barbosa, Pascal Fontaine and Andrew Reynolds

Mathematical Programming Modulo Strings . 261
Ankit Kumar and Panagiotis Manolios

Lookahead in Partitioning SMT . 271
Antti Hyvärinen, Matteo Marescotti and Natasha Sharygina

A Multithreaded Vampire with Shared Persistent Grounding . 280
Michael Rawson and Giles Reger

XI

Formal Methods in Computer-Aided Design 2021

Reactive Synthesis Beyond Realizability
Rayna Dimitrova

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

dimitrova@cispa.de

Abstract—The automatic synthesis of reactive systems from high-level specifications is a highly attractive and increasingly viable
alternative to manual system design, with applications in a number of domains such as robotic motion planning, control of autonomous
systems, and development of communication protocols. The idea of asking the system designer to describe what the system should do
instead of how exactly it does it, holds a great promise. However, providing the right formal specification of the desired behaviour of a
system is a challenging task in itself. In practice it often happens that the system designer provides a specification that is unrealizable,
that is, there is no implementation that satisfies it. Such situations typically arise because the desired behavior represents a trade-off
between multiple conflicting requirements, or because crucial assumptions about the environment in which the system will execute
are missing. Addressing such scenarios necessitates a shift towards synthesis algorithms that utilize quantitative measures of system
correctness. In this tutorial I will discuss two recent advances in this research direction.
First, I will talk about the maximum realizability problem, where the input to the synthesis algorithm consists of a hard specification
which must be satisfied by the synthesized system, and soft specifications which describe other desired, possibly prioritized properties,
whose violation is acceptable. I will present a synthesis algorithm that maximizes a quantitative value associated with the soft
specifications, while guaranteeing the satisfaction of the hard specification. In the second half of the tutorial I will present algorithms
for synthesis in bounded environments, where a bound is associated with the sequences of input values produced by the environment.
More concretely, these sequences consists of an initial prefix followed by a finite sequence repeated infinitely often, and satisfy the
constraint that the sum of the lengths of the initial prefix and the loop does not exceed a given bound. I will also discuss the
synthesis of approximate implementations from unrealizable specifications, which are guaranteed to satisfy the specification on at
least a specified portion of the bounded-size input sequences. I will conclude by outlining some of the open avenues and challenges
in quantitative synthesis from temporal logic specifications.
This tutorial is based on joint work with Mahsa Ghasemi and Ufuk Topcu published in [1], [2], and with Bernd Finkbeiner and
Hazem Torfah published in [3].

REFERENCES

[1] R. Dimitrova, M. Ghasemi, and U. Topcu, “Reactive synthesis with maximum realizability of linear temporal logic specifications,” Acta Informatica,
vol. 57, no. 1-2, pp. 107–135, 2020.

[2] ——, “Maximum realizability for linear temporal logic specifications,” in Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, ser. Lecture Notes in Computer Science, S. K. Lahiri and C. Wang,
Eds., vol. 11138. Springer, 2018, pp. 458–475.

[3] R. Dimitrova, B. Finkbeiner, and H. Torfah, “Synthesizing approximate implementations for unrealizable specifications,” in Computer Aided Verification
- 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, ser. Lecture Notes in Computer Science,
I. Dillig and S. Tasiran, Eds., vol. 11561. Springer, 2019, pp. 241–258.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 1 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_1
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_1
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2021

Stainless Verification System Tutorial
Viktor Kunčak

LARA Research Group
School of Computer and Communication Sciences

EPFL
Lausanne, Switzerland
viktor.kuncak@epfl.ch

Jad Hamza
LARA Research Group

School of Computer and Communication Sciences
EPFL

Lausanne, Switzerland
jad.hamza@epfl.ch

Abstract—Stainless (https://stainless.epfl.ch) is an open-source
tool for verifying and finding errors in programs written in
the Scala programming language. This tutorial will not assume
any knowledge of Scala. It aims to get first-time users started
with verification tasks by introducing the language, providing
modelling and verification tips, and giving a glimpse of the tool’s
inner workings (encoding into functional programs, function
unfolding, and using theories of satisfiability modulo theory
solvers Z3 and CVC4).

Stainless (and its predecessor, Leon) has been developed
primarily in the EPFL’s Laboratory for Automated Reasoning
and Analysis in the period from 2011-2021. Its core specification
and implementation language are typed recursive higher-order
functional programs (imperative programs are also supported
by automated translation to their functional semantics). Stainless
can verify that functions are correct for all inputs with respect
to provided preconditions and postconditions, it can prove that
functions terminate (with optionally provided termination mea-
sure functions), and it can provide counter-examples to safety
properties. Stainless enables users to write code that is both
executed and verified using the same source files. Users can
compile programs using the Scala compiler and run them on
the JVM. For programs that adhere to certain discipline, users
can generate source code in a small fragment of C and then use
standard C compilers.

Index Terms—verification, formal methods, proof, counter-
example, model checking, Scala, functional programming, sat-
isfiability modulo theories

I. INTRODUCTION

Stainless [1] is a tool for verifying and finding errors in
programs written in a subset of the Scala [2] programming
language. Stainless is open source (distributed under Apache
license) and hosted on GitHub at:

https://github.com/epfl-lara/stainless/
https://epfl-lara.github.io/stainless/

Stainless (and its predecessor, Leon) have been developed
primarily in the EPFL’s Laboratory for Automated Reasoning
and Analysis in the period from 2011-2021, see, in particular
[1], [3] as well as [4]–[14]. The core specification and im-
plementation language of Stainless are typed recursive higher-
order functional Scala programs. It also supports certain im-
perative programs [4], [6]. Stainless can verify that functions
are correct for all inputs with respect to provided preconditions
and postconditions, it can prove that functions terminate (with

optionally provided termination measure functions), and it can
also provide counter-examples to safety properties.

Stainless can be used to write programs that are directly
executable and proven correct. In particular, because it uses
Scala’s syntax and type system, users can execute Stainless
programs using the standard Scala compiler (version 2.12.13 at
the time of writing). In addition, there are passes that eliminate
non-executable (ghost) code from source to make sure that
it does not result in run-time overhead after compilation. For
programs that adhere to certain discipline the “genc” option of
Stainless can be used to generate C source code that compiles
with common compilers such as gcc.

A. Outline

In this tutorial, we show examples demonstrating how to
use Stainless to develop verified models and programs. We
will mostly use basic notation for functional programming,
which we will introduce along the way. We will use Stainless
version 0.9 or later.

In addition to basic introduction, we will suggest strategies
for specifying programs and helping Stainless prove them
correct. An example is using lemmas and proving them by
induction expressed through terminating recursion.

To help users be more effective when using Stainless, we
also outline key mechanisms that Stainless uses in proof and
counterexample search: encoding into functional programs,
function unfolding, and using rich theories of satisfiability
modulo theory solvers Z3 and CVC4.

II. GETTING STARTED

Stainless is a command line application that runs on the
Java virtual machine, version 1.8. We mostly test it on Ubuntu
Linux. We provide releases for Linux and Mac. Others use it
on Windows as well, where it may be simplest to use Windows
Subsystem for Linux to get started. Download the release file
from

https://github.com/epfl-lara/stainless/releases/

then unzip the file and put a link to stainless in your path.
The following is a simple program, call it MaxBug.scala,

containing a function max. Max attempts to compute maximum
of the two 32-bit integers by returning one of them, depending
on the sign d of their difference.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 2 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://github.com/epfl-lara/stainless/
https://epfl-lara.github.io/stainless/
https://github.com/epfl-lara/stainless/releases/
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_2
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_2
https://creativecommons.org/licenses/by/4.0/

object TestMax {
def max(x: Int, y: Int): Int = {
val d = x - y
if (d > 0) x
else y

} ensuring(res =>
x <= res && y <= res && (res == x || res == y))

}

We use object to group functions into modules. We define
functions using def and provide their parameters (here: x and
y) and their types, as well as the return type. We define local
immutable values using val keyword. Scala infers the type of
d as Int.

After the usual body, we introduced an ensuring statement.
The first identifier, res, binds the return value of the function.
After the arrow => we state the property we would like the
result to satisfy. In this case, the result should be greater than
each argument and it should be equal to one of them.

Invoke stainless MaxBug.scala and you may get output
containing some of the following.
MaxBug.scala:7:49: warning: => INVALID
x <= res && y <= res && (res == x || res == y))

ˆ
warning: Found counter-example:
warning: y: Int -> -2147483648

x: Int -> 1
Verified: 0 / 3

stainless summary

MaxBug.scala:3:13: max Subtraction overflow invalid
MaxBug.scala:7:37: max postcondition invalid
MaxBug.scala:7:49: max postcondition invalid
...
total: 3 valid: 0 (0 from cache) invalid: 3

Use --timeout=5 to set time out to 5 seconds. and
--no-colors to request clean ASCII output with parsable line
numbers in reports.

Why did Stainless report a counterexample? Indeed, execut-
ing max with the two provided values computes using signed
32-bit arithmetic the value -11 for d, so the function returns
y as the result res so y <= res is false. We can repair this
example in at least two ways:

• Use if (x <= y) instead of the value d.
• Use BigInt instead of Int, thus adopting unbounded

integers instead signed 32-bit ones.
If you run your program several times, you may notice
that Stainless reports that a valid verification condition was
persistently cached (inside .stainless-cache). You can turn
off caching with --vc-cache=false.

You may find the --watch option useful when modifying
a file several times, which makes Stainless run verification
whenever the source file is changed.

By default, Stainless uses a version of z3 (4.7.1) which is
packaged inside Stainless (--solvers=nativez3). This allows
Stainless to interact with z3 through Java calls. You may also
use an externally built version of z3 (for instance, z3 4.8.12

is shipped with the release) by specifying --solvers=smt-z3.
In that case, Stainless will communicate with z3 using SMT-
LIB files, which might be slower than Java calls, but has two

benefits. First, you get to use the newest release of z3. Second,
smt-z3 is more likely to respect timeouts than nativez3.

You can also use CVC4 as the solver if you download
and put cvc4 executable on your path. You can use both
with --solvers=smt-cvc4,smt-z3. Use --debug=smt to pre-
serve the generated SMT-LIB files and look for them in the
smt-sessions directory.

III. VERIFIED FUNCTIONAL PROGRAMMING

We will now implement a simple function that computes
differences of successive elements of a list. Let us start our
file with import stainless.collection._ so we can use the
immutable List library of Stainless. You can find the sources
of this and other library files at following URL:

https://github.com/epfl-lara/stainless/blob/master/frontends/
library/stainless/collection/List.scala

Let’s try to write a function diffs that takes a list of elements,
for example x1,x2,x3,x4 and keeps the first element and then
follows it by the list of their differences. In this case we would
like to obtain x1,x2 − x1,x3 − x2,x4 − x3. For empty and
one-element list the output equals input. Let us write this as
the default implementation. We can also state the example of
four-element list as a symbolic test case. To state it, we use
another function with a dummy body and a postcondition that
invokes diffs.

import stainless.collection._
object Diffs {
def diffs(l: List[BigInt]): List[BigInt] = {
l match {
case Nil() => l
case _ :: Nil() => l
// missing cases

}
}
def test(x1: BigInt, x2: BigInt,

x3: BigInt, x4: BigInt): Unit = {
} ensuring(_ =>
diffs(List(x1,x2,x3,x4)) ==
List(x1, x2 - x1, x3 - x2, x4 - x3))

}

After developing a function that meets this partial specifica-
tion, we can see whether it meets a stronger specification. For
example, we can define the inverse function undiff that takes
y0, y1, . . . , yn and computes y0, y0 + y1, . . . ,

∑n
i=0 yi. Being

masters of functional programming, we recognize that this is
just a prefix sum of a list, so we define it by

def undiff(l: List[BigInt]): List[BigInt] =
l.scanLeft(BigInt(0))(_ + _).tail

where scanLeft is defined in our List library. Now we
can add as the ensuring condition of diffs the condition
ensuring (res => (undiff(res)== l)). It so happens that
Stainless proves this condition automatically using its algo-
rithm. As an off-line exercise, try to prove this result with pen
and paper. This might give you a sense on how Stainless is
able to prove this property.

The algorithm of Stainless initially treats called functions
as unknown (uninterpreted) mathematical functions. It then

3

https://github.com/epfl-lara/stainless/blob/master/frontends/library/stainless/collection/List.scala
https://github.com/epfl-lara/stainless/blob/master/frontends/library/stainless/collection/List.scala

iteratively expands each call by defining the function to be
equal to one unfolding of its body and also inserts the
ensuring clause as an assumption.

IV. AMORTIZED QUEUE

We have found Stainless to work very well for verification
of purely functional data structures. Let us examine the case of
an amortized queue such as the one from [15, Section 5.2, Page
42]. We will start by writing down an abstract class. In this
class we define methods with dummy bodies denoted by ???

but with ensuring clauses that specify the desired behavior of
operations. To specify the behavior we use toList function,
which is also left unspecified in the abstract class.
import stainless.collection._
import stainless.lang._
abstract class Queue[A] {
def enqueue(a: A) = (??? : Queue[A])
.ensuring(res =>
res.toList == this.toList ++ List(a))

def dequeue: Option[(A, Queue[A])] =
(??? : Option[(A, Queue[A])])

.ensuring(res => res match {
case None() =>
this.toList == Nil[A]()

case Some((a, q)) =>
this.toList == a :: q.toList

})

def toList: List[A]
}

When we extend the abstract class, Scala requires us to define
toList, whereas Stainless ensures that our implementation
meets the specifications in the abstract class. We can imple-
ment an inefficient queue using a single list.
case class SimpleQueue[A](l: List[A])

extends Queue[A] {
def enqueue(a: A) = SimpleQueue(l ++ List(a))

def dequeue = l match {
case Nil() => None()
case Cons(x, xs) => Some((x, SimpleQueue(xs)))

}

def toList = l
}

Stainless successfully verifies that the properties required by
a queue are satisfied by this implementation. Even if correct,
this implementation is inefficient because enqueue takes linear
time in the current number of queue elements. We will thus
try to develop and prove correct the implementation like one
from [15, Section 5.2, Page 42] that uses two lists and that
has constant time amortized complexity.
case class AmortizedQueue[A](front: List[A],

rear: List[A])
extends Queue[A] {

def toList = front ++ rear.reverse

The toList, which we use only for specification, gives us a
hint on how to implement enqueue efficiently. For dequeue

we will need a reverse operation on lists, which we can
implement in linear time. Despite its complexity, our version

of dequeue will be verified automatically. As for enqueue,
its implementation is simple, yet its proof turns out to require
some well known property of lists that we need to tell Stainless
to invoke explicitly!

def enqueue(a: A): Queue[A] = {
val res: Queue[A] = // to fill

// You can state using assertions things you know are true,
// to see if Stainless is able to prove them:
assert(res.toList == front ++ (a :: rear).reverse)

// Alternatively, you can use an equation style reasoning.
// Here Stainless should timeout from the second to the third
// step, because some steps are missing.
(
res.toList ==:| trivial |:
front ++ (a :: rear).reverse ==:| trivial |:
// Add missing steps here to arrive to the result.
// For complicated steps, you need to invoke lemmas
// instead of writing ‘trivial‘.
this.toList ++ List(a)

).qed

res
}

V. PROPERTIES AND PROOFS

How do we state properties in Stainless? We write a property
∀x : T .F (x) as a function lemmaF defined by:

def lemmaF(x: T): Unit = {
()

} ensuring (_ => F(x))

When we wish to instantiate the property taking x to be some
specific value v, we insert a function invocation lemmaF(v)

into the part of the code where we need this property. Suppose
that proving property ∀x : T .F (x) is not automatic. Then
verification of lemmaF itself will fail, as stated. If F (x), for
example, follows from G(x,x + 1) that is established in
lemmaG(x,y), then we can state and prove lemmaF as:

def lemmaF(x: T): Unit = {
lemmaG(x,x+1)

} ensuring (_ => F(x))

Thus, we can adopt the following strategies for libraries of
lemmas:

• introduce a function for a lemma
• use a function parameter for each universally quantified

variable
• write lemma statement in the ensuring clause
• use the body of the function to encode a high-level proof,

with function invocations corresponding to applying pre-
viously proven lemmas.

Purely universal statements can return Unit type. For existen-
tial statements, we can often state their constructive Skolem-
ized form and return a witness for the existential quantifier
from the lemma.

It can be helpful to examine some proofs of properties in
the List library. Remarkably, we can even make recursive
invocations of functions in their bodies. Which mathematical
reasoning principle do such proofs correspond to?

4

VI. DIGITS

For built-in types such as Int and Long, the SMT solvers
will successfully reason about their bitwidth representation.
What if we wish to reason about the bits of arbitrarily large
numbers? As a simple example, let us define simple addition
as a recursive function on lists of bits.

import stainless.annotation._
import stainless.lang._
import stainless.collection._
object AddBitwise {
type Digits = List[Boolean]
val zero = Nil[Boolean]()

def add(x: Digits, y: Digits, carry: Boolean):
Digits = {

require(x.length == y.length)
(x,y) match {
case (Nil(), Nil()) =>
if (carry) true::zero else zero

case (Cons(x1,xs), Cons(y1,ys)) => {
val z = x1 ˆ y1 ˆ carry
val carry1 = (x1 && y1) ||

(x1 && carry) ||
(y1 && carry)

z :: add(xs, ys, carry1)
}

}
}

}

How can we state that such addition is commutative? How can
we prove it in Stainless? As an off-line exercise, think about
how we can prove that this corresponds to actual addition on
integers (BigInt).

VII. TERMINATION

The following recursive function searches for an element in
a sorted array, but it has a bug. You may run Stainless on this
file to spot it. Fix the issue, and add a decreases clause at the
beginning of the function to ensure that Stainless can prove
the function terminating.

import stainless.lang._

object BinarySearch1 {

def search(arr: Array[Int], x: Int, lo: Int, hi:
Int): Boolean = {

if (lo <= hi) {
val i = (lo + hi) / 2
val y = arr(i)
if (x == y) true
else if (x < y) search(arr, x, lo, i-1)
else search(arr, x, i+1, hi)

} else {
false

}
}

}

In Stainless, all functions are required to have a measure
(either inferred automatically, or written in a decreases clause
by the user). The system in its current design would be
unsound (we would be able to prove false postconditions or
assertions) if we allowed non-terminating functions.

VIII. IMPERATIVE FEATURES

Stainless supports some imperative features, such as lo-
cal mutable variables, while loops, return statements, and
more (see https://epfl-lara.github.io/stainless/imperative.html).
Stainless transforms these constructs into functional programs.

Using a while loop and a return statement, rewrite the
findIndexOpt function:

def findIndexOpt(ar: Array[Int], v: Int):
Option[Int] = {

}

that finds an index of element v in a sorted array ar. Prove
that, when your function returns Some(i), then ar(i)== v. To
prove that array indices are within bounds, you will need a
loop invariant, for which the syntax is:

(while(...) {
decreases(...)
...

}).invariant(...)

Does Stainless help you if you make an overflow mistake when
computing the middle of an interval using bounded arithmetic?

Note that while loops require decreases clauses as well
(when the measure cannot be inferred automatically), because
they are translated into recursive functions by Stainless. To see
how the while loop and the return statement are transformed,
you may run the command below on your file. Stainless has
a pipeline containing several phases, and ReturnElimination

is the one that removes while loops and return statements.
The --debug-objects option tells Stainless to only display
the findIndexOpt function in the debug output.

stainless --debug=trees
--debug-objects=findIndexOpt
--debug-phases=ReturnElimination FindIndex.scala

As a harder exercise, identify and prove a stronger postcon-
dition of findIndexOpt: what can we state in the postcondition
for the case when the function returns None? What assumptions
and loop invariants do we need to be be able to prove this
postcondition?

IX. DESIGN PRINCIPLES

A number of verification systems have been developed in
the past decades. Stainless tries to borrow many of the features
that others and us have found useful in other systems. At the
same time, it is driven by a somewhat unique combination of
principles, whose understanding may help set the expectations
from the tool.

A. Searching for Both Proofs and Counterexamples

From the beginning [13], the system was designed to search
for both counterexamples and proofs in a unified iterative loop.
Thanks to this design, on many programs Stainless behaves
like a combination of a bounded model checker and a k-
inductive prover such as [16]: we can often expect a definite
answer, whether the program verifies or has a counterexample.

5

https://epfl-lara.github.io/stainless/imperative.html

B. Recursive programs as foundation, not transition systems.

Operational semantics tells us that we can translate func-
tional (and many other) programs into transition systems.
This has even been used in verification tools with success
[]. Nonetheless, we believe that it carries significant overhead,
especially for proofs. Thus, like in ACL2 [17], [18] our inter-
mediate representation is based on recursive functions [13] and
we hope to leverage high-level structure to make verification
more feasible, much like Liquid Haskell [19] which needs
to be complemented with symbolic execution to also generate
counterexamples [20]. Consequently, iterative unfolding of our
recursive functions in Stainless gives a different sequence of
approximations than the one we would obtain by representing
programs using control-flow graphs and explicit stacks [21].

C. Top-down verification for each function.

Stainless verifies each desired function one by one. When
verifying a function f , it does not check which other parts of
code invoke f . In particular, it will, in its current design, not
infer preconditions for a function automatically. Preconditions
need to be explicitly specified using a require clause at
function entry. On the other hand, when Stainless examines
the body of f and finds a function g, then it will examine not
only the specification of g, but also its body. If g is recursive,
this process will continue, with a check for counterexample
and check for unsatisfiability performed at each step. This
process treats functions more transparently than some modular
verifiers. The process is also breadth-first, instead of having
the form of directed rewriting as in some other systems. The
effectiveness of this process is explained in part by the fact
that it results in a decision procedure for certain classes of
functions [14], [22], [23]. Furthermore, we continue to be
surprised by how well this simple strategy works in practice,
even if we have no theoretical reason to know that it will
succeed.

D. Scala subset as the input language.

Stainless uses Scala as a language that has substantial
user base, regularly ranked higher than Haskell and LISP in
Stack Overflow developer surveys [24], which is relevant for
maintaining the correspondence between what executes and
that is verified. As a functional language, Scala contains an
expressive purely functional fragment which can be used for
specification and modelling. The users of Stainless thus largely
avoid the need to learn a separate specification language,
because functional programs are a great specification vehicle.
At the same time, the system supports polymorphism and
subtyping with a type system that eliminates many nonsensical
programs before they waste user’s time inside the program
verifier’s loop. That said, Stainless purposely avoids by design
certain Scala 2 features, such as null references and complex
initalization. Other features, such as machine integers, are
modelled precisely: it is certainly necessary in practice to
have machine integers of various width available (for example,
32-bit Int and 64-bit Long), but it is also helpful to use
unbounded BigInt data types, especially for specifications, and

these different types should not be confused. Stainless provides
the user a choice and maps these data types and operations on
them to the appropriate types and theories inside SMT solvers
[8]. Subtyping is currently implemented via a translation into
a language with disjoint types [3]; its use requires additional
encoding and may slow down verification. Imperative features
are supported as a choice of either unshared mutable state [6]
or using a model [4] that, at user level, is similar to dynamic
frames [25] of Dafny [26].

E. Embracing SMT solver theories, avoiding quantifiers.

Instead of using axioms to encode program semantics and
data types, Stainless leverages algebraic data types, sets, and
arrays. Stainless thus currently emits quantifier-free queries to
solvers (either Z3 or CVC4). The hope with this choice is
that SMT solvers will remain predictable for both proofs and
counterexamples. In contrast, the use of quantifiers may lead
to more automation and sometimes excellent performance for
proofs, but quickly leads outside of the space where the solvers
can reliable report counterexamples.

F. Executability of programs and specifications.

In Stainless we aim to write programs that can be compiled
using the standard Scala compiler. Specification constructs
in Stainless are defined in a Scala library and they have
dummy execution semantics. In some cases, even such dummy
semantics may result in overhead, so we have developed passes
that eliminate some of the specification code altogether. In
addition, Stainless has a subset that can be used to generate
C code suitable for embedded systems, an enhanced version
of such functionality developed for Leon [27].

Acknowledgements. Research on Stainless has been
funded in part by (i) the Swiss Science Foundation
grants 200021 132176, 200020 138204, 200020 146649,
200021 144503, 200020 159949, and 200021 175676.
(ii) European Research Council (ERC) Starting Grant
PE6-306484-IMPRO, (iii) The Swiss State Secretariat for
Education, Research and Innovation, Swiss Space Office
grant “Embedded Flight Software Verification–ESOVER” and
(iv) the envelope budget for the LARA group from the EPFL
School of Computer and Communication Sciences.

Stainless and Inox were created from parts of Leon code
by Nicolas Voirol. In addition to Nicolas and the two au-
thors of this tutorial, contributors to Stainless and Inox in-
clude: Roman Ruetschi, Georg Stefan Schmid, Marco An-
tognini, Ravichandhran Madhavan, Etienne Kneuss, Lars Hu-
pel, Emmanouil Koukoutos, Philippe Suter, Roman Edelmann,
Utkarsh Upadhyay, Ivan Kuraj, Sandro Stucki, Ruzica Piskac,
Tihomir Gvero, Czipó Bence, Sumith Kulal, Lucien Iseli,
Regis Blanc, Iulian Dragos, Dragana Milovančević, Antoine
Brunner, Mirco Dotta, Yann Bolliger, Rodrigo Raya, Samuel
Gruetter, Mikaël Mayer, Guillaume Massé. Romain Jufer
worked with Jad Hamza on a fork for smart contract veri-
fication and Solidity code generation, Romain Edelmann and
Rodrigo Raya developed an interactive proof assistant concept

6

based on Inox. Regis Blanc developed a Scala library for input
and output of SMT-LIB files. ScalaZ3 interface to the Z3
dynamically linked library additionally received contributions
from Ali Sinan Köksal and Thorsten Tarrach. Contributors
to Stainless Bolts case studies include additionally Samuel
Chassot and Clément Burgelin. We thank users of Stainless
from Ateleris GmbH including Simon Felix, Filip Schramka,
and Ivo Nussbaumer. We also thank MSc students at EPFL
taking the Formal Verification course, completing interesting
case studies and identifying bugs in the system.

REFERENCES

[1] J. Hamza, N. Voirol, and V. Kunčak, “System FR: Formalized foun-
dations for the Stainless verifier,” Proc. ACM Program. Lang, no.
OOPSLA, November 2019.

[2] M. Odersky, L. Spoon, and B. Venners, Programming in Scala, 4th ed.
Artima Inc, 2008.

[3] N. C. Y. Voirol, “Verified functional programming,” Ph.D. dissertation,
EPFL, thesis number 9479, 2019. [Online]. Available: http://doi.org/10.
5075/epfl-thesis-9479

[4] G. Schmid and V. Kunčak, “Proving and disproving programs with
shared mutable data,” 2021.

[5] R. Madhavan, S. Kulal, and V. Kuncak, “Contract-based resource
verification for higher-order functions with memoization,” in ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), 2017.

[6] R. W. Blanc, “Verification by reduction to functional programs,” Ph.D.
dissertation, EPFL, thesis number 7636, 2017. [Online]. Available:
http://doi.org/10.5075/epfl-thesis-9479

[7] N. Voirol, E. Kneuss, and V. Kuncak, “Counter-example complete
verification for higher-order functions,” in Scala Symposium, 2015.

[8] R. Blanc and V. Kuncak, “Sound reasoning about integral data types
with a reusable SMT solver interface,” in Scala Symposium, 2015.

[9] V. Kuncak, “Developing verified software using Leon (invited contribu-
tion),” in NASA Formal Methods (NFM), 2015.

[10] E. Koukoutos and V. Kuncak, “Checking data structure properties orders
of magnitude faster,” in Runtime Verification (RV), 2014.

[11] R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter, “An overview of
the Leon verification system: Verification by translation to recursive
functions,” in Scala Workshop, 2013.

[12] A. Köksal, V. Kuncak, and P. Suter, “Constraints as control,” in
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), 2012.

[13] P. Suter, A. S. Köksal, and V. Kuncak, “Satisfiability modulo recursive
programs,” in Static Analysis Symposium (SAS), 2011.

[14] P. Suter, M. Dotta, and V. Kuncak, “Decision procedures for algebraic
data types with abstractions,” in ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL), 2010.

[15] C. Okasaki, Purely Functional Data Structures. Cambridge University
Press, 1998.

[16] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The kind 2
model checker,” in Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part II, ser. Lecture Notes in Computer Science, vol. 9780.
Springer, 2016, pp. 510–517.

[17] J. S. Moore, “Milestones from the pure lisp theorem prover to ACL2,”
Formal Aspects Comput., vol. 31, no. 6, pp. 699–732, 2019.

[18] R. S. Boyer and J. S. Moore, “Proving theorems about LISP functions,”
in Proceedings of the 3rd International Joint Conference on Artificial
Intelligence. Standford, CA, USA, August 20-23, 1973, N. J. Nilsson,
Ed. William Kaufmann, 1973, pp. 486–493. [Online]. Available:
http://ijcai.org/Proceedings/73/Papers/053.pdf

[19] N. Vazou, “Liquid haskell: Haskell as a theorem prover,” Ph.D. disser-
tation, UNIVERSITY OF CALIFORNIA, SAN DIEGO, 2016.

[20] W. T. Hallahan, A. Xue, M. T. Bland, R. Jhala, and R. Piskac,
“Lazy counterfactual symbolic execution,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,
K. S. McKinley and K. Fisher, Eds. ACM, 2019, pp. 411–424.
[Online]. Available: https://doi.org/10.1145/3314221.3314618

[21] L. Lamport, “The pluscal algorithm language,” in Theoretical Aspects
of Computing - ICTAC 2009, 6th International Colloquium, Kuala
Lumpur, Malaysia, August 16-20, 2009. Proceedings, ser. Lecture Notes
in Computer Science, M. Leucker and C. Morgan, Eds., vol. 5684.
Springer, 2009, pp. 36–60.

[22] V. Sofronie-Stokkermans, “Locality results for certain extensions of
theories with bridging functions,” in Automated Deduction - CADE-
22, 22nd International Conference on Automated Deduction, Montreal,
Canada, August 2-7, 2009. Proceedings, ser. Lecture Notes in Computer
Science, R. A. Schmidt, Ed., vol. 5663. Springer, 2009, pp. 67–83.

[23] T. Pham, A. Gacek, and M. W. Whalen, “Reasoning about algebraic data
types with abstractions,” J. Autom. Reason., vol. 57, no. 4, pp. 281–318,
2016.

[24] S. Overflow, “Annual developer survey,” 2021. [Online]. Available:
https://insights.stackoverflow.com/survey/

[25] I. T. Kassios, “Dynamic frames: Support for framing, dependencies and
sharing without restrictions,” in FM 2006: Formal Methods, 14th Inter-
national Symposium on Formal Methods, Hamilton, Canada, August 21-
27, 2006, Proceedings, ser. Lecture Notes in Computer Science, J. Misra,
T. Nipkow, and E. Sekerinski, Eds., vol. 4085. Springer, 2006, pp. 268–
283.

[26] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, ser. Lecture Notes in
Computer Science, E. M. Clarke and A. Voronkov, Eds., vol. 6355.
Springer, 2010, pp. 348–370.

[27] M. Antognini, “Extending safe C support in Leon,” Master’s thesis,
EPFL, 2017. [Online]. Available: https://infoscience.epfl.ch/record/
227942/

7

http://doi.org/10.5075/epfl-thesis-9479
http://doi.org/10.5075/epfl-thesis-9479
http://doi.org/10.5075/epfl-thesis-9479
http://ijcai.org/Proceedings/73/Papers/053.pdf
https://doi.org/10.1145/3314221.3314618
https://insights.stackoverflow.com/survey/
https://infoscience.epfl.ch/record/227942/
https://infoscience.epfl.ch/record/227942/

Formal Methods in Computer-Aided Design 2021

Formal Methods for the
Security Analysis of Smart Contracts

Mattei Maffei
TU Wien

Vienna, Austria
matteo.maffei@tuwien.ac.at

Abstract—Smart contracts consist of distributed programs built over a blockchain and they are emerging as a disruptive paradigm
to perform distributed computations in a secure and efficient way. Given their nature, however, program flaws may lead to dramatic
financial losses and can be hard to fix. This motivates the need for formal methods that can provide smart contract developers with
correctness and security guarantees, ideally automating the verification task.
This tutorial introduces the semantic foundations of smart contracts and reviews the state-of-the-art in the field, focusing in particular
on the automated, sound, static analysis of Ethereum smart contracts. We will highlight the strengths and drawbacks of different
methods, suggesting open challenges that can stimulate new research strands. Finally, we will overview eThor, an automated static
analysis tool that we recently developed based on rigorous semantic foundations.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 3 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_3
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_3
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2021

Active Automata Learning: from L∗ to L#

Frits Vaandrager
Radboud University

Nijmegen, The Netherlands
F.Vaandrager@cs.ru.nl

Abstract—In this tutorial on active automata learning algorithms, I will start with the famous L∗ algorithm proposed by Dana
Angluin in 1987, and explain how this algorithm approximates the Nerode congruence by means of refinement. Next, I will present a
brief overview of the various improvements of the L∗ algorithm that have been proposed over the years. Finally, I will introduce L#,
a new and simple approach to active automata learning. Instead of focusing on equivalence of observations, like the L∗ algorithm
and its descendants, L# takes a different perspective: it tries to establish apartness, a constructive form of inequality.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 4 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_4
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_4
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2021

From Viewstamped Replication to Blockchains
Barbara Liskov

MIT Computer Science & Artificial Intelligence Lab
Cambridge, MA, USA
liskov@csail.mit.edu

Abstract—This talk will discuss two replication protocols. The first, Viewstamped Replication, was developed in the 1980s when
research on replication protocols was concerned primarily with systems that survived crash failures, e.g., individual replicas could
fail only by crashing. Viewstamped replication is similar to Paxos; it was the earliest practical replication algorithm that provided
the ability to execute general operations (as opposed to just reads and writes).
In the 1990s, researchers became interested in systems that could survive Byzantine failures, in which replicas fail arbitrarily.
Replicated systems that survive Byzantine failures are substantially more complex, requiring both more replicas and more phases
of communication, than those that survive only crash failures. The talk will present PBFT, the first practical replication technique
that handles Byzantine failures. PBFT is now of great interest to researchers working on blockchains.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 5 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
liskov@csail.mit.edu
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_5
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_5
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2021

Algorithms for the People
Seny Kamara

Brown University
Providence, Rhode Island, USA

seny@brown.edu

Abstract—Algorithms have transformed every aspect of society, including communication, transportation, commerce, finance, and
health. The revolution enabled by computing has been extraordinarily valuable. The largest tech companies generate a trillion
dollars a year and employ 1 million people. But technology does not affect everyone in the same way. In this talk, we will examine
how new technologies affect marginalized communities and think about what technology and academic research would look like if
its goal was to serve the disenfranchised.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 6 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_6
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_6
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2021

Engineering with Full-scale Formal Architecture:
Morello, CHERI, Armv8-A, and RISC-V

Peter Sewell
University of Cambridge

Cambridge, UK
Peter.Sewell@cl.cam.ac.uk

Abstract—Architecture specifications define the fundamental
interface between hardware and software. Historically, main-
stream architecture specifications have been informal prose-and-
pseudocode documents. This talk will describe our work to estab-
lish and use mechanised semantics for full-scale instruction-set
architectures (ISAs): the mainstream Armv8-A architecture, the
emerging RISC-V architecture, the CHERI-MIPS and CHERI-
RISC-V research architectures that use hardware capabilities for
improved security, and Arm’s prototype Morello architecture –
an industrial demonstrator incorporating the CHERI ideas.

We use a variety of tools, especially our Sail ISA definition
language and Isla symbolic evaluation engine, to build semantic
definitions that are readable, executable as test oracles, support
reasoning within the Coq, HOL4, and Isabelle proof assistants,
support SMT-based symbolic evaluation, support model-based
test generation, and can be integrated with operational and
axiomatic concurrency models. These models are all complete
enough to boot operating systems and hypervisors, covering the
full sequential ISA (though not other SoC components, such as
the Arm Generic Interrupt Controller). They range from 5000
to 60000 lines of specification.

For CHERI-MIPS and CHERI-RISC-V, we have used Sail
models (and previously L3 models) as the golden reference during
design, working with our systems and computer architecture col-
leagues in the CHERI team to use lightweight formal specification
routinely in documentation, testing, and test generation. We have
stated and proved (in Isabelle) some of the fundamental intended
security properties of the full CHERI-MIPS ISA.

For Armv8-A, building on Arm’s internal shift to an executable
model in their ASL language, we have the complete sequential
ISA semantics automatically translated from the Arm ASL
to Sail, and for RISC-V, we have hand-written what is now
the offically adopted model. For their concurrent semantics,
the “user” semantics, partly as a result of our collaborations
with Arm and within the RISC-V concurrency task group,
have become simplified and well-defined, with multiple models
proved equivalent, and we are currently working on the “system”

This work was partially supported by the UK Government Industrial
Strategy Challenge Fund (ISCF) under the Digital Security by Design (DSbD)
Programme, to deliver a DSbDtech enabled digital platform (grant 105694),
ERC AdG 789108 ELVER, EPSRC programme grant EP/K008528/1 REMS,
Arm iCASE awards, EPSRC IAA KTF funding, the Isaac Newton Trust,
the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Mi-
crosoft Research Cambridge, Arm Limited, Google, Google DeepMind, HP
Enterprise, and the Gates Cambridge Trust. Approved for public release;
distribution is unlimited. This work was supported by the Defense Advanced
Research Projects Agency (DARPA) and the Air Force Research Labo-
ratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”), FA8750-
11-C-0249 (“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-
7809 (“CIFV”), as part of the DARPA CRASH, MRC, and SSITH research
programs. The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

semantics. Our symbolic execution tool for Sail specifications,
Isla, supports axiomatic concurrency models over the full ISA.

Morello, supported by the UKRI Digital Security by Design
programme, offers a path to hardware enforcement of fine-
grained memory safety and/or secure encapsulation in the
production Armv8-A architecture, potentially excluding or mit-
igating a large fraction of today’s security vulnerabilities for
existing C/C++ code with little modification. During the ISA
design process, we have proved (in Isabelle) fundamental security
properties for the complete Morello ISA definition, and generated
tests from the definition which were used during hardware
development and for QEMU bring-up.

All these tools and models are (or will soon be) available under
open-source licences, providing well-validated models for others
to use and build on.

This is joint work by many people, including especially, for Sail
and Isla: Alasdair Armstrong, Brian Campbell, Kathryn E. Gray,
Mark Wassell, Jon French, Neel Krishnaswami; for Morello ver-
ification and ASL-to-Sail translation: Thomas Bauereiss, Thomas
Sewell, Brian Campbell, Alasdair Armstrong, Alastair Reid;
for Morello and CHERI-MIPS test generation: Brian Campbell;
for CHERI-MIPS verification: Kyndylan Nienhuis; for RISC-V
and CHERI-RISC-V specifications: Robert M. Norton, Prashanth
Mundkur, Jessica Clark; for MIPS and CHERI-MIPS specifica-
tions: Alexandre Joannou, Anthony Fox, Michael Roe, Matthew
Naylor; and for Concurrency semantics: Christopher Pulte,
Shaked Flur, Will Deacon, Ben Simner, Luc Maranget, Susmit
Sarkar, Jean Pichon-Pharabod, Ohad Kammar, Jeehoon Kang,
Sung-Hwan Lee, Chung-Kil Hur. All this is in collaboration
with the rest of the CHERI team and others in Arm (especially
Richard Grisenthwaite, Graeme Barnes, and the Morello team)
and in the RISC-V community, with the CHERI team jointly led
by Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter
G. Neumann, and Ian Stark.

Sail

Sequential

Emulator (C)

Sequential

Emulator (OCaml)

Test

Generation

Coq

Isabelle

HOL4

(CHERI ARM)
ASL

Morello

G
e

n
e

ra
te

d
 A

rtifa
c
ts

ISA Security Properties

(Machine−checked proofs)

Framemaker export

parse, analyse, patch

Sail

Framemaker

XMLSail

asl_to_sail

Sail

Sail Sail

(CHERI ARM)
Morello

LaTeX

fragments
Sequential Execution

Concurrent Execution

Lem

IS
A

 D
e

fin
itio

n
s

X

asl_to_sail

ASL

Sail

Armv8−A

Armv8−A

Sail

Power 2.06B

Power 2.06B

Sail

Documentation
CHERI−RISC−V
CHERI−MIPS

Prover Definitions

ISA Tests

Lem
ELF model

Sail

RISC−V

isla SMT

symbolic evaluator

Power (core)

ARM (core)CHERI RISC−V

concurrency concurrency

Concurrency models

Operational, Lem

isla−axiomatic RMEM

tool

MIPS x86 (core)

Concurrency models

CHERI−MIPS

Axiomatic, Cat

tool

Fig. 1. Sail models and infrastructure (grayed-out models are partial ISA
models in an older version of Sail)

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 7 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
Peter.Sewell@cl.cam.ac.uk
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_7
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_7
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2021

The FMCAD 2021 Student Forum
Mark Santolucito

Barnard College, Columbia University
New York City, USA

msantolu@barnard.edu

Abstract—The Student Forum at the International Conference
on Formal Methods in Computer-Aided Design (FMCAD) gives
undergraduate and graduate students the opportunity to engage
with to the Formal Methods community by presenting their
working and receiving feedback. The Student Forum was held
in a hybrid format, with some students participating in limited
in-person events in New Haven, Connecticut, USA.

The Graduate Student Forum was first introduced in 2013
to the FMCAD conference series. The goal of the Forum is
to enable graduate students to attend the conference, even if
they do not have a paper accepted at the main conference
track. Students were attracted with an opportunity to present
their on-going work to a broader scientific audience and
receive valuable feedback about the research they are currently
pursuing.

FMCAD 2021 hosted the ninth edition of the Student
Forum. There was an open call for papers from both under-
graduate and graduate students working broadly in the area of
Formal Methods. In the call, students were asked to submit a 2-
page summary of their current research and on-going work. We
received a number of high quality submissions to the Student
Forum and accepted a total of 10 submissions. Reviews were
based on the overall quality and novelty of work, the potential
for impact of the work on the field of Formal Methods, as
well as the potential positive impact on the student to have
the opportunity to participate in the forum.

This year, the Student Forum allowed for the submission of
joint research where two student researchers collaborated and
contributed equally in the eyes of their advisors. The topics
covered by the accepted submissions ranged across the field of
Formal Methods, including foundational advancements as well
as a variety of application domains. The accepted submissions
are listed below with their respective student authors:

• Wonhyuk Choi: Can Reactive Synthesis and Syntax-
Guided Synthesis Be Friends?

• Shmuel Berman: Programming-By-Example by
Programming-By-Example: Synthesis of Looping
Programs

• Ameer Hamza: Automated Alignment for Equivalence
Checking

• Amitash Nanda: NeuCASL: From Logic Design to System
Simulation of Neuromorphic Engines

• Guy Amir: Verifying Deep Reinforcement-Learning Sys-
tems

• Ori Lahav: Neural Network Simplification using Formal
Verification

• Y. Cyrus Liu: Source-Level Bitwise Branching for Tem-
poral Verification

• Maxwell Levatich: Using Z3 to Validate Executions of a
Program Partitioner

• Priyanka Golia: Boolean Functional Synthesis and its
Applications

• John Hui and Robert Krook: Toward Sparse Synchronous
Computing on Embedded Systems

This edition of the FMCAD Student Forum follows a series
of previous successful iterations of the forum [1]–[8].

We would like to thank the organizers of FMCAD, as well
as the entire program committee of FMCAD, who have made
the FMCAD student forum possible. Additionally, we are
grateful to the student authors and their research mentors who
have contributed their excellent work to the program.

REFERENCES

[1] T. Wahl, “The FMCAD graduate student forum,” in Formal Methods
in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. IEEE, 2013, pp. 16–17. [Online]. Available:
https://doi.org/10.1109/FMCAD.2013.7035523

[2] R. Piskac, “The FMCAD 2014 graduate student forum,” in Formal
Methods in Computer-Aided Design, FMCAD 2014, Lausanne,
Switzerland, October 21-24, 2014. IEEE, 2014, p. 13. [Online].
Available: https://doi.org/10.1109/FMCAD.2014.6987589

[3] G. Weissenbacher, “The FMCAD 2015 graduate student forum,” in
Formal Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas,
USA, September 27-30, 2015, R. Kaivola and T. Wahl, Eds. IEEE, 2015,
p. 8.

[4] H. Hojjat, “The FMCAD 2016 graduate student forum,” in 2016 Formal
Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA,
USA, October 3-6, 2016, R. Piskac and M. Talupur, Eds. IEEE, 2016,
p. 8. [Online]. Available: https://doi.org/10.1109/FMCAD.2016.7886654

[5] K. Heljanko, “The FMCAD 2017 graduate student forum,” in 2017
Formal Methods in Computer Aided Design, FMCAD 2017, Vienna,
Austria, October 2-6, 2017, D. Stewart and G. Weissenbacher, Eds.
IEEE, 2017, p. 10. [Online]. Available: https://doi.org/10.23919/FMCAD.
2017.8102234

[6] D. Jovanovic and A. Reynolds, “The FMCAD 2018 graduate student
forum,” in 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, N. Bjørner
and A. Gurfinkel, Eds. IEEE, 2018, p. 1. [Online]. Available:
https://doi.org/10.23919/FMCAD.2018.8602995

[7] G. Fedyukovich, “The FMCAD 2019 student forum,” in 2019 Formal
Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA,
October 22-25, 2019, C. W. Barrett and J. Yang, Eds. IEEE, 2019, p. 1.
[Online]. Available: https://doi.org/10.23919/FMCAD.2019.8894257

[8] P. Schrammel, “The FMCAD 2020 student forum,” in 2020 Formal
Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel,
September 21-24, 2020. IEEE, 2020, p. 1. [Online]. Available:
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 6

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 8 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-8646-4364
https://doi.org/10.1109/FMCAD.2013.7035523
https://doi.org/10.1109/FMCAD.2014.6987589
https://doi.org/10.1109/FMCAD.2016.7886654
https://doi.org/10.23919/FMCAD.2017.8102234
https://doi.org/10.23919/FMCAD.2017.8102234
https://doi.org/10.23919/FMCAD.2018.8602995
https://doi.org/10.23919/FMCAD.2019.8894257
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_6
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_8
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_8
https://creativecommons.org/licenses/by/4.0/

Formal Methods in Computer-Aided Design 2021

COCOALMA: A Versatile Masking Verifier
Vedad Hadžić

Graz University of Technology
Roderick Bloem

Graz University of Technology

Abstract—Masking techniques are an effective countermea-
sure against power side-channel attacks. Unfortunately, correctly
masking a hardware circuit is difficult, and mistakes may lead
to functionally correct circuits with insufficient protection. We
present COCOALMA, a tool that formally verifies the side-channel
resistance of stateful hardware circuits. Although COCOALMA
was initially used to verify programs running on CPUs, we
extended it to verify the security of several industrial masked
hardware implementations. We give an overview of the tool’s
structure, implementation details, optimizations that make it
faster and more scalable than its predecessor REBECCA, and
changes that enable verifying the probing security of any stateful
hardware circuit. Finally, we evaluate COCOALMA with masked
implementations of the PRINCE and AES ciphers.

Index Terms—Side-channels, Hardware masking, Formal ver-
ification

I. INTRODUCTION

Integrated circuits that process sensitive data are susceptible
to passive side-channel attacks like differential power analysis.
Naturally, attackers are interested in the secret keys of sym-
metric ciphers because that would break the confidentiality
of the processed data [22], [23], [26], [21]. Classical power
analysis attacks exploit the correlation of the circuit’s power
consumption to bits of the secret key. Ultimately, the key is
reconstructed using statistic analysis techniques in a series of
key guesses [22], [27].

Masking is an algorithmic countermeasure against power
analysis attacks. It relies on splitting all secrets and inter-
mediate computations into multiple signals. The circuit is
rewritten so that attackers can only reconstruct the original
value if they can observe all the shares simultaneously. Mask-
ing techniques achieve this by introducing randomness into
the circuit and destroying the correlation between the power-
trace and the original data. Several masking schemes describe
how to make circuits secure against side-channel attacks.
Among them, domain-oriented masking [15] and threshold
implementations [9] are well studied and widely adopted. The
security of masked hardware circuits is expressed using the
hardware probing model [2], [18], [4], where an attacker can
read the values of d wires. Traditionally, engineers validate
masked hardware implementations empirically by creating
power traces and computing the correlations over many ex-
ecutions. Recently, however, we see several formal masking
verification methods that can substantially reduce the costs
of validating power side-channel resistance of software and
hardware [2], [1], [11].

This work was supported by the Austrian Research Promotion Agency
(FFG) through the FERMION project (grant number 867542).

.v

Hardware Design

.v
Netlist Testbench

.c

Execution Trace

.vcd

Labels

.txt

Circuit Graph

.json

✓ secure m potential leak at ...

?

Ò
parse.py

x
verilator

Ò
trace.py

Ò
verify.py

x
cadical

x
yosys

Figure 1. The workflow of COCOALMA showing the parsing, tracing, and
verification phases, as well as their artifacts. At the end of the verification
phase, COCOALMA either acknowledges that the analyzed design is secure
or shows that a secret is leaked at a given location in the circuit.

COCOALMA is an open-source masking verifier1 that as-
sisted the hardening of a RISC-V processor2 so it could
safely execute masked software [13]. It considers the exact
description of the hardware that runs the software and accounts
for hardware leakage effects such as glitches. Figure 1 shows
the workflow of COCOALMA. Starting with a hardware design
written in Verilog, COCOALMA uses Yosys [31] to synthesize
a flat gate-level Verilog netlist. Additionally, the parsing phase
extracts a circuit graph of the synthesized design and creates
a labeling template where the user can specify the contents
of each register and input port of the circuit after the reset.

1https://github.com/IAIK/coco-alma
2https://github.com/IAIK/coco-ibex

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 9 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-7974-3381
https://orcid.org/0000-0002-1411-5744
https://github.com/IAIK/coco-alma
https://github.com/IAIK/coco-ibex
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_9
https://creativecommons.org/licenses/by/4.0/

COCOALMA uses a testbench provided by the user to simulate
the netlist with Verilator [28], resulting in a value change
dump showing how the internal signals changed throughout
the execution. For the analysis of software running on RISC-
V processors, COCOALMA additionally requires the RISC-V
toolchain to compile programs and add them to the testbench
before starting the simulation. The resulting execution trace is
used to determine the value and glitching properties of each
wire in the design. Afterward, the time-constrained probing
model, initial state, simulation trace, and glitching information
are encoded as a SAT problem and solved with CaDiCaL [3].
If the problem is unsatisfiable, no possible observation would
leak any of the secrets. Otherwise, COCOALMA gives a precise
description of leakage location, the secret bits that are leaked,
and a variety of other debugging information.

Although COCOALMA was first used for analyzing software
running on CPUs [13], its roots in the older verification tool
REBECCA [4] can be leveraged towards stateful hardware
verification of masked cipher implementations. Luckily, all
the principles used in COCOALMA also apply to hardware
masking verification with minor tweaks. In this paper, we
document the inner workings of COCOALMA, its features, and
show the extensions necessary for applying it to cryptographic
accelerator modules. We present the following details about
COCOALMA’s implementation:

◦ In Section II, we define the supported probing mod-
els, emphasizing the newly supported hardware probing
model, which allows us to prove the security of stateful
hardware circuits. We also discuss the support for random
number generators.
◦ In Section III-A, we give a breakdown of the corre-
lation set methodology and show its encoding into a
SAT formula in Section III-B. Here we give a precise
description of the encoding, which is missing in the
original publication [13], and more efficient than the
encoding used in REBECCA [4]. Finally, in Section III-C,
we describe details of several optimizations that reduce
the size of the encoding and the number of probing
locations. Here, the hardware probing model requires
special considerations.
◦ In Section IV, we motivate and describe the execution-
dependent correlation set simplifications. Additionally,
we present the stable signal detection algorithm comput-
ing the stability of each control signal in Section IV-A.
This optimization allows us to simplify the correlation
sets even in the presence of glitches.
◦ In Section V, we demonstrate COCOALMA’s capabili-
ties by verifying the probing security of state-of-the-art
masked implementations of the PRINCE [6], [12], [20]
and AES [30], [7], [17], [15] ciphers as they are popular
in the semiconductor industry. Additionally, we go over
the debugging tools provided with COCOALMA, which
allow a designer to locate the source of the leakage and
see how leakage propagates through the circuit.

II. SECURITY MODELS

Masked implementations split all intermediate data signals x
into d+1 uniformly random pieces xi, with x = x0⊕ . . .⊕xd.
In practice, for i ̸= d, the signal shares xi are sampled
from a random number generator, whereas xd is chosen as
x ⊕ x0 ⊕ . . . ⊕ xd−1 to fit the equality. This countermeasure
tries to prevent an attacker, who can observe intermediate com-
putations through side-channels, from learning anything about
the processed data. When investigating whether a masked
implementation is actually side-channel resistant, several se-
curity models describe the capabilities of an attacker and the
real-world effects they can observe. COCOALMA implements
three different probing models that consider different attacker
capabilities and system behavior. More specifically, this work
extends COCOALMA to support continuous probing as part of
the hardware probing model.

Software probing model. The original probing model
defined by Ishai et al. [18] considers the stable state of
computations, ignoring hardware side-effects such as glitches
and transitions. Their seminal paper says that an attacker in
this probing model can choose d intermediate values that they
can observe. The attacker can then interactively query the
execution of the system several times with different inputs
and starting states. The inputs of the computation are declared
either (a) public, which means that learning them does not
benefit the attacker, (b) fixed uniformly random values called
masks, or (c) parts of a secret called shares. The attacker’s
goal is to learn all the shares of a secret and use them to
reconstruct the secret value they are not supposed to know.
Proving that an implementation is d-probing secure requires
showing that no attacker adhering to this probing model can
learn the secrets, irrespective of their strategy.

Time-constrained probing model.3 When COCOALMA
was first presented [13], its primary goal was verifying the
masking of software programs running on an accurate descrip-
tion of the underlying hardware. Naturally, this required an
adequate probing model that translates software probing into
the hardware domain. The time-constrained probing model
uses the gate-level description of the hardware and an ex-
ecution trace generated by simulating the hardware running
the software, instead of a purely algorithmic description. The
goals of the attacker are the same as in the software probing
model. However, this model is more realistic, as the attacker
can probe d observation tuples (g, t), where g is a logic gate
or register and t is a cycle in the execution trace. This gives an
attacker access to all the intermediate values of gate g in cycle
t, including all the values caused by hardware effects such as
glitches and register transition leakage. The two parameters
g and t are not coupled, meaning that the attacker can also
probe the same gate in multiple clock cycles or even probe d
different gates in the same clock cycle. Although this model
limits each probe to observing only one clock cycle, instead of
running throughout the computation, its inclusion of hardware
effects significantly enhances the capabilities of an attacker.

3Barthe et al. [2] and Moos et al. [24] call this the robust probing model.

15

Due to the different signal timings in hardware, an attacker
observing gate g = a ⊙ b in this model would also observe
the signals a and b in addition to g. Registers are synchronous
elements triggered by a clock, making them the only hardware
elements exempt from this phenomenon. Another effect that
increases the attacker’s capabilities is transition leakage, which
causes the power consumption to correlate with the linear
combination gt−1 ⊕ gt of the old signal value in cycle t − 1
and the new signal value in cycle t. Transition leakage applies
to all hardware elements equally, including registers.

Hardware probing model. This paper extends the tool
COCOALMA with a model where probes are not bound to
one clock cycle like in the time-constrained probing model.
The attacker’s goals remain the same as before, only that
in this more rigorous model, the probes record continuously
throughout the whole computation. More precisely, instead of
choosing a clock cycle for each observed location, the attacker
observes all values, including those caused by glitches and
transitions, that pass through a wire. In a sense, this is a
more powerful rephrasing of the original probing model of
Ishai et al. [18], as they also did not limit the duration of
the probes for stateful circuits. As this model significantly
increases the capabilities of an attacker, hardware designers
employ random number generators to create fresh uniformly
random masks in each clock cycle, intending to break any
correlations that might otherwise be observed. These mask-
generating circuits are usually not part of the masked hard-
ware designs and are only used as black-boxes that provide
random inputs to the masked circuit. We incorporate this in
COCOALMA, allowing designers to label input ports of a
circuit as random. The values read from these ports behave
similarly to fixed masks, only that they represent a new mask in
each clock cycle, which is then considered during verification.
The semantics of public and share signals remains the same,
and we even allow fixed masks, just like in the other probing
models.

III. VERIFICATION METHOD

COCOALMA tries to verify the side-channel resistance of a
masked implementation in one of the given security models.
A correctly masked implementation computes the values of
arbitrary logic functions without exposing the value of the se-
cret to an attacker through intermediate computations. There-
fore, a masked implementation must ensure that intermediate
signals do not correlate with secrets; that is, the value of an
intermediate signal should be statistically independent of all
secrets. COCOALMA checks whether these properties hold by
tracking the correlations of each logic operation throughout
the computation [4], [13]. For instance, if a circuit were to
compute the expression f = a∧ b, then f correlates positively
with a, b, and the constant ⊥ because they have the same value
in three out of four cases. For the same reason, f correlates
negatively with the linear combination a⊕b because they only
have the same value in one of four cases, i.e., when both a and
b are ⊥. An exact algorithm that computes these correlations
would solve the #SAT problem [14], meaning that computing

Table I
PROPAGATION RULES FOR STABLE AND TRANSIENT CORRELATION SETS

Gate type of f Stable set St
f Transient set T t

f

Constant ⊥ or ⊤ {⊥} {⊥}
Input Port pt

{︁
pt
}︁ {︁

pt
}︁

Negation ¬a St
a T t

a

Register ⇐R a St−1
a St−1

a

Linear a⊕ b St
a ⊗ St

b

⟨︁
T t
a

⟩︁
⊗

⟨︁
T t
b

⟩︁
Non-linear a ∧ b ⟨︁

St
a

⟩︁
⊗

⟨︁
St
b

⟩︁ ⟨︁
T t
a

⟩︁
⊗

⟨︁
T t
b

⟩︁
a ∨ b

Multiplexer c ? a : b
⟨︁
St
c

⟩︁
⊗

(︁
St
a ∪ St

b

)︁ ⟨︁
T t
c

⟩︁
⊗

⟨︁
T t
a

⟩︁
⊗

⟨︁
T t
b

⟩︁

correlations is at least #P-Complete [29], which is harder
than NP by definition. Because of the structure of secrets
and the uniform randomness of secret shares and masks, it
is sufficient to track the correlations to linear combinations
of the inputs [4]. Furthermore, the correlations yield a sound
over-approximation that reduces the complexity of the problem
and is also used in COCOALMA. In the following sections, we
describe this over-approximation and its implementation, but
refer to the soundness proofs in the original publication [4].

A. Correlation Sets

Instead of painstakingly computing the exact correlation
factor for each linear combination of inputs, COCOALMA
over-approximates the correlations. In particular, COCOALMA
only considers whether the correlation factor is non-zero,
and ignores its exact value. All linear combinations a gate
correlates to are grouped together and tracked as so-called
correlation sets. The exact correlations are approximated us-
ing propagation rules that determine the correlation set of
f = a⊙b by considering the correlation sets of a and b, as well
as the used logic operation ⊙. Using the previous example
f = a ∧ b, we have shown that the correlation set contains
all linear combinations of a and b, i.e., {⊥, a, b, a⊕ b}. In
contrast, f = a ⊕ b only correlates with itself, i.e., the set
{a⊕ b}, because the value of a ⊕ b coincides with ⊥, a,
and b in exactly half of the cases, yielding a correlation
factor of zero. Consequently, knowing f would not reveal any
information about a and b. In general, we cannot compute the
correlation set of the output of a logical operation precisely
from the correlation sets of its inputs, so COCOALMA over-
approximates these sets.

Table I presents the propagation rules COCOALMA uses
to compute the correlation sets of a gate using its inputs.
The propagation rules define two kinds of correlation sets
necessary for the verification: (a) stable sets St

f that define
the normal behavior of a gate f , and (b) transient sets T t

f

that define the behavior of f in the presence of glitches and
transition leakage effects. Both types of correlation sets are
defined for each clock cycle t, as gates change their value
over time. Although the hardware probing model only talks
about these transient correlation sets, the stable correlation sets
are necessary for synchronizing elements such as registers.
For simpler exposition and encoding, Table I shows the
computation of correlation sets using the operators ⊗ and

16

⟨·⟩. Here, ⊗ is the element-wise exclusive-or between two
correlation sets, i.e., X ⊗ Y = {x⊕ y | x ∈ X, y ∈ Y }. The
operator ⟨·⟩ adds a correlation with ⊥ to a correlation set, i.e.,
⟨X⟩ = X ∪ {⊥}.

The presented propagation rules are based on COCOALMA’s
original publication [13], [4] but were adapted for stateful
hardware verification with continuously recording probes.
Naturally, constants only correlate to ⊥, and negations only
change the sign of the correlation but do not impact the
correlations themselves. As discussed previously, linear gates
only correlate to the linear combination of the inputs, so the
correlation set is computed as the element-wise exclusive-
or of the inputs’ correlation sets. For non-linear gates, the
correlation set is computed similarly, only that in this case,
a bias is introduced in each input’s correlation set. Using the
introduced notation, the correlation set of gate f = a ∧ b,
where a and b are inputs, is computed as

⟨{a}⟩ ⊗ ⟨{b}⟩ = {⊥, a} ⊗ {⊥, b} = {⊥, a, b, a⊕ b} . (1)

For transient correlations, linear gates behave like non-linear
gates. Glitches induced by different signal timings can force a
gate to forward a constant or either of the inputs, in addition to
the correct correlations. A multiplexer correlates to both of its
data inputs a and b, as well as their linear combinations with
the selector c, i.e., a⊕c and b⊕c. For the transient correlation
set, COCOALMA assumes that all three input signals can be
combined non-linearly.

When verifying masked software running on a processor,
the input pins of the hardware design are not relevant, as
they are part of the micro-architecture and not visible to
the programmer. Secret shares, masks, and public values are
all stored in both the RAM and the ROM, and for the
verification process, we label their locations and simulate the
design to execute a program [13]. Verifying masked hardware
is different, as there are no such memory blocks, and the
registers get cleared with a reset signal. Computation-relevant
data, such as plaintexts, keys, and masks, is provided by the
environment through the input ports of the circuit. Therefore
we extend COCOALMA with support for input ports and
introduce an appropriate propagation rule, which states that
an input port only correlates to its value in cycle t. In our
implementation, public values, shares, and masks have the
same value throughout the execution of the circuit. However,
input ports labeled as random are provided by an external
random number generator and change their value in each
cycle, and therefore, the correlation set also changes each
cycle. In addition, to the support for input ports, we also
optimized the propagation rules for registers. Since the probes
in the hardware probing model record data continuously, we
do not need to account for transition leakage because all values
passing through a wire are recorded anyway.

Computing correlation sets from other correlation sets can
result in over-approximations that include non-existent corre-
lations. For example, representing the exclusive-or function
f = a ⊕ b as f = (a ∧ ¬b) ∨ (¬a ∧ b) would result in the
spurious correlation set {⊥, a, b, a⊕b}, when in reality f only

correlates with {a⊕ b}. This means that a hardware designer
applying this over-approximative method must be aware of
false leakage reports and debug them properly. Oftentimes, as
illustrated in this toy example, the over-approximative error
can be fixed by either re-writing the circuit or removing the
problematic correlation term from the correlation set.

However, despite being imprecise, this over-approximation
is easy to encode and retains some useful information. For
example, function f = (a ⊕ b) ∧ c is correctly claimed
to correlate with {⊥, c, a⊕ b, a⊕ b⊕ c}, even though the
correlation set of f was computed using the correlation sets
of g = a ⊕ b and c. This result reflects the intuition that we
cannot “remove” masking from a signal by combining it with
another value, i.e., the correlation set does not contain values
where a appears without b.

B. SAT Encoding

The upper bound for the size of the correlation sets is expo-
nential in the number of inputs, so COCOALMA cannot store
or enumerate them explicitly and instead relies on an implicit
encoding method that utilizes a SAT solver. While the used
encoding is similar to the one presented by Bloem et al. [4],
it was significantly optimized and streamlined in COCOALMA
to simplify the implementation of all the propagation rules in
Table I. As mentioned previously, the user needs to label each
input port p ∈ I as either a share s ∈ Ki of the i-th secret,
a fixed random mask m ∈ M, a random port with a new
value r ∈ Rt in each clock cycle t, or a public value that is
ignored. For simpler notation, we do not implicitly associate
correlation sets or propositional variables with clock cycles
or gates in the circuit, and instead specify them with C− and
P−, where the subscript is used to differentiate them. In our
SAT encoding, a correlation set Cx is represented by a set of
propositional variables Px = {xp | p ∈ I}, such that every
valid assignment to the propositional variables Px corresponds
to an element in the correlation set Cx. Additionally, just like
I, Px can be further split as Px =

⋃︁
i Ki

x ∪ Mx ∪
⋃︁

t Rt
x.

Example 1 gives an intuition of the introduced variable sets
and correlation set encoding.

Example 1: Let I = {s0, s1,m} be the labeled input ports
given by the user, where s = s0 ⊕ s1 is a secret with shares
K0 = {s0, s1}, and fixed uniformly random masks M = {m}.
Let Cx = {⊥, s1, s0 ⊕m, s0 ⊕ s1 ⊕m} be a correlation set.
Then Px = {xs0 , xs1 , xm} are the propositional variables used
for encoding Cx, where K0

x = {xs0 , xs1}, and Mx = {xm},
and there are no random ports. The propositional variables
in Px are constrained in such a way that the only satis-
fying assignments for the propositional tuple (xs0 , xs1 , xm)
are (⊥,⊥,⊥), (⊥,⊤,⊥), (⊤,⊥,⊤), and (⊤,⊤,⊤). These
assignments represent the elements of Cx, where xp indicates
whether the port p appears in the current term of Cx.

COCOALMA maps the correlation terms in Cx to satisfying
assignments to the propositional variables Px by translating
the propagation rules from Table I into satisfiability con-
straints. However, in order to simplify the exposition, we only

17

demonstrate how we encode the correlation set operations ⟨·⟩,
∪, and ⊗, as well as the creation of a correlation set with
only one element. All of the propagation rules from Table I
can be obtained by applying different combinations of these
individual encodings, e.g., the transient rule for linear gates is
obtained by combining the encodings of ⟨·⟩ and ⊗.

First off, the correlation set of an input port only contains
the port itself. Therefore, we restrict all of its propositional
variables that correspond to other ports to be ⊥, whereas
the propositional variable representing the port itself must be
set to ⊤. More precisely, for a port p in clock cycle t, the
propositional variables Px are constrained with

xpt ∧
⋀︂

xa∈Px,a̸=pt

¬xa , (2)

where only random input ports are different in each clock
cycle and p = pt in all other cases.

Extending a correlation set Cx with the ⊥ element, written
as ⟨Cx⟩, is required for the propagation rules of linear and
non-linear operations. When translating this into constraints
for propositional variables Px, COCOALMA introduces a new
set of variables P ′

x and a fresh propositional variable q. The
SAT solver can pick the value of q freely. Depending on the
choice, all propositional variables P ′

x are forced to equal their
corresponding variables in Px or forced to be ⊥. We write
this constraint as ⋀︂

xa∈Px, x′
a∈P′

x

x′
a ↔ (q ∧ xa) . (3)

All satisfying assignments of P ′
x correspond to elements of

the correlation set ⟨Cx⟩. Each time the propagation rules in
Table I use the ⟨·⟩ operator, we introduce the variables P ′

x

and q and apply the given constraint.
Encoding the propagation rule for multiplexers requires

a similar constraint when representing the union of two
correlation sets. Given the correlation set Cz = Cx ∪ Cy ,
we introduce corresponding propositional variables Pz and a
fresh propositional variable q. We subsequently constrain the
introduced propositional variables with⋀︂

za∈Pz, xa∈Px, ya∈Py

za ↔ ((q ∧ xa) ∨ (¬q ∧ ya)) , (4)

where whenever q = ⊤ an element of Cx is encoded, and
otherwise an element of Cy . This encoding ensures that Cz
contains all elements of Cx and Cy , even if they are duplicates.

Finally, COCOALMA encodes the element-wise exclusive-or
of two correlation sets Cz = Cx ⊗ Cy using their correspond-
ing propositional variables and a straightforward equivalence
encoding ⋀︂

za∈Pz, xa∈Px, ya∈Py

za ↔ (xa ⊕ ya) . (5)

Unlike the encoding of unions, no additional fresh proposi-
tional variables are necessary as there is no choice involved.

The constraints (2)-(5) only show how each of the prop-
agation rules shown in Table I can be translated into SAT.

COCOALMA needs an additional encoding for the conditions
under which information leakage occurs. With correlation sets,
we check whether there is an element of the correlation
set where all shares of a secret are present, without being
hidden by uniformly random values, such as fixed masks,
random input ports, or shares of other secrets. Looking back
at Example 1, we see that each time both shares s0 and s1
appear in a correlation term, they are masked by mask m. This
means that the correlation set does not leak information about
s = s0 ⊕ s1. When checking this leakage property using the
SAT encoding, we require two constraints.

First, we enforce that for each secret, either all shares are
active, or all shares are inactive. Furthermore, we say that at
least one secret must be active in order to have a leak. We
encode this property by introducing one fresh propositional
variable ki for each secret and constraining them with(︄⋁︂

i

ki

)︄
∧
⋀︂
i

⋀︂
xs∈Ki

x

ki ↔ xs . (6)

The first conjunct guarantees that at least one of the secrets
is present in the correlation term. The rest of the expression
ensures that either all shares of a secret are active in a
correlation term, or none of them are, which is necessary since
shares of incomplete secrets are uniformly random.

Second, we enforce that no masks appear in the correlation
term, so the secrets are not hidden by uniformly random
values, as discussed in Example 1. We represent this in the
SAT encoding as(︄ ⋀︂

xm∈Mx

¬xm

)︄
∧

⎛⎝⋀︂
t

⋀︂
xr∈Rt

x

¬xr

⎞⎠ , (7)

which ensures that a satisfying solution must assign all the
variables representing masks and random values with ⊥.

Constraints (6) and (7) go hand in hand, and both are
required when testing whether a given correlation set leaks
information about the secrets. When checking the security of
a circuit in one of the supported security models, COCOALMA
determines the observations an attacker can make, where each
observation is made up of multiple correlation sets. For the
software probing model, COCOALMA takes all the d-tuples O
of probing locations (g, t) and tests the non-linear combination
of their stable correlation sets⨂︂

(g,t)∈O

⟨︁
St
g

⟩︁
, (8)

where g is the chosen gate, and t is the chosen clock cycle. The
same applies to the time-constrained probing model, where
COCOALMA checks the transient correlation sets T t

g instead.
In contrast, for the full hardware probing model, the probing
locations O are a d-tuple of gates g instead, and concern all
the clock cycles t for the given gates. Therefore, COCOALMA
must check the correlation set⨂︂

g∈O

⨂︂
t

⟨︁
T t
g

⟩︁
, (9)

18

which significantly increases the observations an attacker can
make. For example, using a register to store one share of
a secret early in the computation and store the other share
later in the computation would still allow an attacker to
reconstruct the secret. Naturally, longer executions of a circuit
get progressively harder to verify.

C. Encoding Optimizations

Although the shown SAT encoding is sufficient for showing
whether the circuit leaks information about the processed
secrets, the size of the produced constraints and formulas is
unnecessarily large. In this section, we present some of the
optimizations that dramatically reduce the effort of showing
that a masked hardware circuit is secure.

Variable elimination. The sets of propositional variables
Px often include variables constrained through unit clauses, so
their assignment is predetermined and equal in all satisfying
solutions. Constraint (2) is an example of such a situation.
Building constraints for such variables is unnecessary, and
they can be removed entirely, substantially reducing the size
of formula given to the SAT solver. In practice, COCOALMA
implements this by storing Px as a dictionary of propositional
variables, as well as a set of variables trivially set to ⊤. All
variables from Px that are not present are known to have the
value ⊥. Consequently, whenever creating any of the shown
constraints (3)–(7), we first check for trivial simplifications
using the properties of logic operators. Although this opti-
mization might seem superficial, it single-handedly reduces the
number of variables and clauses by anywhere between 90%
and 98% for the probing verification problems we have inves-
tigated so far. Notably, this optimization does not reduce the
complexity of the queries given to the SAT solver, as solvers
usually detect unit clauses anyway, but instead significantly
reduces the memory consumption. Without this optimizations,
verifying the probing security of longer executions would not
be possible because the formula would not fit into memory.

Covering sets. Due to the nature of the propagation rules
from Table I, some correlation sets are supersets of others.
Take the propagation rules for non-linear gates as an example.
For gate f = a ∧ b, the stable correlation set is computed as
St
f = ⟨St

a⟩⊗⟨St
b⟩ = {⊥}∪St

a∪St
b∪(St

a ⊗ St
b), which implies

that St
a ⊆ St

f and St
b ⊆ St

f . Consequently, it is sufficient to
perform the security checks for St

f , ignoring both St
a and St

b

because their elements are already covered. For element-wise
exclusive-or operations like Cz = Cx ⊗ Cy , the resulting set
Cz covers Cx whenever ⊥ ∈ Cy , and Cy whenever ⊥ ∈ Cx.
It turns out that in the software probing model, we only need
to check gates that are inputs to XOR gates, selectors of a
multiplexer, inputs to a register, and circuit outputs. In the
time-constrained probing model, we only check register inputs
and circuit outputs because in that model linear gates behave
non-linearly due to glitches. In the full hardware probing
model, the covering properties are slightly more complex, and
we check all gates that have at least one clock cycle where
another gate does not cover them.

Table II
SIMPLIFICATION RULES FOR STABLE CORRELATION SETS

Gate type f Stable set Cf f Stable set Cf
Linear a⊕⊥ Ca a⊕⊤ Ca
Non-linear a ∧ ⊥ – a ∧ ⊤ Ca

a ∨ ⊥ Ca a ∨ ⊤ –

Multiplexer
⊥ ? a : b Cb ⊤ ? a : b Ca
c ?⊥ : b ⟨Cc⟩ ⊗ ⟨Cb⟩ c ?⊤ : b ⟨Cc⟩ ⊗ ⟨Cb⟩
c ? a : ⊥ ⟨Cc⟩ ⊗ ⟨Ca⟩ c ? a : ⊤ ⟨Cc⟩ ⊗ ⟨Ca⟩

IV. SIMULATIONS

Although the method presented in Section III is sufficient
to check the security of a masked implementation in the
supported probing models, it does not consider how the control
signals change over time. As mentioned in the introduction,
COCOALMA uses simulations to obtain information about the
exact values of control signals and subsequently uses them to
simplify the correlation sets accordingly.

In the hardware probing model, all values marked as sensi-
tive, i.e., secret shares, mask registers and random input ports,
are assumed to be uniformly random. This is a requirement
for the execution environment, in this case the testbench,
which performs the secret sharing steps and includes a random
number generator that drives the random input ports in each
clock cycle. In any reasonable probing model, the attacker can
only control the values of un-shared plaintext values, and we
assume they can request an unlimited number of encryptions
for the DPA attack. If the attacker were able to mess with
the random number generator of the environment, they would
be able to break any conceivable masking scheme, so this is
out-of-scope in the hardware probing model.

Other input signals, such as control signals, which marked
as public are assumed to be independent of the secrets and
masks processed in the hardware circuit, so their values can
be taken directly from a circuit simulation. Since their values
are known, COCOALMA uses them to perform simplifica-
tions while applying the propagation rules. Consider the gate
f = a ∧ b, where a is a public value and b has a correlation
set Cb. Because COCOALMA knows the value of a, f is
simplified accordingly. If a = ⊥, then we know that f = ⊥
independently of b, meaning that f is also a public value
and does not need a correlation set. Similarly, if a = ⊤,
we know that f = b, and we can reuse the correlation set
as Cf = Cb. Table II defines analogous simplifications for
all propagation rules with multiple inputs when the constant
signal is stable. Using the simulated execution of the circuit
and the labeling provided by the user, each gate g at each clock
cycle t is classified as either being a control signal or having
a correlation set, but never both. Empty entries in Table II
indicate that the gate does not have a correlation set and is
instead declared a control signal.

A. Signal Stability

Unlike with stable correlation sets, applying simplifications
based on the simulation trace is not straightforward for tran-
sient correlation sets, where COCOALMA must also consider

19

Table III
SIGNAL STABILITY COMPUTATIONS

Gate type of f Computation of st(f) in current clock cycle
Constant ⊥ or ⊤ ⊤
Input Port p ¬ cr(p)
Negation ¬a st(a)
Register ⇐R a ¬ cr′(a) ∧ (vl′(a) ↔ vl′(f))
Linear a⊕ b st(a) ∧ st(b)

Non-linear a ∧ b st(a) ∧ ¬ vl(a) ∨ st(b) ∧ ¬ vl(b) ∨ st(a) ∧ st(b)
a ∨ b st(a) ∧ vl(a) ∨ st(b) ∧ vl(b) ∨ st(a) ∧ st(b)

Multiplexer c ? a : b
st(c) ∧ (vl(c) ∧ st(a) ∨ ¬ vl(c) ∧ st(b))∨

∨ st(a) ∧ st(b) ∧ (vl(a) ↔ vl(b))

glitches. Glitches are hardware phenomena that behave like
temporary faults while switching values. A gate f = a ⊙ b
will pass on a’s value if its signal arrives at f before the new
signal of b. After both signals arrived, the fault is corrected,
and f becomes the value it is supposed to have. Ultimately,
the signal must be stable at the end of a clock cycle, when the
clock triggers the registers and synchronizes the computation.

However, there are certain conditions when a gate cannot
experience a glitch, e.g., when the values a and b come directly
out of a register and do not change from the previous clock
cycle. In that particular case, even though the signal timings
are different, the value transmitted through the wires did not
change the entire time, and no glitching is possible. As a
result, even the signal produced by f would be stable and
glitch-free. This property recursively propagates throughout
the whole circuit and allows us to determine which values
can be used for the simplifications shown in Table II, even for
transient correlation sets.

COCOALMA uses the concrete values of a simulation trace
to determine the glitching behavior of public values such as
control signals. Assume the same situation as before, with
f = a∧b, where a is a public value and b might correlate with
masks or shares, and thus, has a correlation set Cb. Knowing
whether f can forward b is crucial, as it might lead to an
information leak in a later part of the circuit. If a = ⊥ and
its signal is stable, meaning it cannot produce glitches, then
f is a public value with f = ⊥. Therefore, a being a stable
public signal set to ⊥ effectively stops the propagation of a
correlation set from b to f . In the rest of this section, we
outline a recursive method for determining whether a signal
is stable in a given clock cycle.

In the following exposition, we introduce three predicates
that help define the algorithm computing the signal stability.
We use the st(x) predicate to say that the signal x is stable. The
predicate cr(x) is true whenever the signal x is associated with
a transient correlation set. Finally, predicate vl(x) represents
the value of signal x taken from the execution trace. All three
predicates also have a version that applies to the previous
clock cycle: st′(x), cr′(x), and vl′(x). The rules computing
the stability of any given signal f are shown in Table III. All
values of the predicates are computed directly, and none of
them are given to the SAT solver.

First, all input ports are held stable by the environment.
That is, another circuit that controls the input ports must keep

Table IV
VERIFICATION RESULTS FOR TWO VERSIONS OF PRINCE-TI

Algorithm #Sec. #Rand. #Rnds. #Cyc. SW TC HW
PRINCE-TI 192 48 1 3 ✓ 0.72 s m 1.97 s m 2.43 s
PRINCE-TI 192 192 1 3 ✓ 3.37 s ✓ 7.21 s ✓ 11.57 s
PRINCE-TI 192 192 2 5 ✓ 187.8 s ✓ 150.6 s ✓ 236.9 s
PRINCE-TI 192 192 3 7 ✓ 0.77h ✓ 3.80h ✓ 17.92h
AES-DOM 256 46 1 21 ✓ 195.3 s ✓ 1.82h ✓ 2.89h

their signals stable and avoid glitches. Since public signals
and signals with correlation sets are mutually exclusive in
COCOALMA, an input port is only considered stable when
it does not have a correlation set. Similarly, the output of
a register is stable if the register does not change its value
from the previous cycle and does not have a correlation set
associated with its input. If the value did change, we consider
the signal unstable because it can cause glitches in gates
connected to it during the clock-cycle transition. Linear gates
such as XOR are only stable if both of their inputs are stable.
If one of the inputs produces a glitch, then an XOR would
forward it to all gates it is connected to since the other signal
cannot stop it.

Non-linear gates such as AND (OR) can remain stable even
if one of their inputs produces glitches. If at least one of the
inputs of an AND (OR) gate is stable at ⊥ (⊤), then no change
or glitch in the other input can make it unstable. Otherwise, the
output of an AND (OR) gate is only stable if both of its inputs
are also stable. The conditions under which a multiplexer is
stable are similar. For instance, if selector c is stable with the
value ⊤ (⊥), then the output of the multiplexer is stable if
and only if the selected input a (b) is stable. In contrast, if
selector c is not stable, the output is only stable if the inputs
a and b are stable and have equivalent values.

V. CASE STUDIES

In this section, we investigate the probing security of the
masked hardware implementations PRINCE-TI [6] and AES-
DOM [16]. In particular, we analyze the complexity of verify-
ing round-reduced versions in all three of the supported prob-
ing models. Additionally, we demonstrate how COCOALMA’s
debugging functionalities allow us to identify potential issues
and fix them accordingly. All experimental results shown in
Table IV were captured on a notebook with the Intel Core
i7-8550U 1.8GHz CPU and 16 GiB of RAM.

A. Verifying PRINCE-TI

PRINCE is a state-of-the-art lightweight block cipher. It
is designed with hardware implementations in mind, so that
ideally, the entire encryption process can be done in one
clock cycle [5] when no masking is applied. PRINCE takes
as input a 64-bit plaintext block and encrypts it with a 128-
bit key. The encryption process consists of two phases with
six rounds each. In the first phase, the first round adds the
round key onto the data block, whereas the other five rounds
apply a 4-bit S-Box, an affine transformation, and then mix
the round key into the data block. After the first phase, the

20

data block is transformed using the 4-bit S-Box, another affine
transformation, and the inverse 4-bit S-Box, before starting
the second phase. In the second phase, each round applies the
inverse operations performed in the rounds of the first phase,
meaning that the first five rounds add the round key, apply the
inverse affine transformation followed by the inverse 4-bit S-
Box. The last round of the second phase only adds the round
key to the data block.

Unlike the unmasked version of PRINCE, the threshold
implementation PRINCE-TI [6] cannot be completed in one
clock cycle. This restriction is due to the re-sharing phase
present in threshold implementations, which requires addi-
tional synchronization to prevent leakage caused by glitches.
For first-order probing security, the implementation splits all
the plaintext and key bits into two shares and treats them as
secrets. PRINCE-TI uses random inputs to re-share the outputs
of its sixteen 4-Bit S-Boxes, where each S-Box requires twelve
random bits. In the official implementation, this process is
optimized in such a way that four S-Boxes share the same
randomness, so the re-sharing only requires a total of 48
random bits.

The first row of Table IV shows the results produced by
COCOALMA, where 192 (i.e., 128 key bits and 64 plaintext
bits) pairs of ports are labeled as shares of secrets, and 48 ports
are labeled as coming from a random number generator. The
first round of the cipher needs three clock cycles to complete
since we first need to load the inputs into internal registers
and start the encryption. Within one second, COCOALMA has
proven that the implementation is secure in the software prob-
ing model (SW), indicated with (✓) in Table IV. However,
COCOALMA claims it found a leak (m) in the time-constrained
probing model (TC) in the third clock cycle and provides us
with debugging information.

B. Debugging Information

After finding a leak in a hardware circuit, COCOALMA
attempts to simplify the leaking correlation. For example,
COCOALMA could report that the output of a gate correlates
with the linear combination of many secrets. This information,
while correct, is often not useful for a designer because
looking through the implementation and tracking the data
dependencies of so many secret bits is extremely cumbersome.
Therefore, COCOALMA attempts to minimize the number of
secrets in the leaking correlation term. In particular, we go
through all secret bits and greedily assume that the leaking
correlation term does not contain them but still leaks infor-
mation. If the SAT solver returns UNSAT, we know that the
investigated secret must appear in the correlation term. At the
end of this procedure, COCOALMA has produced a minimized
example of a leaking correlation term.

Next, COCOALMA provides a leakage graph, which allows
the designer to visualize the structure of the leaking part
of the circuit. In particular, the leakage graph highlights the
leaking gates and only includes gates that influence the leak.
We perform this graph minimization by starting at the leaking
gates and computing their cone of influence.

mux1_out2[1]

sel1

comp_sh2[1]

0

1

inv_sr_out2[1]

unstable

{i_r[3]⊕i_r[4]⊕i_r[5]}

{i_r[3]⊕i_r[4]⊕i_r[5]⊕
i_pt[1]⊕i_key[1]⊕i_key[65]}

{i_pt[1]⊕i_key[1]⊕i_key[65]}

Figure 2. The PRINCE-TI leakage found with COCOALMA. Signal names
are shown on top of lines, whereas the problematic correlation term or signal
stability is shown below.

Finally, COCOALMA produces a leakage trace where the
correlation terms of all relevant correlation sets are displayed.
In particular, we take the model produced by the SAT solver
and show the ports p ∈ I whose corresponding propositional
variables in Px are assigned to ⊤, indicating they are part of
the correlation term. The designer can combine this informa-
tion with the leakage graph to deduce the cause of the leak.

C. Debugging PRINCE-TI

In the particular case of PRINCE-TI, we have identified the
leak at multiplexer mux1_out2[1], as shown in Figure 2.
Here, the control signal sel1 determines whether the output
is the inverse of the shift rows operation inv_sr_out2[1],
or the compression operation comp_sh2[1]. Here, a glitch
on the control signal sel1 causes the multiplexer to for-
ward both inputs in the third clock cycle. Unfortunately,
inv_sr_out2[1] correlates to the uniformly random value
r =i_r[3]⊕i_r[4]⊕i_r[5], whereas comp_sh2[1]
correlates with r⊕i_pt[1]⊕i_key[1]⊕i_key[65].
Observing these two values allows an attacker to compute
i_pt[1]⊕i_key[1]⊕i_key[65], breaking the security
guarantees promised by masking schemes.

Although the leakage is observable at mux1_out2[1], its
root cause is somewhere else. Under closer inspection of the
leakage trace and leakage graph, we see that the shift rows
operation, in combination with glitches, causes a forwarding
of the random bits used to re-share the thirteenth S-Box,
making them observable at inv_sr_out2[1]. Since the
same random bits are used to re-share the first S-Box, which
eventually leads to comp_sh2[1], the random bits cancel
out at the multiplexer. Ultimately, the reuse of random bits
causes a leak in the presence of glitches. We fix this by
increasing the size of the random input i_r from 48 to 192
bits, and avoiding the reuse of random inputs for the re-sharing
of S-Box outputs. The second and third row of Table IV show
the verification results for the fixed version of PRINCE-TI,
where we were able to verify up to two rounds of the cipher
in under four minutes.

D. Verifying AES-DOM

Rijndael, better known as the Advanced Encryption Stan-
dard (AES), is an extremely popular, secure, and widely
adopted block cipher [8]. The 128-bit version of AES takes
as input a 128-bit plaintext and encrypts it through ten rounds
using a 128-bit key. First, the cipher adds the initial secret key

21

to the plaintext to create the cipher’s state and then expands
the key into ten individual round keys. The first nine rounds
apply the S-Box to each state byte, re-order the bytes, apply
a linear transformation to 32-bit chunks, and mix the state
with the round key. The last round does not apply the linear
transformation as it does not contribute to security.

AES is not intended for masked implementations because
it has a highly non-linear S-Box that is applied sixteen times
per round. In order to minimize the used design area, masked
AES implementations opt for only one S-Box module that is
sequentially fed new bytes each clock cycle [25], [16].

We have analyzed the probing security of the DOM-
protected [16] implementation of AES by Gross et al. in
all three security models. The open-source implementation of
AES-DOM4 is written in VHDL and not in Verilog, so it is not
directly compatible with our verification flow. However, due
to the modularity of COCOALMA, we can produce a netlist
with another synthesis flow, e.g., GHDL5, and extend it with
a compatibility wrapper in Verilog so we can use Verilator for
the tracing step of the original verification flow depicted in
Figure 1. Although this is convenient, it is not strictly required,
and COCOALMA also supports execution traces produced by
other simulators in VCD format.

Executing the first round of the cipher requires one cycle
of setup and twenty computation cycles. Notably, because of
the parallelism in hardware designs, AES-DOM computes the
linear operations of the first round just-in-time for their use as
S-Box inputs in the second round. Therefore, the first 21 cycles
only include the key addition, sixteen S-Box applications,
and the byte re-ordering. The implementation processes 256
secrets, that is, 128 key bits and 128 plaintext bits. In each
clock cycle, the AES-DOM consumes 46 uniformly random
bits, yielding a total of 966 random bits for the first round of
the cipher. The last column of Table IV shows the verification
results for the first round of AES-DOM. The verification was
successful in all three probing models, and since the AES-
DOM implementation is more complex than PRINCE-TI, it
naturally takes longer to verify. COCOALMA only takes about
three hours to verify that the implementation of AES-DOM is
secure in the hardware probing model.

VI. RELATED WORK

The formal verification of power analysis countermeasures
is a well-established research field [1], [2], [4], [13], [10],
[11], [19]. The community has been investigating two fun-
damentally different principles. On the one hand, there are
approximative methods like those used in REBECCA [4],
maskVerif [2], and COCOALMA. In contrast to REBECCA
and COCOALMA, maskVerif opts for a language-based
verification approach, tracks the symbolic representation of
probing locations, and simulates the observations an attacker
can make using uniformly random values. On the other hand,
model counting methods inspect the truth table of a given

4https://github.com/hgrosz/aes-dom
5https://github.com/ghdl/ghdl-yosys-plugin

function and check whether the correlation strength is zero
for all secret values. Tools such as QMVerif [10] and
QMSInfer [11] apply these methods to overcome the short-
comings of heuristics used in faster approximative methods.
Similarly, probability-distribution tracking approaches such as
SILVER [19] (implicitly) rely on model counting to determine
the distribution type for any possible observation an attacker
can make.

To our knowledge, maskVerif and SILVER were not used
for stateful hardware verification. The authors of QMVerif
and QMSInfer claim they support stateful hardware verifi-
cation, but the tools are not open-source, so we could not
replicate their results.

VII. FUTURE WORK

The current version of COCOALMA is a significant improve-
ment over its predecessor REBECCA [4]. However, there are
still open questions that could yield performance improve-
ments or usability improvements.

The model of glitches used in COCOALMA seems too con-
servative, but we have no empirical evidence to the contrary. In
particular, we assume that glitches are unpredictable and can
forward any combination of the new and old signal values,
even constants. This assumption might be too strict, and
some combinations would not be observable in a power trace.
Similarly, we assume the worst-case interaction between tran-
sition and glitch leakage, which might also be unnecessarily
cautious. Eliminating these overly paranoid precautions would
single-handedly reduce the verification complexity. Another
avenue for increasing the scalability would be to consider
implementation modules separately and tie the individual
proofs together using composability notions [2].

VIII. CONCLUSION

Although COCOALMA was originally designed for verifying
software in the time-constrained probing model, it can also
verify stateful hardware circuits in the hardware probing
model. COCOALMA improves upon REBECCA in terms of
scope and verification capabilities. It supports more security
models, includes an elegant correlation-set encoding, supports
circuit simulation, and uses it throughout the verification. The
native support for stateful verification allows a tighter integra-
tion into the design flow, and as demonstrated with PRINCE-TI
and AES-DOM, COCOALMA can be applied to industry-scale
designs. We have successfully identified a leakage location
in PRINCE-TI, which cannot be found by only analyzing the
PRINCE-TI S-Box, as it requires the full context of the cipher’s
implementation. Through the debugging support provided by
COCOALMA, we found the cause of the information leakage
and fixed it by adding more random inputs. Furthermore, we
have also demonstrated the modularity and adaptability of
COCOALMA by verifying an AES-DOM design that uses an
entirely different synthesis flow in another HDL language.

Overall, we think COCOALMA is an excellent addition to
any synthesis flow and can be used for the early detection of
mistakes.

22

https://github.com/hgrosz/aes-dom
https://github.com/ghdl/ghdl-yosys-plugin

REFERENCES

[1] Arribas, V., Nikova, S., Rijmen, V.: VerMI: Verification tool for masked
implementations. In: ICECS 2018. pp. 381–384 (2018)

[2] Barthe, G., Belaı̈d, S., Cassiers, G., Fouque, P., Grégoire, B., Standaert,
F.: maskverif: Automated verification of higher-order masking in pres-
ence of physical defaults. In: ESORICS 2019. pp. 300–318 (2019)

[3] Biere, A.: CaDiCaL at the SAT Race 2019. In: SAT Race 2019. pp. 8–9.
University of Helsinki (2019)

[4] Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Mangard, S., Winter,
J.: Formal verification of masked hardware implementations in the
presence of glitches. In: EUROCRYPT 2018 (2018)

[5] Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M.,
Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rom-
bouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - A low-latency block
cipher for pervasive computing applications - extended abstract. In:
ASIACRYPT (2012)

[6] Bozilov, D., Knezevic, M., Nikov, V.: Optimized threshold implemen-
tations: Securing cryptographic accelerators for low-energy and low-
latency applications. IACR (2018)

[7] Chellam, M.B., Natarajan, R.: AES hardware accelerator on FPGA with
improved throughput and resource efficiency. AJSE (2018)

[8] Daemen, J., Rijmen, V.: Aes proposal: Rijndael (1999)
[9] Dhooghe, S., Nikova, S., Rijmen, V.: Threshold implementations in the

robust probing model. In: TIS@CCS 2019. pp. 30–37 (2019)
[10] Gao, P., Xie, H., Zhang, J., Song, F., Chen, T.: Quantitative verification

of masked arithmetic programs against side-channel attacks. In: TACAS
(2019)

[11] Gao, P., Zhang, J., Song, F., Wang, C.: Verifying and quantifying side-
channel resistance of masked software implementations. ACM Trans.
Softw. Eng. Methodol. pp. 16:1–16:32 (2019)

[12] Ghosh, S., Zhao, L., Misoczki, R., Sastry, M.R.: Ultra-lightweight
cryptography accelerator system. Tech. rep., Intel Corporation (2018),
patent number: US20180183573A1

[13] Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: Co-
design and co-verification of masked software implementations on cpus.
Tech. rep., IACR Cryptology ePrint Archive report 2020/1294 (2020)

[14] Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Handbook
of satisfiability (2009)

[15] Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. CCS
(2016)

[16] Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. In:
TIS@ CCS. p. 3 (2016)

[17] Groß, H., Mangard, S., Korak, T.: An efficient side-channel protected
aes implementation with arbitrary protection order. In: RSA (2017)

[18] Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware
against probing attacks. In: CRYPTO 2003. pp. 463–481 (2003)

[19] Knichel, D., Sasdrich, P., Moradi, A.: SILVER - statistical independence
and leakage verification. In: ASIACRYPT (2020)

[20] Kruse, J., Schinianakis, D.: A high-throughput, low area implementation
of PRINCE algorithm for industrial IoT. Tech. rep., Bell Labs, Nokia
(2017), https://www.bell-labs.com/institute/publications/itd-17-57329p/

[21] Mangard, S.: A simple power-analysis (SPA) attack on implementations
of the AES key expansion. In: ICISC (2002)

[22] Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing
the secrets of smart cards. Springer (2007)

[23] Messerges, T.S., Dabbish, E.A.: Investigations of power analysis attacks
on smartcards. In: USENIX Smartcard (1999)

[24] Moos, T., Moradi, A., Schneider, T., Standaert, F.: Glitch-resistant
masking revisited or why proofs in the robust probing model are needed.
TCHES pp. 256–292 (2019)

[25] Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing
the limits: A very compact and a threshold implementation of aes. In:
EUROCRYPT 2011 (2011)

[26] Örs, S.B., Gürkaynak, F.K., Oswald, E., Preneel, B.: Power-analysis
attack on an ASIC AES implementation. In: ITCC (2004)

[27] Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): measures
and counter-measures for smart cards. In: E-smart 2001. pp. 200–210
(2001)

[28] Snyder, W.: Verilator, https://www.veripool.org/wiki/verilator, https://
www.veripool.org/wiki/verilator. Retrieved on July 10th, 2020

[29] Valiant, L.: The complexity of computing the permanent. Theoretical
Computer Science (1979)

[30] Wang, Y., Ha, Y.: FPGA-based 40.9-gbits/s masked aes with area
optimization for storage area network. IEEE TCAS II (2013)

[31] Wolf, C., Glaser, J.: Yosys — a free verilog synthesis suite. Proceedings
of Austrochip (2013)

23

https://www.bell-labs.com/institute/publications/itd-17-57329p/
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator

Formal Methods in Computer-Aided Design 2021

End-to-End Formal Verification of a RISC-V
Processor Extended with Capability Pointers

Dapeng Gao
University of Oxford

Tom Melham
University of Oxford

Abstract—Capability Hardware Enhanced RISC Instructions
(CHERI) extend conventional ISAs with capabilities that can
enable fine-grained memory protection and scalable software
compartmentalisation. CHERI-RISC-V is an extended version
of the RISC-V ISA with support for CHERI, and Flute is
an open-source 64-bit RISC-V processor with a five-stage, in-
order pipeline. This case study presents the formal verification
of CHERI-Flute, a modified version of Flute that implements
CHERI-RISC-V, against the Sail CHERI-RISC-V specification.
To the best of our knowledge, this is the first extensive formal
verification of a CHERI-enabled processor.

We first translated relevant portions of the Sail CHERI-
RISC-V specification to SystemVerilog Assertions. Then we
formulated and proved four classes of end-to-end correctness
properties about CHERI-Flute, covering the CHERI instructions
and certain liveness properties about the entire processor. None of
these results are routine—they all rely on novel proof engineering
methodologies that extract microarchitectural invariants to serve
as lemmas for the end-to-end proofs.

This work exposed several previously-unknown bugs in
CHERI-Flute, most of which occur in the implementation of
sophisticated combinational logic for certain CHERI instructions.

I. INTRODUCTION

Despite decades of hardening and mitigation efforts—such
as stack protection, garbage collection, and virtualisation—
memory safety issues remain a common and dangerous source
of security vulnerabilities. A 2019 report by Microsoft [1]
states that ‘70% of the vulnerabilities addressed through a se-
curity update each year continue to be memory safety issues’.
The root cause of this phenomenon is the pervasive use of
an unsafe memory model for interpreting the C programming
language [2]. This model can be traced back to the PDP-
11 and presumes that memory is simply a linear array of
individually addressable bytes. This has induced a number of
deeply ingrained assumptions about pointer behaviour that go
beyond what is guaranteed by the C specification and rely only
on ‘implementation-defined behaviour’.

The Capability Hardware Enhanced RISC Instructions
(CHERI) project offers an alternative model that provides bet-
ter memory safety [3]. Its main features include a new machine
representation of C pointers called capabilities, and extensions
to existing instruction set architectures (ISA) that enable the
secure manipulation of capabilities. For intuitive understand-
ing, capabilities can be regarded as traditional pointers with
extra properties that make them more like object references in
a memory-managed language, such as Java. On one hand, this
model continues to support limited arithmetic operations on

capabilities that, for example, allow a loop to iterate through
an array by repeatedly incrementing a capability. On the other
hand, it makes it impossible to construct arbitrary capabilities
that can be dereferenced—a significant departure from the
usual ‘unsafe’ understanding of the C programming language.

Well-developed ISAs that integrate capabilities include
CHERI-RISC-V and CHERI-MIPS [4], which are extended
from RISC-V and MIPS. Rigorous engineering techniques
have been used extensively in their development [5]. Specif-
ically, Sail [6] specifications of these CHERI ISAs exist that
give a precise and executable definition to each instruction.

This case study explores the formal verification of an open
source implementation of CHERI-RISC-V. Flute is a 64-bit
RISC-V processor with a five-stage, in-order pipeline [7]
released by Bluespec Inc. in late 2018. Researchers at
Cambridge University have extended Flute with support for
CHERI-RISC-V [8], and this extended implementation, named
CHERI-Flute, was our verification target.

A. Contributions

We have verified several classes of properties for CHERI-
Flute using the JasperGold formal verification environment [9].
The scope of our verification comprises the correct execution
of all 80-plus CHERI instructions as well as certain liveness
properties for the processor as a whole. Our proof does not
cover the existing RISC-V instructions, which do not involve
capabilities. Formal verification methodologies for these in-
structions are well-established and so they are not of central
interest in this case study.

To the best of our knowledge, this is the first extensive
formal verification of a CHERI processor implementation. Our
aim in this paper is to make the methodology accessible for
future verification projects on novel architectures, including
ones that target capability hardware. All our verification code
is available open-source [10].

We have deliberately taken an end-to-end approach. That
is, properties are proved for the entire core, as opposed to
individual components such as the individual execution units.
In CHERI-Flute, the hardware that deals with capabilities is
novel, complex, and distributed across the pipeline stages.
Our end-to-end approach avoids the necessity to isolate this
hardware and characterise its environment.

Our verification results all rely on novel proof engineering
methodologies that extract microarchitectural invariants to
serve as lemmas for the end-to-end proofs. Some of these

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 10 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-9045-3174
https://orcid.org/0000-0002-2462-2782
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_10
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_10
https://creativecommons.org/licenses/by/4.0/

· · · · · ·

struct my_struct *buffer = · · ·

AddressLower Bound Upper Bound

Permissions: Load & Store

Fig. 1. A typical pointer represented by a capability

F

I5
D

I4
E

I3
M

I2
W

I1
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·rdM ← vM rdW ← vW

Fig. 2. Pipeline of Flute, including forwarding paths

invariants are of interest in themselves. For example, one
of them shows that the core can never create a malformed
capability—an important consistency invariant.

This case study exposed several previously-unknown bugs
in the implementation of CHERI-Flute, which have all been
reported to and confirmed by the designers [11], [12], [13].
Most of these bugs occur in the implementation of sophis-
ticated bit manipulation logic for CHERI-related instructions,
demonstrating the effectiveness of formal verification in catch-
ing subtle bugs in a novel processor design. In some cases, we
have been able to provide verified bugfixes to the designers.

II. BACKGROUND TO CAPABILITY ARCHITECTURE

CHERI extends ISAs with a new hardware representation
for pointers and new instructions for manipulating them.
See [4] for its full specification and [14] for a high-level
summary of the large research effort surrounding CHERI.

Instead of using 32- or 64-bit integers to represent point-
ers, CHERI uses a richer representation called capabilities
that can be stored in capability registers in the core or in
capability-sized and capability-aligned words in the memory.
The program counter, which usually holds integer addresses,
is replaced by the program counter capability (pcc).

A capability, illustrated in Fig. 1, contains additional in-
formation compared to a traditional pointer, most notably
including the following.
Validity Tag. A 1-bit tag that indicates whether the capability

is valid. Such a tag is associated with ‘each location that
can hold a capability—whether a capability register or a
capability-sized, capability-aligned word of memory’ and
it ‘tracks capability validity for the value stored at that
location’ [4]. When a location that can hold a capability
is untagged, its contents are simply data and hence do
not grant any privilege.

Permissions. A bitmask that controls what the capability can
be used for, such as loading or storing from the memory,
or setting pcc to execute code.

Bounds. A capability with a set of permissions is not by
default authorised to exercise them at all addresses.
Instead, the capability also encodes a range of addresses
within which it may exercise its permissions.

CHERI instructions operate on capabilities in accordance to
security principles such as privilege minimisation, monotonic-
ity, and provenance; these are enforced by checking the Valid-
ity Tag, Permissions, Bounds, and other information attached
to capabilities [4]. For example, only a valid capability, with

permission to load, and whose address is within its bounds,
can be used to load from that memory address. Otherwise, the
processor traps and potentially causes the program to crash.
The checks performed by each CHERI instruction are known
as its guard conditions, and the correctness of their hardware
implementation is crucial to the security protections provided
by CHERI.

III. BASICS OF CHERI-RISC-V
CHERI-RISC-V extends the RISC-V ISA with support for

CHERI [4]. This case study treats its 64-bit variant.

A. Compression of Capabilities

When stored in memory, capabilities are represented in
a compressed format [4], [15]. A compressed capability in
64-bit CHERI-RISC-V takes 128 bits (plus an out-of-band
validity tag bit)—twice as many bits as a traditional pointer.
In the capability registers of the core, however, they are
represented in a decompressed format that occupies even more
bits. Decompression and compression are done transparently
when they are moved between memory and the core.

Capability compression is lossy. That is, there exist decom-
pressed capabilities that do not correspond to any compressed
capability. These decompressed capabilities are termed unrep-
resentable. Such a capability poses a significant problem if
it appears in the core, since there is no well-defined way to
store it to the memory—as that would require compressing the
capability first. Part of our verification is to show that unrep-
resentable capabilities can never be created by the processor.

B. Sail CHERI-RISC-V Instruction Specification

The definition of each CHERI instruction in the Sail
CHERI-RISC-V specification [16] roughly takes the form of
Algorithm 1. An instruction can retire either unsuccessfully,
due to violations of one of its guard conditions, or successfully,
after modifying the architectural state of the processor. As will
be seen in Section V-A, the distinction between successful
and unsuccessful retirement is central to the way we specify
instruction correctness in this work.

IV. FLUTE AND CHERI-FLUTE

Flute [7] is a 64-bit RISC-V processor with a five-stage, in-
order pipeline designed for low- to medium-end applications.
The processor is designed in Bluespec SystemVerilog (BSV)
and has been synthesised and tested on Xilinx FPGAs.

Flute has the basic pipelined microarchitecture commonly
found in computer architecture textbooks [17], featuring a

25

Algorithm 1: Typical CHERI instruction specification
if ¬guard condition 1 then retire FAIL(TagViolation);
else if ¬guard condition 2 then retire
FAIL(PermitLoadViolation);

. . .
else if ¬guard condition 12 then retire
FAIL(LengthViolation);

else
modify architectural state;
retire SUCCESS;

end

Fetch (F), a Decode (D), an Execute (E), a Memory (M),
and a Write-back (W) stage. It also comes with forwarding
mechanisms to make the pipeline more efficient. The regis-
ter file (regfile) consists of 32 general-purpose registers
r0, . . . , r31, where r0 is hardwired to zero.

Fig. 2 illustrates the pipeline of Flute with its stages occu-
pied by instructions I1, . . . , I5. Outgoing paths from stage M
and W , including forwarding paths, are highlighted in red and
blue respectively. These paths carry information about pending
updates to the register file: the pending update in stage W
writes the value vW into register rdW , and the pending update
in stage M writes the value vM into register rdM .

To articulate properties, we define two subscripted reg-
ister files: regfileM , which contains the contents of
regfile after committing the pending update in stage W ,
and regfileE , which contains the contents of regfile
after committing the pending updates in both stages W and M ,
in that order. The subscripted versions are essentially what the
register file appears to be to stages M and E after forwarded
values are taken into account. Hence their subscripts.

A. CHERI-Flute

CHERI-Flute [18] extends Flute with support for CHERI-
RISC-V. We sketch here the main relevant changes.

First, the registers are widened to become hybrid registers
that can be used as both integer and capability registers.
Second, most of the computation supporting the CHERI
instructions—calculating bounds, incrementing addresses, and
so on—is implemented within the ALU located in stage E.
Finally, circuitry is added to stage M that partially checks
whether any CHERI instruction passing through it violates
the instruction’s guard conditions. The rest of the checks are
performed earlier by the ALU. While these checks could
in principle all be placed in the ALU, this would cause
unacceptably long delays in stage E for certain instructions.
Hence they are spread across stages E and M instead.

V. FORMULATING CORRECTNESS

Our formal verification flow is driven by JasperGold. The
design is first compiled into SystemVerilog using the open-
source bsc compiler and then imported into JasperGold. This
pre-compilation is necessary because JasperGold cannot read
the Bluespec SystemVerilog source of CHERI-Flute directly.

The specification for correctness, which in our case is the
Sail CHERI-RISC-V specification, also needs to be mapped
into properties—written as SystemVerilog Assertions (SVA)—
about the compiled SystemVerilog design. Tooling does not
exist to achieve this automatically, so for this case study we
manually translated those portions of the Sail specification
necessary for the verification effort into SVA. This yielded
more than 1000 lines of data structures and functions of
SystemVerilog and almost 100 correctness properties in SVA.
As these properties are about a compiled design, a certain
amount of ‘reverse engineering’ was needed to identify the
relevant signal names.

A. The Instruction Specification Framework

A RISC-V processor is simple enough to formulate correct-
ness of its instructions in the classical, direct way that will be
familiar from many examples in the literature.

Let α be an abstraction function that maps each mi-
croarchitectural state of CHERI-Flute to a CHERI-RISC-V
architectural state. Write s

I−→ s′ to mean that a CHERI-
Flute processor retires instruction I and thereby transitions
from microarchitectural state s to microarchitectural state s′.
Similarly, write S

I−→ S′ to mean that, according to the
CHERI-RISC-V specification, executing instruction I alters
the architectural state S to architectural state S′. Note that
both transition relations are deterministic.

Now for the implementation of an instruction I to conform
to specification, we require that

∀s s′. s I−→ s′ =⇒ α(s)
I−→ α(s′) (1)

where s ranges over the reachable microarchitectural states of
CHERI-Flute. The reachability of s is, of course, crucial; this
is further discussed in Section VI-B.

Now the formulation Prop. (1) faces a significant prac-
tical challenge. A CHERI instruction can be retired either
successfully or unsuccessfully—and, in the latter case, there
are sometimes more than a dozen ways in which it can fail.
So formulating correctness as in Prop. (1) will require a
full specification of what the processor’s behaviour, and the
resulting architectural state, should be for each kind of failure.
This would be ideal, but also greatly increases the effort of
formulating the required properties.

We therefore formulate a weaker notion of correctness that
greatly simplifies the properties, albeit at the cost of a less
comprehensive verification. Define two checkmarked relations
as follows. For any instruction I and microarchitectural states
s and s′, the relation s

IX−→ s′ holds iff s
I−→ s′ and

instruction I is retired successfully. And for any instruction I
and architectural states S and S′, the relation S IX−→ S′ holds
iff S I−→ S′ and all instruction I’s guard conditions are met.

Now, consider the property expressed by the proposition

∀s s′. s IX−→ s′ =⇒ α(s)
IX−→ α(s′) (2)

which says that any successful retirement of instruction I oc-
curs in compliance with the specification. Proving the stronger

26

F

I5
D

I4
E

I3
M

I2
W

I1
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·OP rd , rs , imm rdW ← vW

Fig. 3. Microarchitectural state with register-only instruction

condition Prop. (1) shows the processor complies with the full
specification indicated by Algorithm 1, which has numerous
branches leading to different types of failures. Prop. (2) is a
weaker condition but greatly simplifies the properties.

This simplified property cannot detect a faulty processor
with incorrect unsuccessful retirement. That is, a processor that
correctly prevents a certain CHERI instruction that violates its
guard conditions from being retired at the end of the pipeline,
but which nontheless produces an incorrect processor state
according to the CHERI RISC-V specification. The property
will, however, still detect processors with incorrect successful
retirement. That is, processors that produce the wrong archi-
tectural state upon a CHERI instruction being retired the end
of the pipeline, or processors that retire a CHERI instruction at
the end of the pipeline that violates its guard conditions. This
ensures that none of the security guarantees offered by CHERI
is compromised. To see this, suppose for contradiction that
Prop. (2) is true for some faulty processor which incorrectly
retires successfully some instruction I, i.e., there exist s and
s′ such that the relation s IX−→ s′ holds but some of instruction
I’s guard conditions are not met. Consequently, by Prop. (2),
the relation α(s)

IX−→ α(s′) also holds. But this implies that
all of instruction I’s guard are are met, which contradicts
the assumption. Section IX discusses ways to relatively easily
obtain properties that reflect the stronger specification.

B. Expressing Specifications as Properties

For mechanised formal verification in JasperGold, it is
of course necessary to articulate the intent of the abstract
correctness condition described by Prop. (2) as a group of
SystemVerilog expressions. In practice, this means

(i) characterising the microarchitectural states s and s′ for
which s IX−→ s′ holds, and

(ii) defining the mapping α for at least microarchitectural
states s and s′ where s IX−→ s′ does hold.

Note that expressing (i) means characterising when the in-
struction I has retired successfully. One of the contributions
of our methodology is to observe that this can be tied to the
detection of certain microarchitectural states. Note also that
(ii) is much simpler than having also to define the architectural
states resulting from every kind of unsuccessful retirement.

In practice, we have developed these properties in separate
groups for each of three distinct classes of instructions that
share common structure. The sections that follow explain
these. In the actual proof code, a systematic scheme of

F

I5
D

I4
E

I3
M

I2
W

I1
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·

α

α (s′)

α

α (s)

Fig. 4. Microarchitectural state with state abstractions

‘property templates’ is employed to makes it easy to create
and manage almost 100 properties without having to maintain
multiple copies of boilerplate code. It also allowed us to
quickly implement and validate proof engineering ideas for
a large batch of properties, improving research efficiency.

C. Register-Only CHERI Instructions

A register-only CHERI instruction computes a function of
its operands and writes a result into a given register, causing
a trap if any of its guard conditions is not met.

Recall from Section V-B that two expressions are needed
to formulate the required correctness properties. To express
(i), consider Fig. 3, which shows the microarchitectural state
when some register-only instruction I1 is in stage W . Denote
this state by s and the state right after instruction I1 is
retired by s′. Since stage W is at the end of the pipeline,
any instruction reaching stage W is retired at the end of the
current cycle. Moreover, any instruction reaching stage W can
no longer cause traps, so it is bound to be retired successfully.
Conversely, if a register-only instruction is retired successfully,
then it must have been in stage W just before its retirement.
So s

I1X−→ s′ and (i) can be expressed simply by checking
whether the given instruction is in stage W .

To express (ii), consider Fig. 4, which illustrates the mi-
croarchitectural state of CHERI-Flute in some state s that is
about to successfully retire instruction I1 and enter state s′,
i.e., s IX−→ s′. Hence α(s) and α(s′) must give the architectural
states right before and after instruction I1 is retired. Then
observe that

• α(s) can be obtained directly from the current register
file, pcc, etc., and

• α(s′) can be obtained by combining the current register
file, pcc, etc. with the pending updates contained in the
output of stage W ,

so (ii) can be expressed as a function of state s.
Given formulations of expressions (i) and (ii), the SVA

property for a register-only instruction with register addresses
rd and rs , and immediate data imm will say that if stage W
contains an instruction with opcode OP, then

• rdW = rd ,
• vW = resultOP (regfile [rs] , imm), and
• guardOP (regfile [rs] , imm).

27

Where resultOP and guardOP are SystemVerilog functions
translated from the Sail specification of the instruction with
opcode OP that compute its write-back result and guard
conditions respectively.

D. Branching CHERI Instructions

A branching CHERI instruction redirects the control flow
and (optionally) saves the return address in a given register. Of
course, it also has guard conditions to ensure that the updated
pcc has the right Bounds and Permissions. This creates
an opportunity to decompose what a branching instruction
does into two operations: checking its guard conditions and
(optionally) saving the return address, and (conditionally or
unconditionally) redirecting the control flow.

The first of these is just what a register-only instruction
does, so we can simply reuse the property template developed
in Section V-C. So the rest of this section is devoted to formu-
lating the correctness properties about the second operation.

First, it is necessary to briefly explain how the control
flow is managed in CHERI-Flute. Initially, stage F fetches
an instruction from fetch_addr and predicts the address
of the next instruction using the branch predictor. This pre-
dicted address (pred_addr) is by default used as the next
fetch_addr, and it is also passed along the pipeline with
the currently fetched instruction until it reaches stage E,
where the ALU computes the correct address of the next
instruction (next_addr). The processor then compares the
computed next_addr with the pred_addr it received.
If the two addresses do not match, then a branch mispre-
diction has occurred, and stage F has been fetching the
wrong instructions and passing them along the pipeline. To
rectify this, fetch_addr is set to next_addr, and all
pipeline stages prior to stage E are flushed. Otherwise, if the
branch prediction has been correct, no flushing is needed and
fetch_addr is updated in the default way.

Fig. 5 shows the microarchitectural state when some branch-
ing instruction I3 is in stage E. To formulate the correctness
properties about control flow redirection, the framework devel-
oped in Section V-A is slightly generalised. Specifically, if a
branching instruction I is in stage E and a branch mispredic-
tion has occurred, then instruction I is now considered ‘about
to be retired successfully’ insofar as control flow redirection
is concerned, and it is now considered to have been ‘retired
successfully’ after fetch_addr is set to next_addr. This
gives the expression (i) discussed in Section V-B. As for
expression (ii), the architectural states of the processor right
before and after some branching instruction is retired success-
fully are taken from the values of fetch_addr before and
after that instruction is retired successfully, respectively.

E. Memory CHERI Instructions

A memory CHERI instruction loads from or stores to the
memory using the capability (directly or indirectly) specified
by its operands, causing a trap if any of its guard conditions is
not met. What a memory instruction does can be decomposed

into two operations: checking its guard conditions, and loading
from or storing to the memory.

The correctness properties about the first operation can be
formulated simply by reusing the property template developed
in Section V-C. Hence this section focuses on formulating the
correctness properties about the second operation.

CHERI-Flute is connected to the memory hierarchy through
an interface consisting of several input and output ports, which
must be properly used in order for the memory to function
correctly. As with register-only instructions, a memory instruc-
tion I is about to be retired successfully when it is in stage
W , after having sent and fulfilled its request to the memory
in stage M . Thus, the correctness property should assert that
before I is retired successfully, when it was in stage M , the
memory interface had been properly used to fulfil what the
specification requires of it. In our proof, SVA sequences are
used to precisely specify the exact sequence of events that
must have taken place when instruction I was in stage M .

Fig. 6 and Fig. 7 show how a memory load instruction I2
is moved from stage M to stage W and becomes ready to be
retired successfully. The correctness property checks that
• a new memory request was not sent before the previous

request had been fulfilled,
• a memory exception did not occur,
• the value returned from the memory when I2 was in stage
M was decompressed correctly (if it was a capability) and
used in the pending update to the register file, and

• the content of the pending update remains stable as I2 is
moved from stage M to stage W .

The correctness properties about memory store instructions
are highly similar and thus omitted here.

F. Processor Liveness

All correctness properties discussed so far are safety prop-
erties. Our verification also tackled the important issue of
processor liveness—demonstrating that the processor does not
freeze so that the pipeline never progresses.

Of course, there are challenges when dealing with liveness.
First, it is usually very difficult to prove liveness properties in
practice, and there is no such thing as a bounded proof for
liveness that can at least give some confidence. Second, even
if a liveness property is proved, there is still no guarantee
about when the desirable event will occur, which is not ideal
when performance is critical. Third, a necessary condition for
a processor to exhibit liveness is the correct behaviour of
the external components connected to it. For example, if the
memory never fulfils a load request, then the processor might
wait indefinitely for a response, stalling the pipeline. This can
be ruled out by assuming certain fairness constraints about
the external components, but these can of course potentially
be violated unless they are themselves verified.

There is a conventional workaround to the first two prob-
lems. Instead of proving the liveness property that ‘the pipeline
eventually progresses’, we derive a safety property that ‘the
pipeline progresses within n cycles’ parametrised by n and
search for the smallest n (if it exists) for which the safety

28

F

I5
D

I4
E

I3
M

I2
W

I1
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·OP rd , rs , imm next_addr

pred_addr

fetch_addr

Fig. 5. Microarchitectural state with branching instruction

· · · E

I3
M

I2
W

I1
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·rdM ← vM

Fig. 6. Microarchitectural state with load instruction in stage M

· · · E

I4
M

I3
W

I2
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·rdW ← vW

Fig. 7. Microarchitectural state with load instruction in stage W

F

I4
D

I3
E

I2
M

I1
W

I0
regfile

r1 v1
r2 v2
r3 v3
· · · · · ·OP rd , rs , imm rdM ← vM rdW ← vW

Fig. 8. Microarchitectural state with register-only instruction in stage M

property can be proved. This not only averts the difficulty of
proving liveness properties but also generates a concrete bound
on when the pipeline progresses.

The derived safety property we proved for CHERI-Flute
says that if an instruction enters stage E, then within nine
cycles, either a new instruction enters stage E, or the processor
enters one of three special states, triggered by particular
instructions, that requires it to wait for certain external signals.

This property shows that as long as the processor does not
enter one of the special states, new instructions will enter
stage E periodically, so the pipeline never freezes. The number
‘nine’ is the smallest number for which this property can be
proved, and the focus on stage E is because certain RISC-V
instructions are retired in stage E—i.e. they are never moved
into stages M or W . Asserting this property on any stage
prior to stage E always attracts a counterexample where an
instruction is repeatedly issued but never reaches beyond stage
E, effectively stalling the subsequent stages.

Of course, the proof of this property relies on several fair-
ness constraints. Most notably, it is assumed that the memory
always fulfils a request within two cycles. The number ‘two’
here is arbitrarily chosen, and it is reasonable to conjecture that
a different number can be used without making any substantial
difference other than perhaps affecting the number ‘nine’ in
the derived safety property.

VI. PROOF ENGINEERING

Not all our correctness properties can be proved in a push-
button manner. Specifically, those properties about register-
only CHERI instructions as well as those about the register-
only components of branching and memory CHERI instruc-
tions cannot be proved straightforwardly. Instead, proof con-
vergence on these properties relies on proof engineering
methodologies that are explained in this section.

A. Decomposing the Pipeline

This methodology is called ‘decomposing the pipeline’
because it enables one to prove some property about a desired
instruction when it is in a later stage of the pipeline by first
proving some lemmas about the instruction when it was in
earlier stages of the pipeline.

1) The First Lemma: The correctness property shown in
Section V-C for any register-only instruction cannot be proved
directly in JasperGold. Instead, we prove a structurally iden-
tical version of the property that is ‘pushed back’ one stage
in the pipeline, referencing regfileM instead of regfile,
rdM and VM instead of rdW and VW , and using a suitably
adjusted guardM

OP function, as we sketch below.
If this version of the property can be proved, then it can be

used as a lemma to successfully prove the original correctness
property through k-induction [19]. The lemma is a property
of a register-only instruction in stage M instead of stage
W . Observe that the write-back result of any register-only
instruction is computed by the ALU in stage E. Therefore,
for any register-only instruction I1 in stage M with opcode
OP as illustrated in Fig. 8, its write-back result must already
be available in vM . This means that we can assert

vM = resultOP (regfileM [rs] , imm)

in the lemma, where the subscripted regfileM is used to
take into account any forwarded value vW from stage W .

Now recall from Section IV-A that checks for guard con-
ditions are spread across stages E and M . Thus, when
instruction I1 reaches stage M , only the checks in stage E
have been performed, whereas the checks in stage M are still
underway. Therefore, it is incorrect to assert that

guardOP (regfileM [rs] , imm)

29

in the lemma. Rather, the lemma only asserts that the subset
of instruction I1’s guard conditions that are checked in stage
E have been met. This subset is given by guardM

OP.
Given the lemma, the original correctness property can be

proved by k-induction. But without it, k-induction is unable
to converge because for any value of k, the SAT-solver can
always find a trace that violates the inductive hypothesis. Such
a trace would begin at an unreachable microarchitectural state
where the desired instruction is in stage M . It would then stall
the pipeline during the next (k − 1) steps, only moving the
desired instruction to stage W at the (k+1)-th step, where the
inductive hypothesis fails to hold. The pipeline can stall for
arbitrarily many cycles in such traces due to the absence of the
very fairness constraints that enable the proof of the liveness
properties in Section V-F. However, it is unnecessary to add
fairness constraints here. Instead, we use the given lemma to
prevent the SAT-solver from exploring such unreachable states.
And since stage M is immediately prior to stage W , k = 1 is
sufficient for the proof to converge.

2) The Second Lemma: To actually prove the lemma just
explained, the same methodology is simply reapplied. That is,
a second lemma is used to narrow the space of states in which
the desired instruction is in stage E so as to exclude traces
that violate the first lemma.

Fortunately, this second lemma is relatively easy to discover,
since the only state information contained in stage E is the
decoded content of the current instruction in stage E. Thus,
the second lemma simply needs to assert that any instruction
in stage E is properly decoded, which enables the proof of
the first lemma by 1-induction.

Now this second lemma can, in turn, be proved by 1-
induction if a similar third lemma is proved about stage D.
And so on. This chain of lemmas stops, of course, at stage
F where the last lemma can be proved directly. In practice,
however, since CHERI-Flute’s design of stages F and D is
relatively simple, we took advantage of one of JasperGold’s
black-box proof engines to automatically complete the proof.

B. Developing Microarchitectural Invariants

CHERI instructions compute relatively sophisticated func-
tions of their operands. In the Sail specification, these are given
by total functions on all decompressed capabilities, including
the unrepresentable ones mentioned in Section III-A. But since
unrepresentable capabilities pose a significant problem if they
appear in the processor, CHERI-Flute is designed so they can
never be created by the hardware in the first place. CHERI-
Flute is then excused from conformance with the specification
for unrepresentable capabilities.

This, of course, leads to the generation of unreachable coun-
terexamples in model checking, so our verification includes a
global consistency invariant over the entire processor, showing
that only representable capabilities are present. Formulating
and proving this invariant was challenging because there are
many internal registers in CHERI-Flute’s microarchitecture
that can influence the architecturally visible registers. A weak
invariant that does not cover these internal registers cannot be

proved by k-induction since the SAT-solver can always find
an unreachable state in which one of these registers contains
an unrepresentable capability, which then ‘pollutes’ one of the
architecturally visible registers within the next few cycles.

This challenge was overcome using State-Space Tunnelling,
a JasperGold feature that allows the user to prune unreachable
portions of the state space when performing k-induction
proofs. Essentially, it allows us to specify some k and let
the SAT-solver generate a trace of length k that violates
the invariant. The user then examines this trace to identify
any internal register that causes the violation, and manually
strengthens the invariant to include it.

This process repeats until, for some sufficiently large k, no
violating trace can be found, at which point proof convergence
for the invariant is achieved. In the end, the invariant in our
proof was sufficiently strong to be proved by 1-induction.

VII. RESULTS AND EVALUATION

In this case study, the implementations of all 80-plus CHERI
instructions (except a very few not yet implemented) have
been subject to formal verification in JasperGold against the
correctness properties in Section V through the proof engineer-
ing methodologies in Section VI.1 While the implementations
of most instructions were found to satisfy the correctness
properties, several were found to be buggy.

The bugs found roughly fell into two categories. The first
category are simple coding mistakes: the designer failed to
notice details of the specification, or the specification changed
after the design was created. These bugs are usually detectable
with a moderate amount of scrutiny or simulation testing. The
second category are algorithmic errors, typically caused by
subtle mistakes in complex pieces of logic. These are much
more difficult to uncover, even with the most intensive code
review or simulation testing.
• In the incOffsetFat function, a bit vector is truncated

but subsequent code still uses the old non-truncated value.
This can potentially lead to the creation of unrepre-
sentable capabilities for certain inputs.

• Several CSR registers are not initialised to the null
capability when the processor is reset.

These two bugs have been confirmed and fixed by the design-
ers [11], [13]. The following have also been confirmed by the
designers and fixes are pending:
• The getTop function incorrectly truncates the returned

value.
• AUIPCC incorrectly clears the validity tag of the returned

capability for certain inputs.
• CUnseal fails to check a permission bit.
• CCSeal incorrectly causes the processor to trap for

certain inputs.
One final bug illustrates an especially productive collabo-

ration between verification and design: in the setAddress

1On a 24-core AMD EPYC 7F72 processor, with 256 GB of RAM, the
proofs are completed within two hours through parallelisation.

30

function, the validity tag of the returned capability is cleared
incorrectly in a corner case.

This function was originally developed by trial and error us-
ing the BlueCheck automated test generation framework [20]
and as well as TestRIG, a framework for testing RISC-V pro-
cessors with random instruction generation [21]. But neither
method detected this corner case. The designers’ initial patch
for the function was buggy because it mishandles another cor-
ner case, which was yet again detected by formal verification.
Consequently, we redesigned the function from scratch and
formally verified its correctness against the specification before
it was submitted to and accepted by the designers [12].

A. Bug or Feature?

Two issues belong to an interesting category sometimes
encountered in formal verification: a trace violates the spec-
ification, but it is unclear whether the hardware should be
changed to match the specification or vice versa.

The first was that specification requires the CSetOffset
and CIncOffset instructions perform a standard ‘repre-
sentability check’ to determine if the capabilities they return
are representable. But in CHERI-Flute the CSetOffset
instruction performs a slightly different, non-standard check
optimised for that particular instruction, although the
CIncOffset instruction uses use the standard check.

So the behaviour of the CSetOffset instruction violates
the specification, but in a beneficial way. It is therefore up
to the designers to decide whether the specification should be
changed to incorporate this optimised representability check.

The second was that, when trying to prove the global
consistency invariant, we found counterexample traces where
memory corruption causes injects corrupted capabilities into
the core. Since memory bit-flips do occur in actual hardware,
we suggested that the core should perform sanity checks on
any capability retrieved from the memory, clearing its validity
tag if it is found to be corrupted.

In the end, the designers decided not to add the sanity
checks because it may cause even more unexpected behaviour
when memory corruption occurs, making the situation more
complex to debug. So to make the proof of the global
consistency invariant converge, we added an assumption that
the memory never returns a corrupted capability.

VIII. RELATED WORK

The correctness of processor cores and their implementation
of instructions has been a focus of verification research for
decades, going at least back to the pioneering work of Hunt
on verifying the FM8501 [22] and FM8502 processors [23].
To verify more complicated, pipelined designs, Burch and Dill
devised the flushing abstraction [24], a member an extensive
family of formulations of correctness that has expanded to
cover even out-of-order designs. Aagaard et al. [25] present a
useful framework for classifying these different approaches.

From about the mid 1990s, verification was increasingly
adopted in industry to verify critical components of large-
scale designs. Notable experiments include Kaivola et al.’s

verification of the Pentium 4 floating-point divider [26], Jacobi
et al.’s fully automated verification of fused-multiply-add
floating-point units [27], Kaivola’s methodology for large-
scale formal verification of control-intensive circuits [28],
and Slobodova’s verification of AES hardware support [29].
A landmark achievement in this direction was Kaivola et
al.’s work on replacing testing with formal verification for
validating the core execution cluster of the Core i7 design [30].

The starting point of our work was Reid et al.’s end-to-
end verification of Arm processors [31]. But our approach
to verifying properties differs significantly from this work.
While the Arm verification uses bounded model checking,
we obtained much stronger unbounded proofs of all cor-
rectness properties by extracting microarchitectural invariants.
Of course, the relative simplicity of RISC-V helped make
this possible, but it was also enabled by the complexity
management methodologies we explain in this paper.

A landmark in the verification of complex cores is the work
by Goel et al. [32] on verifying x86 instructions. This was done
using the ACL2 theorem prover in concert with a number
of tightly integrated support tools, and achieved an end-to-
end verification that encompasses decoding, translation into
microcode, traps to microcode ROM, and execution.

There has been related work on verifying processors using
Symbolic Quick Error Detection (SQED) and its variants [33],
[34], [35]. These methodologies use bounded model checking
to find sequence-dependent bugs that violate a self-consistency
property, but they are not intended for checking single-
instruction bugs where an instruction always produces the
wrong result for certain inputs [33]. In contrast, our methodol-
ogy checks for both types of bugs. Indeed, most, if not all of
the bugs we found were single-instruction bugs that could not
be uncovered by checking for self-consistency. Instead, a more
traditional approach using a formal specification was required.

IX. CONCLUSIONS AND PROSPECTS

There are several ways in which the present work can be
improved and extended.

For this project, we manually translated the Sail speci-
fication of CHERI-RISC-V into SVA. It would obviously
be preferable to have an automatic translation, and we are
investigating some options for this. Apart from the usual
benefits of automation, automatic translation could eliminate
the pragmatic need to weaken the specification as described
in Section V-A. As Sail has been adoped by the RISC-V
Foundation for its golden formal model, a flow from Sail to
SVA seems highly desirable in any case.

Further work can also be done to address the drawbacks of
the liveness properties described in Section V-F. For example,
it would be ideal to remove the proof’s reliance on fairness
constraints that contain arbitrarily chosen numbers. Also,
the work can be made more complete by proving liveness
properties about pipeline stages subsequent to stage E.

Attempts could be made to verify more complex CHERI-
RISC-V processors, such as Toooba [36], where the main
challenge will be to formulate correctness properties about

31

an out-of-order microarchitecture. We note, however, that the
SystemVerilog functions translated from the Sail specification
during the present work can be completely reused when
formulating the new correctness properties.

Finally, we mention that in 2019, the UK announced its
Digital Security by Design programme with £190 million of
funding for a set of research projects [37] to ‘radically update
the foundation of our insecure digital computing infrastruc-
ture, by demonstrating that mainstream processor technology
. . . can be updated to include new security technologies
based on the CHERI Architecture’ [38]. A cornerstone of
the programme is Morello [39], a CHERI-enabled prototype
developed by Arm and scheduled for release in late 2021. We
hope that this early RISC-V case study provides at least some
insights that might eventually apply in the formal verification
of Morello.

X. ACKNOWLEDGEMENTS

We are grateful to members of the CHERI group at
Cambridge. Alasdair Armstrong, Alexandre Joannou, Simon
Moore, Peter Rugg, Peter Sewell, Robert Watson, and Jonathan
Woodruff all kindly provided assistance or comments on this
work. Thanks also go to Ziyad Hanna at Cadence and to Joe
Stoy at Bluespec, who thoughtfully answered our questions
about Bluespec SystemVerilog. This work was funded in
part by the UKRI programme on Digital Security by Design
(Ref. EP/V000225/1, SCorCH [40]).

REFERENCES

[1] M. Miller. (2019, February) Trends, challenges, and strategic shifts in
the software vulnerability mitigation landscape. Presented at the BlueHat
IL. [Online]. Available: https://msrnd-cdn-stor.azureedge.net/bluehat/
bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%
20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%
20Mitigation%20Landscape.pdf

[2] D. Chisnall, C. Rothwell, R. N. M. Watson, J. Woodruff, M. Vadera,
S. W. Moore, M. Roe, B. Davis, and P. G. Neumann, “Beyond the PDP-
11: Architectural support for a memory-safe C abstract machine,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
March 2015, pp. 117–130.

[3] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, June 2014, pp. 457–468.

[4] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, G. Barnes, D. Chisnall, J. Clarke, B. Davis,
L. Eisen, N. W. Filardo, R. Grisenthwaite, A. Joannou, B. Laurie,
A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis, R. Norton,
A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia, “Capability hard-
ware enhanced RISC instructions: CHERI instruction-set architecture
(version 8),” University of Cambridge Computer Laboratory, Technical
Report UCAM-CL-TR-951, October 2020.

[5] K. Nienhuis, A. Joannou, T. Bauereiss, A. Fox, M. Roe, B. Campbell,
M. Naylor, R. M. Norton, S. W. Moore, P. G. Neumann, I. Stark,
R. N. M. Watson, and P. Sewell, “Rigorous engineering for hardware
security: Formal modelling and proof in the CHERI design and imple-
mentation process,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, May 2020, pp. 1003–1020.

[6] A. Armstrong, T. Bauereiss, B. Campbell, S. Flur, K. E. Gray, P. Mund-
kur, R. M. Norton, C. Pulte, A. Reid, P. Sewell, I. Stark, and M. Wassell,
“Detailed models of instruction set architectures: From pseudocode to
formal semantics,” in Proceedings of the 25th Automated Reasoning
Workshop: Bridging the Gap between Theory and Practice: ARW 2018.
University of Cambridge, April 2018, pp. 23–24.

[7] Bluespec announces flute. [Online]. Available: https://bluespec.com/
2018/12/13/bluespec-announces-flute/

[8] CHERI-RISC-V. [Online]. Available: https://www.cl.cam.ac.uk/
research/security/ctsrd/cheri/cheri-risc-v.html

[9] Jaspergold formal verification platform. [Online]. Available: https:
//www.cadence.com/ko KR/home/tools/system-design-and-verification/
formal-and-static-verification/jasper-gold-verification-platform.html

[10] Dpgao/FMCAD2021. [Online]. Available: https://github.com/dpgao/
FMCAD2021

[11] Use tmpAddr in place of pointer in incOffsetFat fol-
lowing Dapeng Gao’s . . . CTSRD-CHERI/Cheri-Cap-Lib@508da81.
[Online]. Available: https://github.com/CTSRD-CHERI/cheri-cap-lib/
commit/508da818baa0d3d103c563c148b6ef2dc4aba057

[12] Use Dapeng’s algorithm (adapted from his verified
verilog) for . . . CTSRD-CHERI/Cheri-Cap-Lib@6e8df02. [On-
line]. Available: https://github.com/CTSRD-CHERI/cheri-cap-lib/
commit/6e8df025326565f146c2fd11d3e2d7fbebec61af

[13] Fix some CSRs with missing reset logic spotted
by Dapeng Gao · CTSRD-CHERI/Flute@36de38d. [On-
line]. Available: https://github.com/CTSRD-CHERI/Flute/commit/
36de38d87740baeed6ebbc242a872206d9f0b032

[14] “An Introduction to CHERI,” Computer Laboratory, Technical Report
UCAM-CL-TR-941, Sep. 2019.

[15] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. M. Norton, D. Chisnall,
B. Davis, K. Gudka, N. W. Filardo, A. T. Markettos, M. Roe, P. G.
Neumann, R. N. M. Watson, and S. W. Moore, “CHERI Concentrate:
Practical Compressed Capabilities,” IEEE Transactions on Computers,
vol. 68, no. 10, pp. 1455–1469, Oct. 2019.

[16] CTSRD-CHERI/sail-cheri-riscv: CHERI-RISC-V model written in Sail.
[Online]. Available: https://github.com/CTSRD-CHERI/sail-cheri-riscv

[17] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s
Perspective, third edition ed. Pearson, 2016.

[18] CTSRD-CHERI/Flute: RISC-V CPU, simple 5-stage in-order pipeline,
for low-end applications needing MMUs and some performance.
[Online]. Available: https://github.com/CTSRD-CHERI/Flute

[19] M. Sheeran, S. Singh, and G. Stålmarck, “Checking Safety Properties
Using Induction and a SAT-Solver,” in Formal Methods in Computer-
Aided Design. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
vol. 1954, pp. 127–144.

[20] CTSRD-CHERI/bluecheck: A generic test bench written in Bluespec.
[Online]. Available: https://github.com/CTSRD-CHERI/bluecheck

[21] CTSRD-CHERI/TestRIG: Testing processors with Random Instruction
Generation. [Online]. Available: https://github.com/CTSRD-CHERI/
TestRIG

[22] W. A. Hunt, FM8501: A Verified Microprocessor, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1994, vol. 795.

[23] ——, “Microprocessor design verification,” Journal of Automated Rea-
soning, vol. 5, no. 4, pp. 429–460, Dec. 1989.

[24] J. R. Burch and D. L. Dill, “Automatic verification of pipelined micro-
processor control,” in Computer Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, vol. 818, pp. 68–80.

[25] M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones, “A Framework for
Microprocessor Correctness Statements,” in Correct Hardware Design
and Verification Methods. Springer Berlin Heidelberg, 2001, vol. 2144,
pp. 433–448.

[26] R. Kaivola and K. Kohatsu, “Proof engineering in the large: Formal
verification of pentium 4 floating-point divider,” International Journal
on Software Tools for Technology Transfer (STTT), vol. 4, no. 3, pp.
323–334, May 2003.

[27] C. Jacobi, Kai Weber, V. Paruthi, and J. Baumgartner, “Automatic Formal
Verification of Fused-Multiply-Add FPUs,” in Design, Automation and
Test in Europe. Munich, Germany: IEEE, 2005, pp. 1298–1303.

[28] R. Kaivola, “Formal verification of Pentium components with symbolic
simulation and inductive invariants,” in Computer Aided Verification.
Springer Berlin Heidelberg, 2005, vol. 3576, pp. 170–184.

[29] A. Slobodova, “Formal Verification of Hardware Support for Advanced
Encryption Standard,” in 2008 Formal Methods in Computer-Aided
Design. IEEE, Nov. 2008, pp. 1–4.

32

https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf
https://bluespec.com/2018/12/13/bluespec-announces-flute/
https://bluespec.com/2018/12/13/bluespec-announces-flute/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-risc-v.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://github.com/dpgao/FMCAD2021
https://github.com/dpgao/FMCAD2021
https://github.com/CTSRD-CHERI/cheri-cap-lib/commit/508da818baa0d3d103c563c148b6ef2dc4aba057
https://github.com/CTSRD-CHERI/cheri-cap-lib/commit/508da818baa0d3d103c563c148b6ef2dc4aba057
https://github.com/CTSRD-CHERI/cheri-cap-lib/commit/6e8df025326565f146c2fd11d3e2d7fbebec61af
https://github.com/CTSRD-CHERI/cheri-cap-lib/commit/6e8df025326565f146c2fd11d3e2d7fbebec61af
https://github.com/CTSRD-CHERI/Flute/commit/36de38d87740baeed6ebbc242a872206d9f0b032
https://github.com/CTSRD-CHERI/Flute/commit/36de38d87740baeed6ebbc242a872206d9f0b032
https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/bluecheck
https://github.com/CTSRD-CHERI/TestRIG
https://github.com/CTSRD-CHERI/TestRIG

[30] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik,
“Replacing testing with formal verification in Intel core I7 processor
execution engine validation,” in Computer Aided Verification. Springer
Berlin Heidelberg, 2009, vol. 5643, pp. 414–429.

[31] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen,
A. Pathirane, O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-End
Verification of ARM Processors with ISA-Formal,” in Computer Aided
Verification. Springer International Publishing, 2016, vol. 9780, pp.
42–58.

[32] S. Goel, A. Slobodová, R. Sumners, and S. Swords, “Verifying x86
instruction implementations,” in Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020,
New Orleans, LA, USA, January 20-21, 2020. ACM, 2020, pp. 47–60.

[33] D. Lin, E. Singh, C. Barrett, and S. Mitra, “A structured approach to
post-silicon validation and debug using symbolic quick error detection,”
in 2015 IEEE International Test Conference (ITC). IEEE, pp. 1–10.
[Online]. Available: http://ieeexplore.ieee.org/document/7342397/

[34] E. Singh, K. Devarajegowda, S. Simon, R. Schnieder, K. Ganesan,
M. Fadiheh, D. Stoffel, W. Kunz, C. Barrett, W. Ecker, and S. Mitra,
“Symbolic QED Pre-silicon Verification for Automotive Microcontroller
Cores: Industrial Case Study,” in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, pp. 1000–1005.
[Online]. Available: https://ieeexplore.ieee.org/document/8715271/

[35] F. Lonsing, K. Ganesan, M. Mann, S. S. Nuthakki, E. Singh,
M. Srouji, Y. Yang, S. Mitra, and C. Barrett, “Unlocking the
Power of Formal Hardware Verification with CoSA and Symbolic
QED: Invited Paper,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, pp. 1–8. [Online]. Available:
https://ieeexplore.ieee.org/document/8942096/

[36] CTSRD-CHERI/Toooba: RISC-V Core; superscalar, out-of-order, multi-
core capable; based on RISCY-OOO from MIT. [Online]. Available:
https://github.com/CTSRD-CHERI/Toooba

[37] Digital security by design challenge –
UKRI. [Online]. Available: https://www.ukri.org/
our-work/our-main-funds/industrial-strategy-challenge-fund/
artificial-intelligence-and-data-economy/
digital-security-by-design-challenge/

[38] Department of Computer Science and Technology – CHERI: The
Digital Security by Design (DSbD) Initiative. [Online]. Available:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/dsbd.html

[39] Department of Computer Science and Technology – CHERI: The Arm
Morello Board. [Online]. Available: https://www.cl.cam.ac.uk/research/
security/ctsrd/cheri/cheri-morello.html

[40] SCorCH: Secure code for capability hardware. [Online]. Available:
https://scorch-project.github.io

33

http://ieeexplore.ieee.org/document/7342397/
https://ieeexplore.ieee.org/document/8715271/
https://ieeexplore.ieee.org/document/8942096/
https://github.com/CTSRD-CHERI/Toooba
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.ukri.org/our-work/our-main-funds/industrial-strategy-challenge-fund/artificial-intelligence-and-data-economy/digital-security-by-design-challenge/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/dsbd.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://scorch-project.github.io

Formal Methods in Computer-Aided Design 2021

Hardware Security Leak Detection
by Symbolic Simulation

Neta Bar Kama
Core and Client Development Group

Intel Corporation
Haifa, Israel

neta.bar.kama@intel.com

Roope Kaivola
Core and Client Development Group

Intel Corporation
Portland, OR, USA

roope.k.kaivola@intel.com

Abstract—Aiming to expose security risks in hardware designs,
we describe a novel usage of symbolic simulation that led to
discoveries of previously unknown potential local data leakages
on an Intel Core processor design. Symbolic simulation is an
established formal verification method, the main vehicle for
verification of arithmetic data-paths in Intel Core processor
designs for twenty years. It extends traditional simulation by
allowing symbolic variables in the stimulus, covering the circuit
behavior for all possible values simultaneously. A special trait
of symbolic simulation is that every variable has a name. In
the security context, named values allow us to know the exact
origin of data and identify data leakages by determining whether
values are expected to be read by an operation or present a risk.
Leveraging the existing formal verification infrastructure and
observing an operation’s data dependencies we could identify
local leaks without the need to have a complete functional
specification for the operation.

Index Terms—Security, Data Leakage, Formal Verification,
Symbolic Simulation

I. INTRODUCTION

Comprehensive formal verification of execution engines
has been standard practice in virtually all Intel® Core™

processor development projects in the last two decades, and
extensive infrastructure has been built to support these efforts.
The technical basis of this work is symbolic simulation, a
technology extending usual digital circuit simulation with
symbolic values, representing sets of concrete values in a
single simulation.

In the aftermath of the Spectre and Meltdown vulnerabili-
ties, security has become a greater focus area for validation. In
this paper we discuss a novel approach leveraging the exist-
ing formal infrastructure for Intel Core processor Execution
clusters (EXE) to analyze potential data leakages, security
violations where privileged data could be made visible to non-
privileged parties. The approach is based on the special feature
of symbolic simulation that stimulus values have names that
can be used to uniquely relate a value to a specific signal and
time.

Intel provides these materials as-is, with no express or implied warranties.
Intel processors might contain design defects or errors known as errata, which
might cause the product to deviate from published specifications. No product
or component can be absolutely secure. Intel, Intel Core, Intel Atom, Pentium
and Intel logo are trademarks of Intel Corporation. Other names and brands
might be claimed as the property of others.

Below we first discuss the concept of symbolic simulation
and its use in EXE formal verification, and the security
challenges in EXE. Then, we will describe the principles of
our solution analyzing potential data leakages using symbolic
simulation, practical considerations in the implementation of
the solution over a live Intel Core processor development
project, and the results of our experiments. With a moderate
engineering effort, we were able to extend the existing formal
environment with extra checkers detecting potential data leak-
ages. On the one hand, this allowed us to verify the absence
of data leaks for large classes of micro-operations, and on the
other to identify several previously undiscovered local data
leakage issues, where micro-operations unintentionally wrote
back data that had been left behind in the internal state of the
cluster by a previous micro-operation.

The closest counterpart to our work in the scientific litera-
ture or commercial tools is taint analysis [1], [2], [3], [4]. Like
our approach, taint analysis tracks the propagation of values
from one signal to another. However, taint analysis works by
attaching extra information, the ’taint’, to simulation values to
track their progress, and requires extra engineering either in
the simulator or in post-simulation analysis. In our approach
values are tracked using the symbolic variable names already
present in the symbolic simulation for the verification, and we
only needed to implement a thin analysis layer on top of the
existing collateral. Second, taint analysis generally assumes
a static classification of signals to ’secret’ and ’non-secret’
and analyzes possible paths leaking secret values to non-secret
signals. This does not adequately reflect the common design
pattern of pipelined designs, like the EXE cluster, where the
same signals are used to carry both secret and non-secret
data at different times, and the notion of a ’secret’ is relative
to a micro-operation. To our knowledge, our work is among
the first published explorations of the application of symbolic
simulation into security verification of hardware designs (cf.
[2], [5]).

II. SYMBOLIC SIMULATION IN EXE VERIFICTION

A. Symbolic Circuit Simulation

Digital circuit simulation is a standard tool in the arsenal of
every working circuit design and validation engineer. Symbolic
simulation extends this technology with the ability to carry out

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 11 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_11
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_11
https://creativecommons.org/licenses/by/4.0/

a

b

a|(b&~c)

c

a

1 0

a

1 0

b

1 0

b

1 0

c

1 0

c

1 0

c

0 1

c

0 1

1

1

1

1

0

0

0

0 b

c

1 0

1

0

0

1

b

c

1 0

1

0

0

1

~c
b&~c

a

1
0

Fig. 1. Symbolic expressions in simulation

X

X

X

X

X

X

0 0

0 X

1

1 1

X a

a

a&X

a|X

a ? X : 0

a ? 1 : X

Fig. 2. Logic with the undefined value X

uopvalid_302H

clk

wbvalid_304H

wb_304H[15:0]src2_302H[15:0]

src1_302H[15:0]

uopcode_302H[7:0]

wbzerofl_304H

M302
datapath

M303
datapath

clock
enable

Fig. 3. Simplified ALU

clk

uopvalid_302H

uopcode_302H[7:0]

src1_302H[15:0]

wb_304H[15:0]

wbvalid_304H

wbzerofl_304H

[“a[15]”, … ,”a[0]"]

[“b[15]”, ... ,“b[0]”]

[0, … 0, “a[7]”+“b[7]”, … ,“a[0]”+“b[0]”]

!“a[0]”&!”a[1]"&…!“b[7]”

st
im

u
lu

s

src2_302H[15:0]

re
sp

o
ns

e

0x08

S

S

S

S

Fig. 4. Symbolic trace

a simulation using symbolic representations of sets of values
in a single simulation trace [6], [7].

In a symbolic simulator the input stimulus may contain
symbolic variables in addition to the traditional concrete values
0, 1, X or Z. These symbolic variables are effectively names
of values, denoting sets of possible actual concrete values. In
the simulation, these symbolic values propagate alongside the
constant values, and in each logic gate, they may be combined
with each other or one of the constants to result in either a
logical expression on the symbolic variables, represented by an
expression graph, or a constant. See Figure 1 for an example.

In a bit level symbolic simulator a single symbolic variable a
corresponds to the set of Boolean values containing both 0 and
1. If stimulus to a symbolic simulation refers to the variables

a, b and c, the internal signals might carry values like a∧b or
a∨(b∧¬c). Usual logic rules apply: if the inputs to an AND-
gate are a and 1, the output will be a, if the input to a NOT-gate
is b, the output will be ¬b, and if the inputs to an AND-gate are
a and b, the output is the logical expression a∧b. In symbolic
simulation, a specific symbolic variable is associated with a
specific signal and time in the stimulus. Associating a variable
with a signal at a time does not fix the value, but instead gives
a name that can be used to refer to the value.

In symbolic simulation, the constant value X is used to
denote a universal undefined or unknown value, which propa-
gates according to rules depicted in Figure 2. The value X
denotes lack of information: we do not know whether the
value is 0 or 1. The propagation rules reflect this intuition.
Symbolic simulation uses X’s as an abstraction mechanism:
unlike symbolic variables, X’s are an over-approximation of
Boolean circuit behavior. Both symbolic variables and X’s
allow us to verify a property over a single symbolic trace, and
conclude that it is valid over every possible trace instantiating
the X’s and the symbolic variables with 0’s or 1’s.

Figure 3 depicts a simplified pipelined ALU circuit with
a 16-bit wide two-cycle data-path from sources to write-
back. Figure 4 depicts a typical symbolic trace that might
be used in the verification of this ALU, focusing on a single
instance of an eight-bit wide bitwise OR micro-operation. The
control signals are driven with concrete values corresponding
to the operation, and the source data is driven with symbolic
variables a[15], . . . ,a[0] and b[15], . . . ,b[0] in the one cycle in
which the operation is issued. In all other cycles these signals
are driven with the undefined value X (gray waveform). In
the simulation, the values of the write-back data and zero flag
two cycles later are then expressions on the symbolic variables
associated with the source data.

A single symbolic simulation trace corresponds to a set of
ordinary simulation traces, covering behaviors of the simulated
circuit for all the possible instantiations of the symbolic vari-
ables with concrete values. The ability to cover all behaviors
forms the basis of using symbolic simulation as a formal
verification method. In this role symbolic simulation excels
in verification of deep targeted properties of fixed length
pipelines, typically of the transactional form stimulus A at
time t is followed by response B at time t + n. It has a
unique ability to carve out the circuit logic relevant to the
progression of a pipeline while ignoring the rest of the circuit
and other transactions in flight. As the approach is conceptu-
ally simple and concrete, it gives the human verifier a fine-
grained visibility into the progress of the computation during
a verification task, enabling precise analysis and mitigation
of computational complexity bottlenecks. Because of these
advantages, symbolic simulation can routinely handle circuits
that are magnitudes above the capacity of more traditional
formal property verification approaches, as well as circuits
where the pipelines are too enmeshed to be amenable to
equivalence-based verification methods.

35

B. Execution Cluster

Intel Core processor architecture has evolved gradually over
the years. Typically, a new design project maintains functional
backwards compatibility with earlier designs while providing
improvements along different axes: new instructions and capa-
bilities, improved performance or power, or design adjustments
to meet side conditions set by a new manufacturing process.
A design project routinely inherits components from earlier
designs.

At high level, a single core consists of a set of major design
components called clusters. The front-end cluster fetches and
decodes architectural instructions, translates them to micro-
operations and computes branch predictions. The out-of-order
cluster receives streams of micro-operations from the front
end, keeps track of dependencies between them, schedules
ready-to-execute micro-operations for execution, takes care of
branch misprediction and event recovery, retires completed
instructions, and updates architectural state. The execution
cluster carries out data computations for all micro-operations
implemented by the design, performs memory address cal-
culations, and determines and signals branch mispredictions.
The memory cluster handles memory accesses, may contain
first level caches and interfaces with a system-on-chip layer
outside the core, including for example a graphics processing
unit and a memory controller. The SystemVerilog source code
of a cluster usually contains several hundred thousand lines of
code. While not a physical entity like the above, microcode
is also a major design component, the complexity of which is
comparable to that of the clusters.

In this paper we focus on security validation of the exe-
cution cluster (EXE) on an Intel Core processor design. The
EXE cluster consists of six main units: the integer execution
unit (IEU) contains logic for plain integer and miscellaneous
other operations, the single instruction multiple data (SIMD)
integer unit (SIU) contains logic for packed integer operations,
the floating-point unit (FPU) implements plain and packed
floating-point operations such as DIV, MUL, ADD, etc., the
address generation unit (AGU) performs address calculations
and access checks for memory accesses, the jump execution
unit (JEU) implements jump operations and determines and
signals branch mispredictions, and the memory interface unit
(MIU) receives load data from and passes store data to memory
cluster, maintains store forwarding buffers, performs various
datatype conversions, and takes care of data bypassing. In a
typical contemporary Intel Core processor design, the EXE
cluster implements over 5000 distinct micro-operations and
supports multi-threading.

At an abstract level, the EXE cluster is a pipelined machine,
receiving as input streams of micro-operations (micro-ops,
uops) through a set of schedule ports. Each micro-operation
receives its source data either through the cluster interface or
through a bypass from a previous operation, and produces its
result through a write-back port after an operation-dependent
latency. The cluster has state components, which a micro-
operation may read or update synchronously.

C. EXE Formal Verification

Formal verification of arithmetic data-paths has been a focus
area at Intel ever since the Pentium® FDIV bug in 1994. The
primary vehicle for this work is symbolic simulation, incor-
porated in Intel’s in-house Forte verification toolset under the
name of Symbolic Trajectory Evaluation (STE) [7]. Initially
a research initiative during the Pentium Pro design cycle,
Formal Verification has been carried out as a routine part of
Intel processor development projects since Pentium 4 in 1999.
All Intel Core processor EXE data-paths since 2005, as well
as most Intel Atom® processor and Gen Graphics arithmetic
engines have been formally verified using symbolic simulation
[8], [9].

In concrete terms, EXE formal verification is carried out
through a shared verification system called Cluster Verification
Environment (CVE), a large software artifact that creates a
standard, uniform methodology for writing specifications and
carrying out verification tasks [8]. Underlying CVE is the
Forte/reFLect toolset, consisting of the high performance sim-
ulator STE wrapped in a full-fledged functional programming
language [7]. All verification takes place at the level of the
full cluster, not the underlying individual units.

In verification of the EXE cluster, every micro-operation and
every port on which the micro-operation can execute corre-
spond to a separate symbolic simulation task. This simulation
starts from a totally unconstrained initial state and focuses on
one instance of the micro-operation under verification. The
control signals that are relevant to the micro-operation are
restricted according to the micro-operation, and the source data
signals are driven with symbolic variables, as in the simplified
example in Figure 4. Additionally, some internal and external
control signals of the circuit are driven with symbolic variables
and may be restricted using control invariants that are used to
capture reachable state restrictions. Due to the unconstrained
initial state of the simulation, such reachable state restrictions
are not automatically accounted for in the verification and need
to be manually formulated and separately verified. All other
signals in the simulation are driven with the undefined value
X. Altogether, in this setup the single instance of the micro-
operation under verification in the single symbolic trace covers
all possible invocations of the micro-operation in any legal
trace of the circuit.

Effectively, in the verification setup for a single micro-
operation the control signals are set to fix the data-path
controls to match a single instance of that micro-operation, and
symbolic variables on the data are used to exhaustively simu-
late the data-path instance. The simulation is then connected to
an abstract functional reference model for the micro-operation
through source and write-back mappings, and the output of
the design and the reference model compared. These design-
dependent mappings extract the intended source and result
values for the micro-operation at the relevant times relative
to the instance we are verifying.

For a large majority of micro-operations in the EXE cluster,
the data-path can be exhaustively symbolically simulated in

36

one pass at the full cluster level. For certain complex opera-
tions like floating-point addition, careful case splits on the data
space are needed to contain symbolic expression growth in
the simulation, and for most complex operations like floating
point divide or fused multiply add, a sequential decomposition
strategy is applied.

III. EXE SECURITY VERIFICATION

A. EXE and Data Security

Traditionally EXE validation has focused on the functional
correctness of the micro-operations, including the validation
of control logic required for non-interference from other
operations simultaneously in flight. Since the Spectre and
Meltdown vulnerabilities, security validation has become a
greater focus area. In both exploits, a rogue process can the-
oretically gain access to privileged data by observing the side
effects of speculative, although ultimately unsuccessful access
to a memory location containing the secret. A key ingredient
of these exploits is that secret data temporarily propagates
and influences execution flows in the micro-architectural level,
although the results of the computations on the secret data
are appropriately squashed before they become architecturally
visible. In the classic functional correctness sense this is not a
problem, as the secret data is never directly exposed. However,
in the exploits a rogue process tracks the ways in which
the secret data has influenced the execution flows, especially
through timing analysis, in an effort to statistically deduce
the secret with a high probability. This means that we need
to secure the propagation of secret data also at the micro-
architectural level. As it is difficult to foresee all the ways in
which the secrets’ influences on execution could be exploited,
the best strategy is to try to limit the propagation of secrets in
the system as best as we can, and try to block any leakages
at a local level as early as possible.

Looking at the EXE cluster from the security and data
leakage perspective, the first thing to note is that in the larger
context some micro-operations may be privileged, and some
may not, some data may be secret, and some may not, but EXE
has no awareness of that. All it sees are micro-operations and
data. Privileged and less privileged operations are interleaved
out-of-order in the same thread and between threads. The
mixture of secret and non-secret makes it harder to formulate a
property Thou shalt not leak secrets, as we don’t have a good
measure of what counts as a secret. However, each micro-
operation has a well-defined notion of the data it is expected
to process: which buses at which times relative to the operation
carry its source and result data. Relative to an operation, we
can then over-approximate all other data as secret. This leads
to the following fundamental security property for EXE:

For every micro-operation executing in EXE, its result data
should be exclusively a function of its source data.

By ’result data’ we mean the main write-back data bus,
flags, faults, and all auxiliary outputs together. This security
property can be formalized more accurately as:

For every micro-operation u, there is a function spec(u)
such that for every trace T of the circuit and every point t of
T , if uop u is issued at point t of T and we write src for the
source data of u and wb for the write-back data of u relative
to the point t of T , then wb = spec(u)(src).

For many micro-operations, this security property follows
automatically from functional correctness. If the specification
for the operation is fully defined for all possible source values,
and we have verified that the implementation fully agrees with
the specification, there is simply no logical possibility for the
result data not to be purely a function of the source data.
However, many operations have partially undefined results,
where some result components are unspecified either for all or
some source values. For example, some floating-point micro-
operations do not fully support all possible source values,
reverting to microcode flows for rare or hard-to-implement
cases, leaving the result data undefined. Similarly, certain
helper operations that are used only in specific microcode
flows in contexts where some parts of the result are never
used may leave these result components undefined. Designs
take advantage of the undefined spaces, as they allow an
implementation to be optimized without a need to maintain
identical behavior in the undefined space. These undefined
spaces provide an opportunity for a micro-operation to write
back values that are derived from some other data than its
sources, including possibly secret data that has been or is being
processed by other micro-operations.

The most common scenario of data leakage in undefined
spaces is when secret data processed by an earlier micro-
operation lingers in some internal flops of EXE and is passed
to the write-back bus as a later micro-operation’s undefined
result. In a fully pipelined machine where all clocks toggle
all the time, this scenario cannot happen, as secret data stays
in any pipe-stage for exactly the one cycle when it is being
processed before being overwritten by the next wave of values.
However, such always-toggling designs are a thing of the past.
Qualified clocks are ubiquitous, and their use increases and
becomes more fine-grained by every design generation because
of power considerations. In many data-paths the clocks toggle
at most once for each operation. This means that any secret
data processed by an operation remains in internal flops in
every pipe-stage, until the next operation executing in the same
data-path clears it. In this context the security property above
can be viewed as setting a security perimeter around EXE.
Secret data can linger on inside the cluster but cannot be
exported through the write-back bus by any micro-operation.

The general concept of the analysis of data leakages through
undefined behavior is directly relevant for the prevention of
Meltdown-type vulnerabilities, although the areas primarily
contributing to Meltdown are outside our focus area in EXE.
An essential part of Meltdown is transient execution after a
faulting load micro-operation from an out-of-bounds memory
location containing secret data [10]. While the problematic
load micro-operation produces a fault due to an access check
violation, it may, under certain circumstances, nevertheless

37

have read the secret value from the memory location and
passed the value on to a subsequent flow that exposes the
secret. The specification for a load micro-operation is likely
to be of the form if the load does not generate a fault, the
writeback data will be the value held by the memory location
pointed to by the sources, otherwise the writeback data is
a don’t-care. Note that the naive specification, without the
faulting condition and the don’t-care space, is very unlikely
to hold for any real implementation, as a load can fault for a
variety of reasons, many of which prevent the routing of the
memory data to the writeback. This undefined space in the
specification allows the secret to be exposed, or conversely,
as pointed out by Canella et al: “. . . merely replacing the data
of a faulting instruction with a dummy value suffices to block
Meltdown-type leakage in silicon. . . ” [10, p 252].

B. EXE Security Analysis with Symbolic Simulation

Considering the fundamental security property formulated
above, an extremely useful feature of symbolic simulation is
that every symbolic variable can be uniquely related to the
signal and time it was associated with in the stimulus. Each
1 in stimulus looks exactly like any other 1, each 0 like any
other 0, but every symbolic variable carries immediately in its
name the notion of which signal and time it originated from.
The uniqueness of names and the setup of EXE verification
allows us to re-phrase the security property as:

For every micro-operation executing in EXE, the symbolic
expressions for its result data should only refer to symbolic
variables associated with its source data, and should not allow
the undefined value X.

This property is relative to the symbolic simulation task
for the micro-operation, as outlined in Section II-C. The
symbolic re-formulation of the security property guarantees
the original version since the single symbolic simulation for
the micro-operation is an over-approximation of every possible
invocation of the micro-operation in any trace. This means
that we can simply read the function spec(u) required by the
original definition, mapping source data to the result, from the
symbolic expressions for the result data.

Another way of viewing the matter is that the symbolic
expressions on the write-back signals fully capture all depen-
dencies of the write-back on any signals in their fan-in cone.
The constant values in the simulation do not matter in this
respect. Since the symbolic simulation for the micro-operation
over-approximates every possible invocation of it in any trace,
every constant value in the symbolic simulation is also present
in all these invocations. Consequently, the propagation of such
constants in the simulation to the write-back cannot disclose
anything about the internal state of the circuit that would not
be universally true. As a technical restriction, in our work all
case splits and decompositions used to alleviate verification
complexity are on data and not on control signals and will not
turn any symbolic variables on control signals to constants.

Notice that the symbolic formulation of the security prop-
erty is not a property about the value of the result data itself.

Instead, it is a property about the symbolic expression used
to represent the value of the result data in the simulation, and
the symbolic names that occur in that expression. Because it
talks about names, not values, it is not something that could
be coded in methods that describe properties of signal values,
such as SystemVerilog Assertions.

When we run a micro-operation that has a fully specified
result data, we naturally verify that it writes exactly the data
we expect it to and nothing else, as otherwise the verification
would fail. However, when there is an undefined space in the
output, the situation is trickier because we don’t know what
value to expect. The use of named variables allows us to verify
that the result data is a function of the source data without the
need to say what that function spec(u) is, i.e. without needing
to specify the expected result value. This is very efficient
when we are looking at the undefined space, where typically
there is no good definition of what the result should be.

C. Implementation

Next, we describe in detail how this idea was implemented.
In high level, named variables allow us to:

A) Sample the output of a DUT to get a list of named
variables that have propagated to it and occur in the
symbolic expression it holds. In the example in Figure
4, bit [0] of the write-back data carries the expression
a[0]+b[0], referring to the variables [a[0],b[0]]. We call
this list the dependency list of the expression.

B) Identify suspicious names in the dependency list. The
CVE infrastructure has a known naming convention, so
the variable name allows us to distinguish the data that
we would expect to propagate from suspicious data. In
the example in Figure 4, the names a[0] and b[0] are
expected, since they are the named variables driven to
the sources of the operating uop.

The security analysis has two outcomes. First, we can detect
security vulnerabilities where they exist. Second, the absence
of detected vulnerabilities for the vast majority of micro-
operations provides strong evidence that no secrets can be
leaked to the interface of the cluster through those operations.

Data propagation in the circuit is often gated by specific
operations that exclusively enable the data flow. If that en-
abling is too short, and there is no mechanism that clears
the data after the operation, it can hang there. Stale data
becomes a security risk when another operation can read this
data. In early stages of verification environment development
for a new project, the validation focuses on pure data-path
verification in a sterile environment, and as a simplification,
disables power gating and lets clocks toggle freely. At this
stage all data flows uninterrupted, and we cannot guarantee
there are no leakages coming from stale data on a power-
gated bus. Security verification analysis becomes effective and
meaningful only when we enable all power optimizations in
the formal environment. At the time we started this security
initiative, this pre-condition was met in almost all areas of the
design we were working on.

38

Formal verification of arithmetic data-paths in the EXE
cluster is fully covered in CVE using symbolic simulation. We
have specifications for all existing micro-operations and the
infrastructure to run a full regression to collect any information
needed for the extra layer of security check. This provided a
solid base for our analysis, and an efficient process that led to
interesting results in a short time. The process can be divided
into three stages.

1) Identify operations that have an undefined result.
As an example, in the simplified ALU in Figure 3 the
write-back bus is 16 bits wide, but a shorter opera-
tion like the eight-bit OR only uses bits [7:0] for the
result. The upper bits [15:8] could be left undefined,
which might provide an opportunity for data leakage.
For any micro-operation, CVE provides two different
mechanisms for undefined results:
• Each uop in CVE has a defined data type signa-

ture, which specifies useful static information about
the shape of the sources and result of the uop,
such as data size, data type (integer, floating-point),
signed/unsigned etc. The source or write-back data
can be of NULL type, meaning it is not used by the
uop. For NULL write-back, the checkers will not
sample the write-back bus at all in a simulation.

• A uop may have a defined write-back datatype, but
its specification may explicitly encode a don’t-care
space. For example, the data output of a divide
operation could be defined as a don’t-care when the
divisor is zero. In this case the checkers will sample
the output in a simulation but will ignore the value
for the functional correctness check. In the eight-bit
OR example, we could sample the full 16 bit write-
back bus, but not necessarily check the upper eight
bits, leaving them explicitly undefined.

For both methods the existing CVE data structures
allowed us to easily identify the set of uops that produce
undefined results, creating a clear goal for the main
security analysis. The first step in enabling the security
check was to switch from the first method to the second
one for all uops, to make sure we always sample the
write-back bus: identify the uops using the first method,
convert the NULL data signatures to a meaningful type,
and incorporate the explicit don’t-care space into the
functional specification.

2) Sample results and detect unexpected variables.
This stage is the heart of the process, using the existing
symbolic simulation capability in the two steps above:
A) Sample the output and extract the list of variables
in the symbolic expression, and B) Identify suspicious
variable names in the list. The ingredients of this stage
are:
• Every variable in the dependency list has a name.
• Expected variables are the named variables associ-

ated with the source signals in the aligned source
pipe-stage of the current operating uop, as discussed

above. As sampled by the operating uop, they are
considered safe.

• All X values on the outputs are flagged, since the
unnamed undefined value X cannot tell where it
came from and is therefore inherently suspicious.

• By convention, a driven variable that is not part of
expected source data for a uop uses a name that is
a combination of the signal and the time at which
it was driven, for example: “SignalName@24”.

Given the values in the write-back bus, we check for X’s
and query the variable dependency list for suspicious
names. In the eight-bit OR example of Figure 4, there
are no X values, and the dependency list includes only
’good’ names such as a[7] or b[0].
This check is fully automated, as the classification of
variable names to good vs suspicious ones can be done
mechanically based on existing information about the
intended uop source interfaces and variable naming
conventions.

3) Trace the suspicious variables.
The presence of the undefined value X or a suspicious
name in the dependency list does not yet automatically
mean that what we see is real data leakage. By methodol-
ogy, symbolic simulation uses a maximally uninitialized
start state for the simulation, with all signals having
the value X, and uses stimulus that drives X’s on most
inputs to the circuit, overapproximating the real legal
behaviors of the circuit. We need to trace the suspicious
variable or X, see how it propagated to the write-back,
and understand whether the path to the write-back is
possible in the real operating environment of the circuit.
This stage is like the debug process of any simulation,
tracing the origin of a value in the circuit. We use a
schematic viewer that shows symbolic values and trace
the ones that we find interesting. In some cases, to better
analyze a behavior, we strengthen the simulation to drive
a variable at an internal signal that used to hold an
unnamed X that may propagate to the write-back.

Consider for example the simplified ALU of Figure 3 and
assume that the circuit is augmented with power gating logic
that turns off clocks for the high eight bits [15:8] of the data-
path for operations that only operate on the low eight bits
[7:0] of data. If we now simulate an eight-bit OR operation
on the circuit as in Figure 5, we might observe X values in
bits [15:8] of the write-back as in Figure 6, instead of the
’good’ result of Figure 4. Tracing back the X values on the
write-back, we would find an internal flop with the output X
and a clock that does not toggle, as in Figure 7. In the circuit,
this flop will hold any value the previous operation has left
there, presenting a leakage risk. To check whether this data
really propagates to the output, we want to track a concrete
named variable. To do this, we drive unique named variables
“Src1[15]@23” . . . “Src1[8]@23” to the internal flop as in
Figure 8, and observe these variables in the write-back, as in
Figure 9. Once we understand the leakage mechanism, we can

39

uopvalid_302H

clk

src1_302H[15:0]

uopcode_302H[7:0]

src1_302H[15:8]

src1_302H[7:0]

is valid
16-bit
uop

disable_power_gate

src1_303H[15:0]

“a[7:0]”

X

0

0
0x08

1

“a[15:0]”

0

0

[X,...,X,

“a7”,...,“a0”]

Fig. 5. Clock gating for eight-bit operations

uopvalid_302H

clk wbvalid_304H

wb_304H[15:8]

src2_302H[15:0]

src1_302H[15:0]

uopcode_302H[7:0]

wbzerofl_304H

[X,…,X]

wb_304H[7:0] [“a[7]”+””b[7]”,...,“a[0]”+”b[0]”]

8-bit OR: 0x08

1

[“a[15]”,...,“a[0]”]

[“b[15]”,...,“b[0]”]

EXE

Fig. 6. Sampled X on the write-back bus

X

0

src1_302H[15:8]
[X,…,X]

wb_304H[15:8]src1_303H[15:8] wb_304H[15:8]src1_303H[15:8]

Fig. 7. Trace back the X to a gated clock

[“Src1[15]@23”,...,“Src1[8]@23”]

internal stimuli

[“Src1[15]@23”,...,“Src1[8]@23”]

wb_304H[15:8]src1_303H[15:8] wb_304H[15:8]src1_303H[15:8]
0

Fig. 8. Replace the X with a named variable

clk

src1_302H[15:0]

wb_304H[15:8] [“Src1[15]@23”, … ,“Src1[8]@23”]

st
im

u
lu
s

src2_302H[15:0]

re
sp
o
n
se

S

S

wb_304H[7:0] S

S

[“a[7]” + “b[7]”, … ,“a[0]” + “b[0]”]

Fig. 9. Symbolic waveform with data leak

clk

uopvalid_302H

uopcode_302H[7:0]

src1_302H[15:0]

wb_304H[7:0]

st
im

u
lu

s
in

te
rn

al

0x18

0x215A

0x5A

0x08

re
su

lt
s

src1_303H[7:0]

src1_303H[15:8]

0xB3

0x72B3

wb_304H[15:8]

0x12

0x34D8

0xD8

0x34

0x34

0xD8

Uop A:
16 bits

Uop B:
8 bits

Uop C:
16 bits

0x21

Data on a 16-bit only latch

0x5A 0xB3

0x21 0x21

0xB3

Visible on write-back by next uop

Fig. 10. Concrete waveform with data leak

then manually generate a concrete example exhibiting both an
earlier uop leaving behind stale data, and a later uop that leaks
the stale data to the write-back bus, as in Figure 10. In this
example, the high eight data bits of a 16-bit uop A remain in
the internal state until they are overwritten by the next 16-bit
uop C, and are exposed by the 8-bit uop B in the meanwhile.

IV. RESULTS

The flow of security verification was implemented as an
automated extra check on top of the traditional data-path
symbolic simulation. The process leveraged the existing ca-
pabilities of CVE that already supported all EXE uops. This
gave us the ability to run a full regression and get first results
quickly.

We chose to focus on the write-back data interface buses
and concentrated on the about 2000 uops for which these
buses are relevant, out of about 5000 legal uops for the
cluster in total. Among these uops we first identified the
ones that have fully or partially unspecified write-back data.
Our analysis showed that 89.4% of the uops were completely
specified, and 10.6% had unspecified write-back data. We then
further analyzed the uops with unspecified write-back data by
symbolic dependency analysis and found that 97.8% of uops
were either completely specified or exhibited no unexpected
data at write-back, whereas 2.2% of the uops had an undefined
result space and failed the dependency analysis.

For the 97.8% of the uops that passed our analysis, we
provided strong evidence that there is no risk of data leakage,
as our analysis took place in the formal framework covering
all possible behaviors. Note also that the dependency analysis
allowed us to reduce the ratio of suspicious uops from 10.6%
to 2.2%. As a restriction in scope, we did not look at data
leakages in the bypass network, although the method would
be equally applicable there.

The first real local EXE potential data leakage was dis-
covered in less than a month. In a total effort of about two
months of work, we discovered several different potential
leakage mechanisms, all previously unknown. The failures
were analyzed and grouped to RTL bugs with a common cause.
Examples of potential leakage mechanisms include:

1) Uop A computed information intended to be written
to the write-back data bus. It went through a latch
that was toggling only while uop A was operating,
for one cycle, and shut down right after uop A had
completed. Therefore, the output of that latch was not
cleared, and the data was stuck there on an internal bus.
Analyzing uop B that was not expected to produce data
(undefined write-back), we could see that uop A’s data
was propagating freely all the way to the write-back bus.

2) The data-path of a certain unit contained a MUX prior
to the write-back bus with separate selects for specific
uops and default logic shared by many uops. A particular
uop C with undefined write-back executing in the unit
read stale data left behind by any previous uop using
the default logic.

40

3) Most uops that write only part of the write-back bus,
for example 32 bits out of 128, have a clear definition
of the unused bits, and we sample them along with
the computed result of the lower part in regular data-
path verification. In one exception, the upper part for a
specific uop D was left unspecified. Tracing back the
write-back, we reached an internal source bus shared
by several operations, with a clock toggling just once
per uop, causing the data to hang. Usually, the next uop
would clear the bus. Uop D did not, leaking the upper
bits of the source data left behind by the previous uop.

These bugs were all reproduced in normal simulation. They
did not cause a functional failure: the results are never checked
since they fall into the don’t-care space of the specification.
However, it was clear that the value written to the write-back
is exactly the value left behind by a previous uop.

After the detection of these kinds of potential data leaks,
there are several options for actions to fix them. The straight-
forward solution is to modify the currently undefined uop to
have a defined value, e.g. write zeroes to the write-back data.
This will be the easiest to verify because it will become again
a strongly defined data-path verification task. It will also be the
strongest solution, as it truly closes the leak. Another solution
is to clear the stale data left by the earlier uop, for example
by opening the gating clock for an extra cycle. Both options
close the leak at the EXE boundary but require changing the
design and could cost power or area.

If it is not possible to fix the design, another option is in
the microcode level, making sure the undefined operation is
not used in any way it could be exploited. Effectively here
one establishes a security perimeter with a larger scope than
EXE to see that the compromised data is contained before it
becomes visible through a vulnerability at a higher level. This
method is less optimal than the ones above, as the analysis
scope is larger, outside the scope of existing formal tools, and
relies more on finding parallels with known vulnerabilities,
while new ways of exploiting information leaked out of
the cluster may emerge. Also, micro-code implementation is
dynamic, and it is possible that changes to the usage model
that is safe today may make it unsafe tomorrow.

The potential local data leakages discovered by our analysis
were addressed during the design project and as a result do
not lead to a security violation at a user visible level in the
final product.

V. SUMMARY

Symbolic simulation’s special trait — the usage of named
variables — makes it a productive method to analyze data
leakage risks. The scope of this work was huge for any
formal analysis: a whole cluster, thousands of operations, and
hundreds of thousands of flops in the circuit. Out of those,
without having any prior knowledge where to look for the
risks, we hit the relatively few instances that mattered in a
short time. We found real issues, in a live project, issues that
were not detected by any other method.

In this paper we described how we leveraged the existing
environment of CVE that already supports the thousands of
specifications in EXE cluster, holds information about data
types and has a clear naming convention. This made the
process efficient and demonstrated the importance of the
complete verification environment covering EXE data-path. It
is also important to clarify that the general concept we describe
here is not dependent on it. Security verification by symbolic
simulation can be implemented in various designs, where we
do not have such infrastructure to rely on. Symbolic simulation
is the key in analyzing data leakage risks of this kind, not the
formal environment in itself.

In future design projects, with the increasing demand for
security validation, we hope to explore where we can further
develop this usage of symbolic simulation.

ACKNOWLEDGEMENTS

We would like to thank Arkady Neyshtadt for his security
analysis, Gilad Holzstein, Robert Jones, Alex Levin, Yoav
Moratt and Nir Shildan for discussions on security, Annette
Upton for detailed feedback on the paper, and David Turner,
Yaniv Dana and Alon Flaisher for the opportunity to carry out
this work.

REFERENCES

[1] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan, “A formal
approach to secure speculation,” in 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF), pp. 288–28815, 2019.

[2] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security
and Privacy, pp. 317–331, 2010.

[3] P. Subramanyan and D. Arora, “Formal verification of taint-propagation
security properties in a commercial SoC design,” in 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 1–2,
2014.

[4] “Cadence JasperGold Security Path Verification (SPV) App,” 2021.
[5] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying

information flow properties of firmware using symbolic execution,” in
2016 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 337–342, 2016.

[6] C. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods Syst. Des.,
vol. 6, no. 2, pp. 147–189, 1995.

[7] C.-J. Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard, C. Bar-
rett, and D. Syme, “An industrially effective environment for formal
hardware verification,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1381–1405, 2005.

[8] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodová, C. Taylor, V. Frolov, E. Reeber, and A. Naik,
“Replacing testing with formal verification in Intel Core i7 processor ex-
ecution engine validation,” in Computer Aided Verification (A. Bouajjani
and O. Maler, eds.), pp. 414–429, Springer Berlin Heidelberg, 2009.

[9] A. Gupta, M. V. A. KiranKumar, and R. Ghughal, “Formally verifying
graphics FPU,” in FM 2014: Formal Methods (C. Jones, P. Pihlajasaari,
and J. Sun, eds.), pp. 673–687, Springer International Publishing, 2014.

[10] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19), (Santa Clara, CA), pp. 249–266,
USENIX Association, Aug. 2019.

41

Formal Methods in Computer-Aided Design 2021

Scaling Up Hardware Accelerator Verification using
A-QED with Functional Decomposition

Saranyu Chattopadhyay∗, Florian Lonsing ∗, Luca Piccolboni †, Deepraj Soni¶, Peng Wei§, Xiaofan Zhang‖,
Yuan Zhou‡, Luca Carloni†, Deming Chen ‖, Jason Cong §, Ramesh Karri¶, Zhiru Zhang‡, Caroline Trippel∗,

Clark Barrett ∗, Subhasish Mitra∗
∗Stanford University, †Columbia University, ‡Cornell University, §University of California, Los Angeles,

¶New York University, ‖University of Illinois, Urbana-Champaign

Abstract—Hardware accelerators (HAs) are essential building
blocks for fast and energy-efficient computing systems. Accelera-
tor Quick Error Detection (A-QED) is a recent formal technique
which uses Bounded Model Checking for pre-silicon verification
of HAs. A-QED checks an HA for self-consistency, i.e., whether
identical inputs within a sequence of operations always produce
the same output. Under modest assumptions, A-QED is both
sound and complete. However, as is well-known, large design
sizes significantly limit the scalability of formal verification,
including A-QED. We overcome this scalability challenge through
a new decomposition technique for A-QED, called A-QED with
Decomposition (A-QED2). A-QED2 systematically decomposes an
HA into smaller, functional sub-modules, called sub-accelerators,
which are then verified independently using A-QED. We prove
completeness of A-QED2; in particular, if the full HA under
verification contains a bug, then A-QED2 ensures detection of
that bug during A-QED verification of the corresponding sub-
accelerators. Results on over 100 (buggy) versions of a wide
variety of HAs with millions of logic gates demonstrate the
effectiveness and practicality of A-QED2.

I. INTRODUCTION

Hardware accelerators (HAs) are critical building blocks
of energy-efficient System-on-Chip (SoC) platforms [1]–[3].
Unlike general-purpose processors, HAs implement a set of
domain-specific functions (e.g., encryption, 3D Rendering,
deep learning inference), referred to as actions in this paper,
for improved energy and throughput. Today’s SoCs integrate
dozens of diverse HAs (e.g., 40+ HAs in Apple’s A12 mobile
SoC [4]).

Unfortunately, the energy and throughput improvements en-
abled by HAs come at the cost of increased design complexity.
Ensuring that a given SoC will behave correctly and reliably
requires verifying each and every constituent HA. Furthermore,
HAs must achieve short design-to-deployment timelines in
order to meet the needs of a wide variety of evolving appli-
cations [5]. Using conventional formal verification techniques
to verify HAs faces several key challenges. Manually crafting
extensive design-specific formal properties or full abstract
functional specifications can be time-consuming and error-
prone [6], [7]. Moreover, scaling verification to large HAs
(with millions of logic gates) is difficult or even infeasible
using off-the-shelf formal tools.

A recent formal verification technique targeting HAs,
Accelerator-Quick Error Detection (A-QED) [8], overcomes
the first challenge above. A-QED is readily applicable for a

popular class of HAs: loosely-coupled accelerators (LCAs) [9],
[10] (i.e., HAs that are not integrated as part of a central
processing unit (CPU), but via an SoC’s network-on-chip
or a bus) that are also non-interfering. Non-interfering HAs
produce the same result for a given action independent of
their context within a sequence of actions (not to be confused
with combinational circuits). In other words, the state of the
accelerator does not affect future computations, and each
computation is independent from previous computations. In
contrast, computations of interfering HAs depend on state
that is the result of previous computations. A-QED uses
Bounded Model Checking (BMC) [11] to symbolically check
sequences of actions for self-consistency. Specifically, it checks
for functional consistency (FC), the property that identical
inputs within a sequence of operations always produce the same
outputs. It was shown that FC checks, together with response
bound (RB) checks and single-action correctness (SAC) checks,
provide a thorough verification technique for non-interfering
LCAs [8]. However, despite its success in discovering bugs
in moderately-sized HA designs, A-QED suffers from the
scalability challenges of formal tools. For example, A-QED
(backed by off-the-shelf formal verification tools) times out
after 12 hours when run on NVDLA, NVIDIA’s deep-learning
HA [12] with approximately 16 million logic gates.

In this paper, we present a new verification approach called
A-QED with Decomposition (A-QED2) to address the scalability
challenge. First, we introduce a new, more general formal model
of HA execution, which captures both interfering and non-
interfering LCAs. We then show how A-QED2 can decompose
a large LCA into smaller sub-accelerators in such a way that
both FC and RB checks can be directly applied to the sub-
accelerators. Unlike conventional verification approaches based
on decomposition, no new properties need to be devised to
apply FC and RB to the decomposed sub-accelerators. Existing
decomposition approaches can be leveraged to additionally
check SAC of the sub-accelerators. A-QED2 is complementary
to verification approaches that rely on design abstraction, which
can be used to further improve scalability and to simplify the
effort required for SAC checks on decomposed sub-accelerators.

This paper presents both a formal foundation of A-QED2

and an empirical evaluation that demonstrates its bug-finding
capabilities in practice. We prove that A-QED’s completeness
guarantees [8] continue to hold for A-QED2—if the full HA

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_12 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-5715-7231
https://orcid.org/0000-0003-0094-4960
https://orcid.org/0000-0002-3016-0270
https://orcid.org/0000-0003-2887-6963
https://orcid.org/0000-0002-9522-3084
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_12
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_12
https://creativecommons.org/licenses/by/4.0/

under verification contains a bug, then A-QED2 will detect
that bug. Furthermore, we apply A-QED2 to a wide variety of
non-interfering LCAs (although our theoretical proofs apply
to interfering LCAs as well): 109 different (buggy) versions
of large open-source HAs of up to 200 million logic gates
(including industrial HAs). Our empirical results focus on
designs which are described in a high-level language (e.g.,
C/C++) and then translated to Register-Transfer-Level (RTL)
designs (e.g., Verilog) using High-Level Synthesis (HLS)
flows, where appropriate optimizations like pipelining and
parallelism are instantiated. Such HLS-based HA design flows
are becoming increasingly common in industry. However, A-
QED2 is not restricted to these specific HA design styles. Our
empirical results show:

1) Off-the-shelf formal tools cannot handle large HAs with
millions of logic gates, even when the HAs are expressed
as high-level C/C++ designs. In our experiments, A-QED
verification of many such HAs times out after 12 hours
or runs out of memory.

2) A-QED2 is broadly applicable to a wide variety of HAs
and detects all bugs detected by conventional simulation-
based verification. For very large HAs with several
million (up to over 200 million) logic gates, A-QED2

detects bugs in less than 30 minutes in the worst case
and in a few seconds in most cases.

3) A-QED2 is thorough – it detected all bugs that were
detected by conventional (simulation-based) verification
techniques. At the same time, A-QED2 improves verifi-
cation effort significantly compared to simulation-based
verification – ∼ 5X improvement on average, with ∼ 9X
improvement (one person month with A-QED2 vs. 9
person months with conventional verification flows) for
the large, industrial designs.

The rest of this paper is organized as follows. Sec. II
presents related work. Sec. III presents a formal model of
the accelerators targeted by A-QED2 and our decomposition
technique. Sec. IV details the A-QED2 algorithms. Results are
presented in Sec. V, and Sec. VI concludes.

II. RELATED WORK

Conventional formal HA verification, e.g., [13]–[16], re-
quires a specification, typically in the form of manually written,
design-specific properties. These are then combined with a
formal model of the design and handed to a formal tool, which
attempts to prove the properties or find counter-examples. For
the verification of latency-insensitive designs, an approach was
developed to automatically derive and check properties from
the RTL synthesized in HLS flows [17]. However, these derived
properties are targeted at specific types of bugs.

Large design sizes have always been a challenge for formal
techniques, and various approaches to this problem have
been proposed. Among techniques to improve scalability are
abstraction [18] and compositional reasoning (cf. [19]). The
former removes details of the design, gaining scalability at
the cost of possible false errors. Finding a scalable abstraction
that does not generate false errors can be difficult and may be

impossible in some cases. The latter uses assume-guarantee
reasoning (e.g., [20]–[25]) and can be applied to decompose a
large HA into smaller sub-modules. Importantly, the property
p of the HA to be verified must also be decomposed into
properties of the sub-modules. The properties of the sub-
modules are verified individually under certain assumptions
about the behavior of the other sub-modules. If all the properties
of the sub-modules hold under the respective assumptions, then
it can be concluded that p holds. However, finding the right
properties for this decomposition can be very challenging.

Unlike for general compositional reasoning, the two main
components of A-QED2 (FC and RB) do not require decom-
posing properties. FC, in particular, leverages a universal self-
consistency property. Self-consistency expresses the property
that a design is expected to produce the same outputs whenever
it is provided with the same inputs [26]. In A-QED2, self-
consistency is checked independently for each sub-module
(sub-accelerator in our case). Importantly, these aspects of A-
QED2 do not require complex assumptions about the behavior
of the other sub-modules.

It is challenging to establish general completeness guarantees
for conventional formal verification techniques [27]–[31], since
completeness depends on the set of properties being checked.
Designer-guided approaches [32], [33] require manual effort.
Automatic generation of properties is usually incomplete and
depends on abstract design descriptions [34] or models [35],
or analysis of simulation traces [36], which may be difficult.
In contrast, we have general completeness results for A-QED2.

A-QED2 builds on A-QED [8] and leverages BMC [11],
[37]. Similar approaches based on self-consistency have been
successfully applied to other classes of hardware designs, such
as processor verification (as symbolic quick error detection
(SQED) [38]–[43]), as well as to hardware security [44]–[49].

III. FORMAL MODEL AND THEORETICAL RESULTS

In this section, we introduce a formal model for HAs,
define functional consistency (FC), single-action correctness
(SAC), and responsiveness for the model, and show how these
properties provide correctness guarantees. We then define a
notion of functional composition for our model and show how
the above properties can be applied in a compositional way.

Our formal model differs from the one in previous work [8] in
several important ways. It allows multiple inputs to be provided
simultaneously by explicitly modeling the notion of input
batches. The HAs we consider are batch-mode accelerators
as they process input batches and produce output batches.
Modeling batches is useful because it more closely matches
the interfaces of real HAs. Moreover, input batches enable
intra-batch checks for FC checking, as we describe below.
With intra-batch checks, only one input batch is used for FC
checking. Intra-batch checks are more restricted than general
FC checks. However, they are easier to set up and run in
practice, and they are highly effective at finding bugs, as we
demonstrate empirically.

Our model also explicitly separates control states and mem-
ory states. Control states represent control-flow information

43

such as, e.g., program counters in HLS models of HAs. Memory
states represent all other state-holding elements, e.g., program
variables.

In our model we distinguish starting and ending control
states in which inputs are provided and the computed outputs
are ready, respectively. This makes the formulation simpler
and is also a better match for HLS designs written in a high-
level language, which is our main target in the experimental
evaluation. Further, our model enables us to formulate the
notion of strong FC, which leads to a complete approach to
bug-finding with only two input batches.

In previous work [8], a ready-valid protocol was used to
model input/output transactions in RTL designs. In contrast,
our focus is on HLS designs. Finally, we distinguish so-called
relevant states, which are parts of the state space that can affect
output values. This makes it possible to model interfering as
well as non-interfering HAs. In our experiments we focus on
non-interfering HAs.

Before presenting formal definitions, we illustrate terminol-
ogy informally with an example of a non-interfering batch-
mode HA as shown in Listing 1 (a slightly modified excerpt
of an HA implementing AES encryption [50]).

Function fun of the HA has two sub-accelerators in lines
8-10 and 13-14 which are identified and verified by A-QED2.
Each sub-accelerator applies a certain operation to all inputs
in an input batch of HA. In general, the batch size of an
HA is the number of inputs in each batch, which is 256 for
this HA. The first sub-accelerator ACC1 processes an input
batch provided via data and stores its output batch in buf.
The second sub-accelerator ACC2 takes its input batch from
buf, where it also stores the output batch it produces. The
control state of the HA is only implicitly represented by the
program counter when executing function fun. Variables key
and local_key are global and determine the relevant state of
the HA on which the result of the encryption operation depends.
The HA is non-interfering because key and local_key are
left unchanged by ACC1 and ACC2 . Constants BS, UF, and
US are used in HLS to configure the generated RTL.

Listing 1: HA Example (AES Encryption)
1 # d e f i n e BS ((1) << 12) / / BUF_SIZE
2 # d e f i n e UF 2 / / UNROLL_FACTOR
3 # d e f i n e US BS / UF / / UNROLL_SIZE
4

5 void fun (i n t d a t a [BS] , i n t buf [UF] [US] , i n t key [2]) {
6 i n t j , k ;
7 // ===ACC1 START===
8 f o r (j =0 ; j <UF ; j ++)
9 f o r (k = 0 ; k < BS / UF ; k ++)

10 buf [j] [k] = *(d a t a + i *BS + j *US + k) ^ key [0] ;
11 // ===ACC1 END===
12 // ===ACC2 START===
13 f o r (j =0 ; j <UF ; j ++) {
14 a e s 2 5 6 _ e n c r y p t (l o c a l _ k e y [j] , buf [j]) ; }
15 // ===ACC2 END===
16 }

Definition 1. A batch-mode hardware accelerator (HA)
is a finite state transition system [51], [52] Acc :=
(b, A,D , O, S, sc,I , sc,F , Sm,I , T), where
• b ∈ N with b ≥ 1 is the batch size,

• A is a finite set of actions,
• D is a finite set of data values,
• O is a finite set of outputs,
• S=SC×SM is the set of states consisting of control states
SC and memory states SM =SIn×SOut×SR×SN , where

– SIn = (A×D)b are the input states,
– SOut = Ob are the output states,
– SR are the relevant states, and
– SN are the non-relevant states,

• sc,I ∈ SC is the unique initial control state, which defines
the set SI = {sc,I} × SM of initial states,

• sc,F ∈ SC is the unique final control state, which defines
the set SF = {sc,F } × SM of final states,

• Sm,I is the set of allowable initial memory states, which
defines the set SCI = {sc,I}×Sm,I of concrete initial
states,

• and T : S → S is the state transition function.

When referring to different HAs, e.g., Acc0 and Acc1, we use
subscript notation to identify their components, e.g., Acc0 :=
(b0, A0,D0, O0, S0, sc,I,0, sc,F,0, Sm,I,0, T0).

We use v = 〈v1, . . . , v|v|〉 to denote a sequence with
elements denoted vi and length |v|. We concatenate sequences
(and for simplicity of notation, single elements with sequences)
using ’·’, e.g., v = v1 · v′, where v′ = 〈v2, . . . , v|v|〉. We will
sometimes identify a sequence v with the corresponding tuple,
and we write v ∈ v to denote that v appears in v. We denote
the i-th element of a tuple t as t(i).

An HA Acc operates on a set I b of input batches, where b
is the batch size and I = A×D . An input batch in ∈ I b has
b batch elements, each consisting of a pair (a, d) containing
an action a ∈ A to be executed and data d ∈ D (the data on
which action a operates).

A state s ∈ S of Acc with s = (sc, sm) consists of a
control state sc ∈ SC and a memory state sm ∈ SM . The
control state sc represents control-flow-related state (e.g., the
program counter in an execution of a high-level model of Acc).
In a run of Acc, the control state starts at a distinguished initial
state sc,I and ends at a distinguished final state sc,F .

The memory state represents all other state-holding elements
of Acc (including, e.g., global variables, local variables,
function parameters, and memory elements). The memory state
sm = (sin , sout , sr, sn) is divided into four parts. The first part,
sin ∈ SIn , contains the input to Acc. More precisely, in a run of
Acc, the value of sin in the initial state is considered the input
for that run. Similarly, at the end of a run of Acc, sout ∈ SOut

contains the outputs for that run (i.e., the values computed by
Acc based on the inputs present at the start of the run).

The relevant state sr represents those state elements (other
than sin) that can influence the values of the outputs. Any
part of the state that can affect the output value in at least
one execution should be included in the relevant state. As an
example of when this is needed, consider an encryption HA
with actions for setting the encryption key and for encrypting
data. The internal state that stores the key is part of the relevant
state because it affects the way the output is computed from the

44

input. The non-relevant state sn is everything else. We write
ctrl(s), mem(s), inp(s), out(s), rel(s), and nrel(s) to denote
the components sc, sm, sin , sout , sr, and sn, respectively. We
overload the latter four operators to apply to memory states as
well, and we lift the notation to sequences of states.

The set SI of initial states contains all states resulting from
combining a memory state in SM with the unique initial control
state sc,I . The concrete initial states, SCI , are a subset of SI ,
and essentially represent the reset state(s) of the HA. They
play a role in defining the reachable states (see Definition 3,
below). The set SF of final states contains all states resulting
from combining a memory state in SM with the unique final
control state sc,F . Finally, the transition function T defines the
successor state for any given state in S.

Given an input batch in ∈ I b , the HA produces an output
batch o ∈ Ob as follows. Let s0 ∈ SI be an initial state
with inp(s0) = in , and let s = T (s0) = 〈s1, . . . , sk〉 denote
the sequence of |s| = k successor states generated by the
transition function T , where si = T (si−1) for 1 ≤ i ≤ k, such
that sk ∈ SF is a final state (and no earlier states in s are
final states). We also assume, without loss of generality, that
ctrl(si) 6= sc,I for i > 0. The final state sk holds the output
batch out(sk) = o with o ∈ Ob that is produced for the input
batch inp(s0) = in . Given a sequence s, we write initsym(s)
and final(s) to denote the subsequence of s containing all
initial and final states that occur in s, respectively.

Given a sequence of input batches, an HA generates a
sequence of output batches based on concatenating executions
for each input batch.

Definition 2. Let in be a sequence of inputs with n = |in |,
and let s0 ∈ SI . Then, StateSeq(in , s0) denotes the sequence
of successor states of s0 that result from executing in , which
is defined as follows.
• Let s′0 be the result of replacing inp(s0) with in1 in s0.

Let s′ = s′0 · T (s′0).
• If |in | = 1 then StateSeq(in , s0) = s′

• If |in | > 1, then
– let sf = final(s′) (which is unique),
– let si = (sc,I ,mem(sf)),
– let s′′ = StateSeq(〈in2, . . . , inn〉, si).
– Then, StateSeq(in , s0) = s′ · s′′.

In Definition 2, the state si from which each subsequent
input batch is executed is obtained from the final state sf
produced from executing the previous input batch. Given an
HA Acc, we write StateSeq(Acc, in , s0) to explicitly refer to
the successor states of s0 generated by Acc. If Acc is clear
from the context, we omit it.

Definition 3. A state s ∈ S is reachable if s ∈ SCI or if there
exists a concrete initial state s0 ∈ SCI and sequence in of
input batches such that s ∈ StateSeq(in , s0). A relevant state
sr is reachable if sr = rel(s) for some reachable state s.

Note that the initial states SI are not necessarily all reachable.
Next, we define an abstract specification for an HA function.

Note that we use this to define correctness, but one of the

features of A-QED is that the specification is not needed for
the main verification technique.

Definition 4 (Abstract Specification). For an HA Acc, let
Spec : I × SR → O be an abstract specification function.

Definition 4 states that the value of an output computed by
an HA is completely determined by the corresponding input
and the relevant part of the memory state when the HA was
started. Note that the inclusion of the relevant memory state
makes the definition general enough to model interfering HAs.
To model non-interfering HAs, we can either make the output
dependent on only the input batch, or require that the relevant
state does not change in state transitions.

Based on the abstract specification, we define the functional
correctness of an HA in terms of the output batches that are
produced for given input batches as follows.

Definition 5 (Functional Correctness). An HA Acc is function-
ally correct with respect to an abstract specification Spec if,
for all concrete initial states s0 ∈ SCI and all sequences in
of input batches, if
• in = 〈in1, . . . , inn〉,
• s = StateSeq(in , s0),
• sI = initsym(s) = 〈sI ,1, . . . , sI ,n〉,
• o = out(final(s)) = 〈o1, . . . , on〉,

then ∀ j ∈ [1 . . . b]. on(j) = Spec(inn(j), rel(sI ,n)).

A bug is simply a failure of functional correctness.
As mentioned above, even without a formal specification,

we can apply the core technique of A-QED. To do so, we
leverage the concept of functional consistency, the notion that
under modest assumptions, two identical inputs will always
produce the same outputs.

Definition 6 (Functional Consistency (FC)). An HA Acc is
functionally consistent if, for all concrete initial states s0 ∈
SCI and for all sequences in of input batches, if
• in = 〈in1, . . . , inn〉, s = StateSeq(in , s0),
• sI = initsym(s) = 〈sI ,1, . . . , sI ,n〉,
• o = out(final(s)) = 〈o1, . . . , on〉,

then ∀ i ∈ [1, n], j, j′ ∈ [1, b].
ini(j)= inn(j

′)∧rel(sI ,i)=rel(sI ,n)→ oi(j)=on(j
′).

Definition 6 illustrates the need for the relevant designation
for memory states. It essentially says that two inputs, even
if started at different times and in different batch positions,
should produce the same output, as long as the relevant part
of the memory is the same when the two inputs are sent
in. The following lemma is straightforward (see the online
appendix [53] for proofs of this and other results).

Lemma 1 (Soundness of FC). If an HA is functionally correct,
then it is functionally consistent.

Checking FC requires running BMC over multiple iterations
of the HA and may be computationally prohibitive for large
designs or for large values of n. Often, it is possible to verify
a stronger property, which only requires checking consistency
across two runs of the HA.

45

Definition 7 (Strong FC). An HA Acc is strongly functionally
consistent if, for all reachable initial states s0, s′0 and input
batches in, in ′, if

• s = StateSeq(〈in〉, s0), s′ = StateSeq(〈in ′〉, s′0),
• sF = final(s) = 〈sF 〉, sF ′ = final(s′) = 〈s′F 〉,
• o = out(sF) = 〈o〉, o′ = out(sF

′) = 〈o′〉,
then ∀ j, j′ ∈ [1, b].

in(j) = in ′(j′) ∧ rel(s0) = rel(s′0)→ o(j) = o′(j′).

The main difference between FC and strong FC is that the
initial states s0 and s′0 can be any reachable states. In contrast
to that, the initial state s0 ∈ SCI in the definition of FC is a
concrete one. It is easy to see that strong FC implies FC, but
the reverse is not true in general. This is because it may not be
possible for two reachable initial states s0 and s′0 chosen in a
strong FC check to both appear in a single sequence of states
resulting from executing a sequence of input batches starting
in a concrete initial state. Similar to previous work on A-QED
for non-batch-mode HAs [8], FC checking relies on sequences
of input batches to reach all reachable states from a concrete
initial state. For strong FC checking, on the other hand, two
individual input batches are sufficient because the two initial
states s0 and s′0 can be arbitrarily chosen from the reachable
states. Like FC, strong FC is a sound approach.

Lemma 2 (Soundness of Strong FC). If an HA is functionally
correct then it is strongly functionally consistent.

A challenge with using strong FC is that it requires starting
with reachable initial states. However, we found that in practice
(cf., Section V), it is seldom necessary to add any constraints
on the initial states. This may seem surprising given the well-
known problem of spurious counterexamples that arises when
using formal to prove functional correctness without properly
constraining initial states. There are at least two reasons for
this. First, many HAs have less dependence on internal state
(none for non-interfering HAs) than other kinds of designs. But
second, and more importantly, FC is a much more forgiving
property than design-specific correctness. Many designs are
functionally consistent, even when run from unreachable states.
In fact, we believe that this is a natural outcome of good
design and that designing for FC is a sweet spot in the trade-
off between design for verification and other design goals. If
designers take care to ensure FC, even from unreachable states,
then strong FC is both sound and easy to formulate.

Even simpler versions of the checks above can be obtained
by making them intra-batch checks. An HA is intra-batch
functionally consistent if it is functionally consistent when
i = n = 1. That is, intra-batch FC checks are based on
sending a single input batch to the HA. Consequently, it is
not necessary to identify and compare the relevant parts of
the initial states (cf. Definition 6) as there is precisely one
initial state being used. Similarly, an HA is intra-batch strongly
functionally consistent if it is strongly functionally consistent
when s0 = s′0 and in = in ′. Again, only one input batch is
sent to the HA and the relevant parts of the initial states are
thus always equal. As we will show in Section V, intra-batch

checks can be a very effective approach for cheaply finding
bugs. Intra-batch checks are applicable only to batch-mode
HAs; i.e., they are not applicable in the context of A-QED
targeted at HAs processing sequences of single inputs [8] rather
than input batches.

While functional consistency alone can find many bugs,
it becomes a complete technique (i.e., it finds all bugs) by
combining it with single-action checks.

Definition 8 (Single-Action Correctness (SAC)). An HA Acc
is single-action correct (SAC) with respect to an abstract
specification Spec if, for every batch element (a, d) and for
every reachable relevant state sr, there exists some reachable
initial state s, such that inp(s)(j) = (a, d) for some j,
rel(s) = sr, and out(final(T (s)))(j) = Spec((a, d), sr).

Essentially, SAC requires that for each action a, data d, and
reachable relevant state sr, we have checked that the result is
computed correctly when starting from some reachable initial
state s whose relevant state matches sr. For every batch element
(a, d) and sr, it is sufficient to run a single check where we
can choose (a, d) to be at any arbitrary position j in the batch
inp(s). Checking SAC does require using the specification
explicitly, but these kinds of checks typically already exist in
unit or regression tests. SAC may even be possible to verify
using simulation. As we show in Section V, many bugs can
be discovered without checking SAC at all.

When formalizing single-action checks, we again advocate
using an over-approximation for reachability and encourage
the design of HAs with simple over-approximations for the set
of reachable relevant states. For the encryption example we
gave above, the set of reachable relevant states is just the set
of valid keys, which should be easy to specify.

In earlier work, using a slightly different HA model, we
showed that SAC and functional consistency ensure correctness
only when the HA is strongly connected (SC), that is, when
there exists a sequence of state transitions from every reachable
state to every other reachable state. The same is true here.

Lemma 3 (Completeness of SAC + FC + SC). If an HA is
strongly connected and single-action correct and has a bug,
then it is not functionally consistent.

However, strong functional consistency leads to an even
stronger result.

Lemma 4 (Completeness of SAC + Strong FC). If an HA is
single-action correct and has a bug, then it is not strongly
functionally consistent.

Finally, to address timeliness of results in addition to
correctness, we define a notion of responsiveness for our model.

Definition 9 (Responsiveness). An HA is responsive with
respect to bound n if, for all concrete initial states s0 ∈ SCI ,
sequences in of input batches, and input batches in , if
• s = StateSeq(in , s0) = 〈s0, . . . , sm〉 and
• s′ = StateSeq(in · in, s0) = 〈s0, . . . , sm+l〉,

then l ≤ n.

46

A. Decomposition for FC Checking

We now show how FC of a decomposed design can be
derived from FC of its parts. We first give conditions under
which two HAs can be composed.

Definition 10 (Functionally Composable). Acc1 and Acc2 are
functionally composable if: (i) b1 = b2; (ii) O1 = A2 × D2;
(iii) SC,1 ∩ SC,2 = ∅; (iv) SR,1 = SR,2; and (v) SN,1 =
SOut,2 × S′N and SN,2 = SIn,1 × S′N for some S′N .

Note in particular that composability requires that the outputs
of Acc1 match the inputs of Acc2. We also require that the
two HAs have isomorphic memory states, which is ensured by
including SOut,2 in the non-relevant states of Acc1 and SIn,1 in
the non-relevant states of Acc2. In order to map a memory state
of Acc1 to the corresponding memory state in Acc2, we define
a mapping function α : SM,1 → SM,2 as follows: α(sm) =
(out(sm),nrel(sm)(1), rel(sm), (inp(sm),nrel(sm)(2))). We
next define functional composition.

Definition 11 (Functional Composition, Sub-Accelerators).
Given functionally composable HAs Acc1 and Acc2, we define
the functional composition Acc0 = Acc2 ◦ Acc1 (Acc1 and
Acc2 are called sub-accelerators of Acc0) as follows: b0 = b1,
A0 = A1, D0 = D1, O0 = O2, SC,0 = SC,1 ∪ SC,2, SM,0 =
SM,1, sc,I,0 = sc,I,1, sc,F,0 = sc,F,2, Sm,I,0 = Sm,I,1. The
transition function is defined as follows. T0(sc, sm) =

(i) if sc ∈ SC,1 and sc 6= sc,F,1 then T1(sc, sm);
(ii) if sc ∈ SC,2 then T2(sc, α(sm)); and

(iii) if sc = sc,F,1 then (sc,I,2, α(sm)).

Definition 11 essentially states that an execution of Acc0 =
Acc2 ◦Acc1 is obtained by first running Acc1 to completion,
then passing the outputs of Acc1 to the inputs of Acc2, and
then running Acc2 to completion. As a variant of Definition 11,
it is also possible to define functional composition where
the sub-accelerators operate in parallel. This way, the sub-
accelerators process non-overlapping parts of a given input
batch and produce the respective non-overlapping parts of the
output batch.

We now introduce a compositional version of FC.

Definition 12 (Strong FC for Decomposition (FCD)). An
HA Acc is strongly functionally consistent for decomposition
(strongly FCD) if it is strongly functionally consistent and,
in addition to o(j) = o′(j′), the property rel(sF) = rel(s′F)
holds in the conclusion of the implication in Definition 7.

Note that strong FCD is stronger than strong FC. In order to
stitch together results on sub-accelerators, we need to establish
that not only the output but also the relevant memory state is
the same after processing identical inputs. The following is
clear from the definition.

Corollary 1. If an HA Acc is strongly FCD, then Acc is
strongly FC.

We now show that composition preserves strong FCD and
then state our main result.

Lemma 5 (Functional Composition and Strong FCD). Let
Acc0 = Acc2 ◦Acc1. If both Acc1 and Acc2 are strongly FCD
then Acc0 is strongly FCD.

Theorem 1 (Completeness of A-QED2). Let Acc0,Acc1, and
Acc2 be HAs such that Acc0 = Acc2 ◦ Acc1 and Acc0 is
single-action correct. If Acc1 and Acc2 are strongly FCD then
Acc0 is functionally correct.

Theorem 1 states that A-QED2 is complete. That is, by
contraposition, if an HA Acc0 has a bug, i.e., it is not
functionally correct, then either Acc1 or Acc2 is not strongly
FCD, and thus the bug can be detected by A-QED2.

Note that there is no corresponding soundness result. This is
because it is possible to decompose a functionally consistent
HA into functionally inconsistent sub-accelerators. However,
as shown in Section V, this appears to be rare in practice, and
here again we reiterate our position on design for verification
and advocate that also sub-accelerators should be designed
with functional consistency in mind.

Functional composition can easily be generalized to more
than two sub-accelerators. Moreover, it can be applied re-
cursively to further decompose sub-accelerators. If functional
decomposition based on Definition 11 is not applicable to
further decompose a sub-accelerator, then such a sub-accelerator
can be decomposed using existing formal decomposition
approaches, though these require significant manual effort. Our
approach identifies conditions under which simple, automatable
decomposition of FC checking is possible.

IV. A-QED2 FUNCTIONAL DECOMPOSITION IN PRACTICE

We now present our implementation of A-QED2, which
builds on the theoretical framework of the previous section.
We combine functional decomposition with checks for FC
(dFC), SAC (dSAC), and responsiveness (dRB).

A. Decomposition for FC: dFC

dFC takes as input a non-interfering LCA design Acc
(satisfying Definitions 1 and 2) together with designer-provided
annotations (explained in this section). dFC decomposes Acc
into sub-accelerators (following Definition 11). FC checks
are run on the sub-accelerators and any counterexamples
are reported. Note that the way in which Acc is actually
decomposed into sub-accelerators has no influence on the
completeness of A-QED2 (Theorem 1). That said, FC checks
may scale better for certain decompositions. While failing FC
checks expose consistency issues at the sub-accelerator level,
it is possible that they do not cause incorrect behaviors at the
full Acc level. However, we did not observe any instances of
this in our experiments.

Our dFC implementation relies on identifying batch opera-
tions in a given Acc. A batch operation operates on a vector of
inputs, applying some action to each input in order to produce
a vector of outputs. The input to a batch operation could be
an intermediate output batch of another sub-accelerator or an
input batch to Acc itself. A batch operation produces either an

47

intermediate output batch which is subsequently processed by
another sub-accelerator or an output batch of Acc itself.

We assume that Acc is expressed in a high-level language,
specifically as a C/C++ program1 that implements sequential
computation of Acc outputs from Acc inputs.2 Batch operations
in the C/C++ program are identified by finding contiguous
C/C++ statements called functional blocks that implement
those batch operations. Each functional block represents a
sub-accelerator.

We have developed a set of annotations by which the designer
can help identify these functional blocks. Examples of such
annotations are given in Listing 2 (extends Listing 1). It has
two functional blocks corresponding to batch operations: lines
15-17 and 32-33.

Annotations are defined by particular keywords that are
prefixed by “%” (and denoted in blue) in Listing 2. These
annotations describe the compute and memory access patterns
of the functional block as it transforms an input batch into
an output batch. In practice, hardware designers already use
similar annotations frequently, e.g., to express parallelization
opportunities for HLS to generate efficient hardware. As a
result, we expect manageable effort in creating such annotations
to support dFC. The HLS research community is actively
developing new techniques to automatically explore the HA
design space and derive optimal design points together with
appropriate parallelization and pipelining [54]–[56]. With tight
integration of A-QED2 with HLS, we expect that it will be
possible to generate dFC annotations with low effort.

Listing 2: C/C++ Annotation Example (AES Encryption)
1 # d e f i n e BS ((1) << 12) / / BUF_SIZE
2 # d e f i n e UF 2 / / UNROLL_FACTOR
3 # d e f i n e US BS / UF / / UNROLL_SIZE
4

5 void fun (i n t d a t a [BS] , i n t buf [UF] [US] , i n t key [2]) {
6 i n t j , k ;
7

8 %IN_SIZE 16 / / v a r i a b l e s per i n p u t b a t c h e l e m e n t
9 %IN_BATCH_SIZE BS / IN_SIZE / / i n p u t b a t c h s i z e

10 %BATCH_MEM_IN d a t a / / i n p u t b a t c h s o u r c e
11 %IN_ALLOC_RULE i n (x) add r r a n g e =
12 [i *BS + x*IN_SIZE :
13 i *BS + (x + 1) *IN_SIZE] / / BATCH_MEM_IN l a y o u t
14 // ===ACC1 START===
15 f o r (j =0 ; j <UF ; j ++)
16 f o r (k = 0 ; k < BS / UF ; k ++)
17 buf [j] [k] = *(d a t a + i *BS + j *US + k) ^ key [0] ;
18 // ===ACC1 END===
19 %OUT_SIZE 16 / / v a r i a b l e s per o u t p u t b a t c h e l e m e n t
20 %OUT_BATCH_SIZE BS / OUT_SIZE / / o u t p u t b a t c h s i z e
21 %BATCH_MEM_OUT buf / / o u t p u t b a t c h s o u r c e
22 %IN_ALLOC_RULE o u t (x) add r r a n g e =
23 [x / US] [(x%US) *OUT_SIZE :
24 ((x + 1)%US) *OUT_SIZE] / / BATCH_MEM_OUT l a y o u t
25

26 %IN_SIZE 16
27 %IN_BATCH_SIZE BS / IN_SIZE
28 %BATCH_MEM_IN buf
29 %IN_ALLOC_RULE i n (x) add r r a n g e =
30 [(x%US) *IN_SIZE : ((x +1)%US) *IN_SIZE] [x / US]

1HAs expressed in Verilog or SystemC can be converted into C/C++, and
then our dFC implementation can be applied. We do this in Sec. V.

2Existing HLS tools (e.g., Xilinx Vivado HLS, Mentor Catapult HLS) can
then optimize Acc, incorporate appropriate pipelining and parallelism, and
produce Verilog for subsequent logic synthesis and physical design steps. Such
HLS-based HA design flows are becoming increasingly common.

31 // ===ACC2 START===
32 f o r (j =0 ; j <UF ; j ++) {
33 a e s 2 5 6 _ e n c r y p t (l o c a l _ k e y [j] , buf [j]) ; }
34 // ===ACC2 END===
35 %OUT_SIZE 16
36 %OUT_BATCH_SIZE BS / OUT_SIZE
37 %BATCH_MEM_OUT buf
38 %OUT_ALLOC_RULE o u t (x) add r r a n g e =
39 [(x%US) *OUT_SIZE : ((x +1)%US) *OUT_SIZE] [x / US]
40 }

From the annotations, we create sub-accelerators. For exam-
ple, the annotations in Listing 2 generate two sub-accelerators:
Acc1 corresponding to the functional block in Lines 15-17 with
annotations in Lines 8-13 and 19-24, and Acc2 corresponding
to the functional block in Lines 32-33 with annotations in
Lines 26-30 and 35-39. For each sub-accelerator, we create
an A-QED2 module for FC checking.3 It generates symbolic
inputs for the sub-accelerator and symbolically executes the
corresponding functional block in order to produce symbolic
expressions for the outputs. For strong FC checks (Definitions 6
and 7), the relevant states (Definition 1) must additionally be
identified and explicitly constrained to be consistent across
sub-accelerator calls processing two input batches. Identifying
the relevant states is not necessary for intra-batch FC checks
(discussed in the context of Lemma 2). For example, in sub-
accelerator Acc1 in Listing 2, key[0] is a relevant state element
(distinct from the batch input data). Between two calls of Acc1
during a strong FC check, key[0] must be consistent. In our
implementation, we ignore reachability and allow all checks
to start from fully symbolic initial states. This does not lead
to spurious counterexamples in our experiments.

B. Decomposition for RB: dRB

The sub-accelerators for A-QED2’s RB checks (Definition 9)
can be (and often are) different from those for FC because
RB involves a much simpler check: some output is produced
within the response bound n. We expect n to be provided by
the designer for the top-level accelerator. We then use the same
bound n for each sub-accelerator. The rationale is that if a
sub-accelerator fails an RB check, then the full accelerator
would also fail the same RB check.

For dRB, we generate a static single assignment (SSA)
representation of the design. We then apply a sliding window
algorithm to dynamically generate sub-accelerators. Lines of
code in the SSA that fall within a certain window W form
the sub-accelerator. Due to SSA form, the inputs of this sub-
accelerator are variables that are never updated or assigned in
W while the outputs are the variables which update variables
outside W . The current size of W is given by the number of
LOCs that fit in W , and it changes dynamically during a run
of the algorithm to incorporate the largest sub-accelerator that
will fit the BMC tool. Once the sub-accelerator is verified, W
slides by δ LOCs (δ is a parameter) and adjusts its boundary
to get the next largest sub-accelerator that can be verified.
We synthesize that sub-accelerator using HLS (since some
responsiveness bugs only manifest after HLS) and then run
RB checks using BMC. The initial states of each generated

3See the online appendix [53] for details.

48

sub-accelerator are left unconstrained (i.e., fully symbolic) in
order to analyze all possible behaviors. The specific size of
W and its position in the SSA code change dynamically as
dRB proceeds. dRB terminates when W reaches the end of
the SSA code or if at any time an RB check fails.

C. Decomposition for SAC: dSAC

As mentioned above, and as will be shown in the next section,
many bugs can be detected using only dFC and dRB. The
advantage of this is that both of these checks can be run without
any functional specification. dSAC completes the story, but at
the cost of requiring specifications. We use standard functional
decomposition techniques (essentially, writing preconditions,
invariants, and postconditions) to decompose SAC checks. One
feature of dSAC is that only a single input in a batch needs be
checked—all other inputs in the batch can be set to constants
(we use zero in our experiments). This makes both writing the
properties and checking them much simpler. The non-input
part of the initial state for each check is again kept fully
symbolic for simplicity. If a sub-accelerator is too big, we
further decompose it using finer-grained functional blocks.

V. EXPERIMENTAL RESULTS

We demonstrate the practicality and effectiveness of A-QED2

for 109 (buggy) versions of several non-interfering LCAs,4

including open-source industrial designs [12]. We selected these
designs for the following reasons:
• They cover a wide variety of HAs (neural nets, image

processing, natural language processing, security). Most
are too large for existing off-the-shelf formal tools.

• They have been thoroughly verified (painstakingly) using
state-of-the-art simulation-based verification techniques.
Thus, we can quantify the thoroughness of A-QED2.

• With access to buggy versions, we did not have to artifi-
cially inject bugs. Bugs we encountered include incorrect
initialization, incorrect memory accesses, incorrect array
indexing, and unresponsiveness in HLS-generated designs.

Many of the designs were already available in sequential
C or C++. We converted Verilog and SystemC designs
into sequential C. To facilitate dFC, we manually inserted
annotations (like those in Listing 2). For A-QED FC, we used
CBMC for all designs originally represented in sequential C or
C++. For designs in Verilog and SystemC, we used Cadence
JasperGold (SystemC designs converted to Verilog via HLS).
For A-QED2 FC and SAC checks, we used CBMC version
5.10 [66]. For A-QED and A-QED2 RB checks, we used
Cadence JasperGold version 2016.09p002 on Verilog designs
generated by the HLS tools used by the designers. Lastly, we
used Frama-C [67] to check for initialization and out-of-bounds
bugs on the entire C/C++ designs. We ran all our experiments
on Intel Xeon E5-2640 v3 with 128GBytes of DRAM.

Tables I, II, and III summarize our results. We present
comparisons between A-QED2 (dFC, dRB, dSAC) and A-QED

4See the online appendix [53] for design details and the software artifact [65].

(FC, RB, SAC). Table I also compares A-QED2 intra-batch FC
vs. A-QED2 strong FC (cf. details in the online appendix [53]).

Observation 1: HAs from various domains (including
industry) show that non-interfering LCAs are highly common.

Observation 2: The vast majority of the studied HAs are
too big for existing off-the-shelf formal verification tools, for
both A-QED and conventional formal property verification.

Observation 3: Table I shows that A-QED2 intra-batch
FC checks detected bugs inside sub-accelerators (with batch
sizes > 1) very quickly—under a minute for almost all of the
designs, and just over a minute for nv_large. For most batch-
mode sub-accelerators—except two for each of the following
four designs (amounting to eight sub-accelerators in total):
grayscale64, grayscale32, mean128, and mean32—intra-batch
dFC checks were easily completed using off-the-shelf formal
tools. Strong FC checks incur more complexity. Hence, the
formal tool timed out after 12 hours for 62 sub-accelerators
when running strong FC checks, distributed across multiple
designs. Empirically, we found that intra-batch FC checks
detected all bugs that were detected by strong FC checks.

Observation 4: A-QED2 RB and A-QED2 SAC are also
highly effective in detecting bugs inside sub-accelerators. For
the first 11 designs (AES to gsm) in Table II, we do not expect
unresponsiveness bugs (confirmed by simulations). Hence, A-
QED2 RB checks ran for 12 hours (for increasingly longer input
sequences) without detecting unresponsiveness. For designs
with RB bugs, A-QED2 RB checks on sub-accelerators were
able to detect those in less than 11 minutes on average. For
A-QED2 dSAC, we observed that a significant fraction (26
out of 46 bugs (56%)) of these bugs were also detected by
A-QED2 FC checks. Thus, FC alone is effective at catching a
wide variety of bugs.

Observation 5: A-QED2 detected all bugs that were detected
by conventional (simulation-based) verification techniques.
Further, all counterexamples produced from verifying sub-
accelerators corresponded to real accelerator-level bugs. Com-
pared with traditional simulation-based verification, we report
a ∼ 5X improvement in verification effort on the average,
with a ∼ 9X improvement for the large, industrial NVDLA
designs. The overhead of inserting our annotations for dFC
can be small compared to what designers already insert to
optimize the design. For ISmartDNN, for example, the total
number of annotations is 304, which is 2.8% of the total
lines of code of the design. In the code of the HLS designs
we considered, pragmas amount to 11% on average. We also
observe a ∼ 60X improvement in average verification runtime
compared to conventional simulations.5

VI. CONCLUSION

Our theoretical and experimental results demonstrate that
A-QED2 is an effective and practical approach for verification

5The conventional verification effort for NVDLA was based on start and end
commit dates in its nv_small Github repository. The conventional verification
runtime for NVDLA, ISmartDNN, and dnn HAs were obtained by running
the available simulation tests on our platform. The remaining runtime and
effort information were provided by the designers.

49

Design (#Gates) (#Versions)
94 versions in table, 15 in caption†

A-QED FC A-QED2 dFC: Intra-batch FC A-QED2 dFC: Strong FC
Avg. RT (min) Avg. RT (min) #Bugs #Sub-Acc.(T/P/C/B) Avg. Runtime (min) #Bugs #Sub-Acc.(T/P/C/B)

AES [50] (382k) (4) OOM 0.97 4 8 / 7 / 7 / 4 timeout 0 8 / 7 / 2 / 0
ISmartDNN [57] (42M) (3) timeout 0.10 2 38 / 5 / 5 / 2 0.18 2 38 / 5 / 2 / 2
grayscale128 [33] (351k) (5) timeout 0.03 3 3 / 3 / 2 / 2 0.07 3 3 / 3 / 2 / 2
grayscale64 [33] (194k) (5) timeout 0.02 3 3 / 3 / 2 / 2 0.02 3 3 / 3 / 2 / 2
grayscale32 [33] (106k) (5) 8.20 <0.01 5 3 / 3 / 3 / 3 0.30 5 3 / 3 / 3 / 3
mean128 [33] (202k) (5) timeout 0.35 3 3 / 3 / 2 / 2 0.17 3 3 / 3 / 2 / 2
mean64 [33] (104k) (5) timeout 0.38 3 3 / 3 / 2 / 2 0.13 3 3 / 3 / 2 / 2
mean32 [33] (54k) (5) 5.53 0.17 5 3 / 3 / 3 / 3 0.33 5 3 / 3 / 3 / 3
dnn [58] (2M) (11) timeout 0.03 5 34 / 14 / 14 / 5 0.13 5 34 / 14 / 8 / 5
nv_large [12] (16M) (23) timeout 1.17 11 89 / 46 / 46 / 11 2.93 9 89 / 46 / 21 / 9
nv_small [12] (1M) (23) timeout 0.07 11 89 / 46 / 46 / 11 1.03 11 89 / 46 / 26 / 11

TABLE I: Avg. RunTimes of FC checks for A-QED and A-QED2. For A-QED2, sub-accelerator counts are provided, including the Total
count that resulted from dFC decomposition, the count with batch sizes greater than one (i.e., Parallel), the count (with batch sizes greater
than one) for which FC checks were successful on 1 and 2 batches for intra-batch FC and strong FC respectively, and the count for which
Bugs were detected by FC checks. For A-QED FC, experiments could not complete FC check for a single batch in 12 hours (timeout) or
exhibited out-of-memory (OOM) errors before timeout. Average runtimes result from dividing the time to detect all bugs by the number of
bugs. †keypair [59], gsm [60], HLSCNN [61], FlexNLP [62], Dataflow [63], and Opticalflow [64] all time out for A-QED FC and do not
contain any sub-accelerators with batch size greater than one. One OOB bug was detected in gsm and one initialization bug in keypair.

Design (#Gates) (#Versions)
Total Versions = 109

A-QED RB A-QED2 dRB
Avg. RT

(min)
Avg. RT

(min) #Bugs #Sub-Acc.
(T/C/B)

AES [50] (382k) (4) timeout
No RB

bug detected
up to input
sequence

length
between

11 and 24
depending on

the design

13 / 13 / 0
ISmartDNN [57] (42M) (3) timeout 32 / 32 / 0
grayscale128 [33] (351k) (5) timeout 5 / 5 / 0
grayscale64 [33] (194k) (5) timeout 5 / 5 / 0
grayscale32 [33] (106k) (5) 3 / 3 / 0
mean128 [33] (202k) (5) timeout 5 / 5 / 0
mean64 [33] (104k) (5) timeout 3 / 3 / 0
mean32 [33] (54k) (5) 1 / 1 / 0
dnn [58] (2M) (11) timeout 5 / 5 / 0
keypair [59] (>200M) (1) timeout 21 / 21 / 0
gsm [60] (8.8k) (1) timeout 7 / 7 / 0
nv_large [12] (16M) (23) timeout No RB bugs expectednv_small [12] (1M) (23) timeout
HLSCNN [61] (323k) (2) timeout 2.33 1 25 / 25 / 1
FlexNLP [62] (567k) (9) timeout 10.77 9 15 / 15 / 9
Dataflow [63] (296k) (1) 0.45 0.25 1 9 / 9 / 1
Opticalflow [64] (555k) (1) timeout 0.17 1 3 / 3 / 1

TABLE II: RB checks for A-QED and A-QED2. For A-QED2,
sub-accelerator counts produced by dFC are provided, as in Table I.
A-QED2 RB checks are performed on all sub-accelerators regardless
of batch size, so P is omitted compared to Table I. For A-QED RB, RB
checks did not complete even for a input sequence length of 1 within
12 hours (timeout). Sub-accelerators for which RB checks for at
least input sequence length of 1 was completed were considered
Complete. For the first 11 designs, from AES to gsm, no bugs
related to unresponsiveness were detected by traditional simulation-
based verification. Results are omitted for nv_large and nv_small;
responsiveness related bugs generally result from parallelism and
pipelining, both of which were lost in our manual translation of
NVDLA from Verilog to sequential C code.

of large non-interfering LCAs. A-QED2 exploits A-QED princi-
ples to decompose a given HA design into sub-accelerators such
that A-QED can be naturally applied to the sub-accelerators.
A-QED2 is especially attractive for HLS-based HA design
flows. A-QED2 creates several promising research directions:

• Extension of our A-QED2 experiments to include inter-
fering LCAs (already covered by our theoretical results).

• Automation of dFC annotations via HLS techniques.
• dFC approaches beyond our current implementation.

Design (#Gates) (#Versions)
Total Versions = 109

A-QED2 dSAC
Avg. RT

(min) #Bugs Bug overlap
with dFC

#Sub-Acc.
(T/C/B)

AES [50] (382k) (4) 0.12 0 0 8 / 8 / 0
ISmartDNN [57] (42M) (3) 0.22 3 2 38 / 38 / 3
grayscale128 [33] (351k) (5) 0.04 2 2 3 / 2 / 2
grayscale64 [33] (194k) (5) 0.01 2 2 3 / 2 / 2
grayscale32 [33] (106k) (5) <0.01 2 2 3 / 3 / 2
mean128 [33] (202k) (5) 0.21 2 2 3 / 2 / 2
mean64 [33] (104k) (5) <0.01 2 2 3 / 2 / 2
mean32 [33] (54k) (5) <0.01 2 2 3 / 3 / 2
dnn [58] (2M) (11) 0.01 6 0 34 / 14 / 6
keypair [59] (>200M) (1) timeout 0 0 14 / 14 / 0
gsm [60] (8.8k) (1) timeout 0 0 5 / 5 / 0
nv_large [12] (16M) (23) 0.84 12 6 89 / 89 / 12
nv_small [12] (1M) (23) 0.11 12 6 89 / 50 / 12
HLSCNN [61] (323k) (2) 0.45 1 0 25 / 11 / 1
FlexNLP [62] (567k) (9) timeout 0 0 21 / 21 / 0
Dataflow [63] (296k) (1) timeout 0 0 8 / 8 / 0
Opticalflow [64] (555k) (1) timeout 0 0 14 / 14 / 0

TABLE III: SAC checks for A-QED2. Sub-accelerator counts
produced by dSAC are provided, as in Table I. A-QED2 SAC checks
were performed on all sub-accelerators regardless of batch size, so P
is omitted compared to Table I.

• Further A-QED2 scalability using abstraction.
• Extension of A-QED2 beyond sequential (C/C++) code

to include concurrent programs.
• Effectiveness of A-QED2 for RTL designs (without

converting them to sequential C/C++).
• Applicability of A-QED2 beyond functional bugs (e.g., to

detect security vulnerabilities in HAs).
• Comparison of A-QED2 and conventional decomposition.
• Identifying conditions under which A-QED2 is sound.

ACKNOWLEDGMENT

This work was supported by the DARPA POSH program
(grant FA8650-18-2-7854), NSF (grant A#:1764000), and the
Stanford SystemX Alliance. We thank Prof. David Brooks,
Thierry Tambe and Prof. Gu-Yeon Wei from Harvard University,
and Kartik Prabhu and Prof. Priyanka Raina from Stanford
University for their design contributions in our experiments.

50

REFERENCES

[1] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Rein-
man, “Accelerator-rich architectures: Opportunities and progresses,” in
Proc. DAC. IEEE, 2014, pp. 1–6.

[2] L. P. Carloni, “The Case for Embedded Scalable Platforms,” in Proc. DAC.
IEEE, 2016, pp. 1–6.

[3] W. J. Dally, Y. Turakhia, and S. Han, “Domain-Specific Hardware
Accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–57,
2020.

[4] M. Hill and V. J. Reddi, “Accelerator-level Parallelism,” CoRR, vol.
abs/1907.02064, 2019, https://arxiv.org/abs/1907.02064.

[5] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young,
N. Jouppi, and D. Patterson, “The Design Process for Google’s Training
Chips: TPUv2 and TPUv3,” IEEE Micro, 2021.

[6] H. D. Foster, “Trends in functional verification: a 2014 industry study,”
in Proc. DAC. ACM, 2015, pp. 48:1–48:6.

[7] B. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik,
“Instruction-level abstraction (ILA): A uniform specification for system-
on-chip (SoC) verification,” ACM Trans. Design Autom. Electr. Syst.,
vol. 24, no. 1, pp. 10:1–10:24, 2019.

[8] E. Singh, F. Lonsing, S. Chattopadhyay, M. Strange, P. Wei, X. Zhang,
Y. Zhou, D. Chen, J. Cong, P. Raina, Z. Zhang, C. W. Barrett, and
S. Mitra, “A-QED Verification of Hardware Accelerators,” in Proc. DAC.
IEEE, 2020, pp. 1–6.

[9] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “An
Analysis of Accelerator Coupling in Heterogeneous Architectures,” in
Proc. DAC. ACM, 2015, pp. 202:1–202:6.

[10] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture support for accelerator-rich CMPs,” in Proc. DAC. ACM,
2012, pp. 843–849.

[11] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods in System Design, vol. 19,
no. 1, pp. 7–34, 2001.

[12] NVIDIA, “NVIDIA Deep Learning Accelerator,” http://nvdla.org/primer.
html, 2021, [Online]. Accessed: August 2021.

[13] K. A. Campbell, D. Lin, L. He, L. Yang, S. T. Gurumani, K. Rupnow,
S. Mitra, and D. Chen, “Hybrid Quick Error Detection: Validation and
Debug of SoCs Through High-Level Synthesis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 7,
pp. 1345–1358, 2019.

[14] Y. Chi, Y. Choi, J. Cong, and J. Wang, “Rapid Cycle-Accurate Simulator
for High-Level Synthesis,” in Proc. FPGA. ACM, 2019, pp. 178–183.

[15] IEEE, “IEEE Standard for Universal Verification Methodology Language
Reference Manual,” IEEE Std 1800.2-2017, pp. 1–472, 2017.

[16] Y. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast, Parallel, and
Accurate Simulator for HLS,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4828–4841,
2020.

[17] S. Dai, A. Klinefelter, H. Ren, R. Venkatesan, B. Keller, N. R. Pinckney,
and B. Khailany, “Verifying High-Level Latency-Insensitive Designs
with Formal Model Checking,” CoRR, vol. abs/2102.06326, 2021.
[Online]. Available: https://arxiv.org/abs/2102.06326

[18] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[19] D. Giannakopoulou, K. S. Namjoshi, and C. S. Pasareanu, “Compositional
Reasoning,” in Handbook of Model Checking. Springer, 2018, pp. 345–
383.

[20] D. Giannakopoulou, C. S. Pasareanu, and J. M. Cobleigh, “Assume-
Guarantee Verification of Source Code with Design-Level Assumptions,”
in Proc. ICSE. IEEE Computer Society, 2004, pp. 211–220.

[21] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu, “Learning
Assumptions for Compositional Verification,” in Proc. TACAS, ser. LNCS,
vol. 2619. Springer, 2003, pp. 331–346.

[22] A. Gupta, K. L. McMillan, and Z. Fu, “Automated assumption generation
for compositional verification,” Formal Methods in System Design, vol. 32,
no. 3, pp. 285–301, 2008.

[23] R. Jhala and K. L. McMillan, “Microarchitecture Verification by
Compositional Model Checking,” in Proc. CAV, ser. LNCS, vol. 2102.
Springer, 2001, pp. 396–410.

[24] C. Y. Cho, V. D’Silva, and D. Song, “BLITZ: Compositional bounded
model checking for real-world programs,” in Proc. ASE. IEEE, 2013,
pp. 136–146.

[25] H. Koo and P. Mishra, “Functional test generation using design and
property decomposition techniques,” ACM Trans. Embed. Comput. Syst.,
vol. 8, no. 4, pp. 32:1–32:33, 2009.

[26] R. B. Jones, C. H. Seger, and D. L. Dill, “Self-Consistency Checking,”
in Proc. FMCAD, ser. LNCS, vol. 1166. Springer, 1996, pp. 159–171.

[27] S. Katz, O. Grumberg, and D. Geist, “"Have I written enough Properties?"
- A Method of Comparison between Specification and Implementation,”
in Proc. CHARME, ser. LNCS, vol. 1703. Springer, 1999, pp. 280–297.

[28] K. Claessen, “A Coverage Analysis for Safety Property Lists,” in
Proc. FMCAD. IEEE, 2007, pp. 139–145.

[29] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage Metrics for
Temporal Logic Model Checking,” in Proc. TACAS, ser. LNCS, vol. 2031.
Springer, 2001, pp. 528–542.

[30] D. Große, U. Kühne, and R. Drechsler, “Estimating functional coverage
in bounded model checking,” in Proc. DATE. EDA Consortium, San
Jose, CA, USA, 2007, pp. 1176–1181.

[31] H. Chockler, D. Kroening, and M. Purandare, “Coverage in interpolation-
based model checking,” in Proc. DAC. ACM, 2010, pp. 182–187.

[32] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: a platform for high-level parametric hardware specification and
its modular verification,” Proc. ACM Program. Lang., vol. 1, no. ICFP,
pp. 24:1–24:30, 2017.

[33] L. Piccolboni, G. Di Guglielmo, and L. P. Carloni, “KAIROS: Incremental
Verification in High-Level Synthesis through Latency-Insensitive Design,”
in Proc. FMCAD. IEEE, 2019, pp. 105–109.

[34] U. Kühne, S. Beyer, J. Bormann, and J. Barstow, “Automated formal ver-
ification of processors based on architectural models,” in Proc. FMCAD.
IEEE, 2010, pp. 129–136.

[35] M. Soeken, U. Kühne, M. Freibothe, G. Fey, and R. Drechsler, “Automatic
property generation for the formal verification of bus bridges,” in
Proc. DDECS. IEEE, 2011, pp. 417–422.

[36] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rülke, “Advanced
verification by automatic property generation,” IET Comput. Digit. Tech.,
vol. 3, no. 4, pp. 338–353, 2009.

[37] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in Proc. TACAS, ser. LNCS, vol. 1579.
Springer, 1999, pp. 193–207.

[38] D. Lin, E. Singh, C. Barrett, and S. Mitra, “A structured approach to
post-silicon validation and debug using symbolic quick error detection,”
in Proc. ITC. IEEE, 2015, pp. 1–10.

[39] E. Singh, D. Lin, C. Barrett, and S. Mitra, “Logic Bug Detection and
Localization Using Symbolic Quick Error Detection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2018.

[40] E. Singh, K. Devarajegowda, S. Simon, R. Schnieder, K. Ganesan, M. R.
Fadiheh, D. Stoffel, W. Kunz, C. W. Barrett, W. Ecker, and S. Mitra,
“Symbolic QED Pre-Silicon Verification for Automotive Microcontroller
Cores: Industrial Case Study,” in Proc. DATE. IEEE, 2019, pp. 1000–
1005.

[41] F. Lonsing, K. Ganesan, M. Mann, S. S. Nuthakki, E. Singh, M. Srouji,
Y. Yang, S. Mitra, and C. W. Barrett, “Unlocking the Power of Formal
Hardware Verification with CoSA and Symbolic QED: Invited Paper,”
in Proc ICCAD. ACM, 2019, pp. 1–8.

[42] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,
and W. Kunz, “Symbolic quick error detection using symbolic initial state
for pre-silicon verification,” in Proc. DATE. IEEE, 2018, pp. 55–60.

[43] K. Devarajegowda, M. R. Fadiheh, E. Singh, C. W. Barrett, S. Mitra,
W. Ecker, D. Stoffel, and W. Kunz, “Gap-free Processor Verification by
S2QED and Property Generation,” in Proc. DATE. IEEE, 2020, pp.
526–531.

[44] M. R. Fadiheh, D. Stoffel, C. W. Barrett, S. Mitra, and W. Kunz,
“Processor Hardware Security Vulnerabilities and their Detection by
Unique Program Execution Checking,” in Proc. DATE. IEEE, 2019,
pp. 994–999.

[45] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and
W. Kunz, “A Formal Approach for Detecting Vulnerabilities to Transient
Execution Attacks in Out-of-Order Processors,” in Proc. DAC. IEEE,
2020, pp. 1–6.

[46] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure Information Flow by
Self-Composition,” in Proc. CSFW-17. IEEE, 2004, pp. 100–114.

[47] G. Barthe, J. M. Crespo, and C. Kunz, “Relational Verification Using
Product Programs,” in Proc. FM, ser. LNCS, vol. 6664. Springer, 2011,
pp. 200–214.

51

https://arxiv.org/abs/1907.02064
http://nvdla.org/primer.html
http://nvdla.org/primer.html
https://arxiv.org/abs/2102.06326

[48] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying Constant-Time Implementations,” in Proc. USENIX. USENIX
Association, 2016, pp. 53–70.

[49] W. Yang, Y. Vizel, P. Subramanyan, A. Gupta, and S. Malik, “Lazy
Self-composition for Security Verification,” in Proc. CAV, ser. LNCS,
vol. 10982. Springer, 2018, pp. 136–156.

[50] J. Cong, P. Wei, C. H. Yu, and P. Zhou, “Bandwidth optimization through
on-chip memory restructuring for HLS,” in Proc. DAC. IEEE, 2017,
pp. 1–6.

[51] R. M. Keller, “Formal Verification of Parallel Programs,” Commun. ACM,
vol. 19, no. 7, pp. 371–384, 1976.

[52] ——, “A Fundamental Theorem of Asynchronous Parallel Computation,”
in Parallel Processing, Proc. Sagamore Computer Conference, ser. LNCS,
vol. 24. Springer, 1974, pp. 102–112.

[53] S. Chattopadhyay, F. Lonsing, L. Piccolboni, D. Soni, P. Wei,
X. Zhang, Y. Zhou, L. Carloni, D. Chen, J. Cong, R. Karri, Z. Zhang,
C. Trippel, C. Barrett, and S. Mitra, “Scaling Up Hardware Accelerator
Verification using A-QED with Functional Decomposition,” CoRR,
vol. abs/2108.06081, 2021, FMCAD 2021 proceedings version with
appendix. [Online]. Available: https://arxiv.org/abs/2108.06081

[54] S. Wang, Y. Liang, and W. Zhang, “FlexCL: An Analytical Performance
Model for OpenCL Workloads on Flexible FPGAs,” in Proc. DAC. ACM,
2017, pp. 27:1–27:6.

[55] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “COMBA:
A Comprehensive Model-Based Analysis Framework for High Level
Synthesis of Real Applications,” in Proc. ICCAD. IEEE, 2017, pp.
430–437.

[56] G. Zhong, A. Prakash, Y. Liang, T. Mitra, and S. Niar, “Lin-analyzer: a
high-level performance analysis tool for FPGA-based accelerators,” in
Proc. DAC. ACM, 2016, pp. 136:1–136:6.

[57] X. Zhang, H. Lu, C. Hao, J. Li, B. Cheng, Y. Li, K. Rupnow, J. Xiong,
T. S. Huang, H. Shi, W. Hwu, and D. Chen, “SkyNet: a Hardware-Efficient
Method for Object Detection and Tracking on Embedded Systems,” in
Proc. MLSys. mlsys.org, 2020.

[58] M. Giordano, K. Prabhu, K. Koul, R. M. Radway, A. Gural, R. Doshi,
Z. F. Khan, J. W. Kustin, T. Liu, G. B. Lopes, V. Turbiner, W.-S. Khwa,
Y.-D. Chih, M.-F. Chang, G. Lallement, B. Murmann, S. Mitra, and
P. Raina, “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator
with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training
and Inference,” in Proc. VLSI. IEEE, 2021, pp. 1–2.

[59] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST Post-Quantum
Cryptography- A Hardware Evaluation Study,” IACR Cryptology ePrint
Archive, Report 2019/047, 2019, https://eprint.iacr.org/2019/047.

[60] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Chstone: A
benchmark program suite for practical c-based high-level synthesis,” in
Proc. ISCAS. IEEE, 2008, pp. 1192–1195.

[61] P. N. Whatmough, S. K. Lee, M. Donato, H. Hsueh, S. L. Xi, U. Gupta,
L. Pentecost, G. G. Ko, D. M. Brooks, and G. Wei, “A 16nm 25mm2
SoC with a 54.5x Flexibility-Efficiency Range from Dual-Core Arm
Cortex-A53 to eFPGA and Cache-Coherent Accelerators,” in Proc. VLSI.
IEEE, 2019, p. 34.

[62] T. Tambe, E. Yang, G. G. Ko, Y. Chai, C. Hooper, M. Donato, P. N.
Whatmough, A. M. Rush, D. Brooks, and G. Wei, “A 25mm2 SoC
for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via
Bayesian Speech Denoising and Attention-Based Sequence-to-Sequence
DNN Speech Recognition in 16nm FinFET,” in Proc. ISSCC. IEEE,
2021, pp. 158–160.

[63] Y. Chi, Y. Choi, J. Cong, and J. Wang, “Rapid Cycle-Accurate Simulator
for High-Level Synthesis,” in Proc. FPGA. ACM, 2019, pp. 178–183.

[64] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. K. Srivastava, H. Jin,
J. Featherston, Y. Lai, G. Liu, G. A. Velasquez, W. Wang, and Z. Zhang,
“Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software
Programmable FPGAs,” in Proc. FPGA. ACM, 2018, pp. 269–278.

[65] “A-QED2 Software Artifact,” 2021. [Online]. Available: https:
//github.com/upscale-project/aqed-decomp-FMCAD2021/

[66] D. Kroening and M. Tautschnig, “CBMC - C bounded model checker
- (competition contribution),” in Proc. TACAS, ser. LNCS, vol. 8413.
Springer, 2014, pp. 389–391.

[67] “Frama-C,” https://frama-c.com/, 2021, [Online]. Accessed: August 2021.

52

https://arxiv.org/abs/2108.06081
https://eprint.iacr.org/2019/047
https://github.com/upscale-project/aqed-decomp-FMCAD2021/
https://github.com/upscale-project/aqed-decomp-FMCAD2021/
https://frama-c.com/

Formal Methods in Computer-Aided Design 2021

Sound and Automated Verification of Real-World
RTL Multipliers

Mertcan Temel
Electrical and Computer Engineering

University of Texas at Austin
Austin, TX, USA
mert@utexas.edu

Warren A. Hunt, Jr.
Computer Science

University of Texas at Austin
Austin, TX, USA
hunt@cs.utexas.edu

Abstract—We have developed an algorithm, S-C-Rewriting,
that can automatically and very efficiently verify arithmetic
modules with embedded multipliers. These include ALUs, dot-
product, multiply-accumulate designs that may use Booth en-
coding, Wallace-trees, and various vector adders. Outputs of the
target multiplier designs might be truncated, right-shifted, or
a combination of both. We evaluate the performance of other
state-of-the-art tools on verification problems beyond isolated
multipliers and we show that our method applies to a broader
range of design techniques encountered in real-world modules.
Our verification software is verified using the ACL2 theorem
prover, and we can soundly verify 1024x1024-bit isolated mul-
tipliers and similarly large dot-product designs in minutes. We
can also generate counterexamples in case of a design bug. Our
tool and benchmarks are available online.

Index Terms—Formal Verification, Integer Multipliers, Hard-
ware Verification, Arithmetic Circuits, ACL2, Term-rewriting

I. INTRODUCTION

Integer multipliers are fundamental building blocks for
general-purpose (e.g., CPUs and GPUs), image, communi-
cations, and cryptographic processors. Multipliers are used
to implement dot-product, division, square-root, and floating-
point operations; in turn, these operations find their way
into graphics, cryptography, and signal processing systems.
In some cases, such as cryptographic processors, integer
multipliers might be used to multiply numbers as large as
1024 bits.

Given the ubiquity of multipliers, it is crucial to have a
sound verification method for designs that include multipliers.
However, the formal verification process of multipliers is still a
challenge, especially for the most common design approaches
such as Wallace tree and Booth encoding. Decision-procedure-
based tools such as BDDs, SAT solvers do not scale [1],
[2]. In recent years, multiplier verification efforts have shifted
towards using computer algebra methods [2]–[6] and they
have yielded more promising results. However, these studies
focused heavily on isolated multiplier designs, and they do not
perform well (if at all) for multipliers with truncated output
(e.g., a 32x32-bit multiplier with a 32-bit output). Studies
that explore the verification problem of embedded multipliers
(e.g., multiply-accumulate, dot-product) have been limited,
and they do not support designs with Wallace tree and Booth
encoding [1]. Additionally, only one computer-algebra-based

tool [3] provides a system to check the correctness of the proof
itself, leaving open the possibility that these tools might claim
a design to be correct when the design is actually flawed.

In our previous work [7], we proposed a method to verify
integer multipliers efficiently and automatically. Using the
ACL2 theorem proving system, we developed a provably
correct verification mechanism based on term-rewriting. This
method has been shown to quickly verify a wide range of
integer multiplier designs (e.g., 1024x1024-bit multipliers with
simple partial products have been verified in less than 10
minutes). However, our focus concerned only untruncated
isolated multiplier designs. Moreover, we did not discuss how
the algorithm performs with buggy designs.

We have expanded our method and we have been able to:
• improve proof-time performance by a factor of 2 or more;
• verify designs beyond untruncated isolated multipliers;
• and quickly generate counterexamples.

Additionally, we retain the same level of proof automation and
keep our tool provably correct.

In this paper, we aim to explore the verification problem
of multipliers on more complex designs than explored in
previous verification studies and deliver our solutions. We
provide examples of complex multiplier architectures with
optimizations that can be encountered in real-world designs.
We discuss how existing state-of-the-art verification tools
perform on such modules. Finally, we present our improved
method and show that we can verify these complex designs
very efficiently. For example, we can verify 64x64-bit isolated
multipliers or similar designs within seconds and 1024x1024-
bit isolated multipliers or similar dot-product designs in 5
minutes, no matter which design algorithm is used.

This paper is structured as follows. Sec. II summarizes the
most common design algorithms for isolated and embedded
multipliers. We show why it is important to develop a ver-
ification method for embedded and truncated multipliers and
why it is not enough to have a verification tool only for isolated
multipliers. In Sec. III, we summarize the related work from
the most recent and/or prominent studies. Sec. IV recapitulates
our term rewriting algorithm from our previous work and
introduces some of its recently discovered limitations. Sec. V
discusses our new improvements so that we can verify more
designs with better efficiency and generate counterexamples

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 13 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-9738-587X
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_13
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_13
https://creativecommons.org/licenses/by/4.0/

for buggy modules. Sec. VI describes how our lemmas are
implemented and applied. Finally, we show our experiment
results in Sec. VII and compare our performance with other
state-of-the-art multiplier verification tools.

II. MULTIPLIER ARCHITECTURES

There are various algorithms to design RTL multipliers and
integrate them in other arithmetic modules such as a multiply-
accumulate (MAC). The difficulty of verifying these modules
depends on the design algorithm. Some algorithms bring out
clean and regularly structured modules, and some and most
commonly used algorithms produce complex structures. This
section elaborates on the verification problem by summarizing
common algorithms to design multipliers and how they are
implemented in other arithmetic circuits.

A. Isolated Multipliers

An isolated multiplier is a circuit with two bit-vector inputs
and one bit-vector output. The output vector represents an
integer equivalent to the multiplication of the input vectors,
which can be signed or unsigned integers. Isolated multipliers
are often implemented in two stages: partial product generation
and partial product summation.

Partial products can be generated by multiplying (i.e., logi-
cal AND) each input bit with each other as in primary school
multiplication. For signed numbers, the input numbers need to
be sign-extended, in which case the Baugh-Wooley [8] sign
extension technique can be used to lower the implementation
area. Booth encoding [9] (particularly radix-4) is a more
common and efficient way to generate partial products. Booth
encoding incorporates more than two input bits at a time when
generating partial products. This can provide more parallelism
and fewer partial products. However, Booth encoding makes
a circuit’s structure and logic more complex, making it more
difficult to reason about the circuit.

There are numerous methods to sum partial products in
hardware. Unlike primary school multiplication, hardware
algorithms do not sum partial products one column at a
time, from right to left. Summations are performed more
locally with unit adders such as half and full adders. An
array multiplier is a simple example that is built with such
unit adders following a shift-and-add methodology. Array
multipliers have a regular structure, which makes it straight-
forward to verify them. However, they can have a large gate
delay (i.e., propagation delay). On the other hand, Wallace-
tree-like multipliers [10], such as Dadda tree [11], provide
more parallelism. These summation tree algorithms sum partial
products with less propagation delay and only slight changes
in the implementation area. Designers can also utilize low
gate-delay vector adders, such as Brent-Kung [12], Ladner-
Fischer [13], and conditional sum, as a final stage adder to
get the multiplication result. This can make Wallace-tree-like
algorithms with complex final stage adders more preferable
for hardware applications, but their irregular structures make
the verification problem difficult, especially when paired with
Booth encoding.

We should also note that an isolated multiplier implemen-
tation may not always return the full multiplication result.
Instead, the result might be truncated, right-shifted, or a
combination of both. For example, when two 32-bit numbers
are multiplied, a lossless multiplier would output a 64-bit
number. On the other hand, if the design only calculates the
lower, say, 32-bits of the result, we say that the result is
truncated. Similarly, when, say, only the upper 32-bits of the
result are returned from the multiplier, we say that the result
is right shifted. If only the middle portion of the result is
returned, which may happen in fixed-point arithmetic, we say
that the result is right shifted and truncated. Some designs
implement rounding or saturation when a certain portion of
the result is discarded when truncating and/or shifting.

B. Simple Arithmetic Modules with Embedded Multipliers

Integer multipliers can be implemented in various arithmetic
modules such as MAC, dot-product, and floating-point arith-
metic units. This section summarizes how a MAC module can
be implemented in hardware.

A simple MAC computes a∗b+c, where a, b and c are bit-
vectors. When designing a MAC module, one may implement
an isolated multiplier that computes a ∗ b and a vector adder
that adds c to the multiplier’s output. To verify such a MAC
module, one can decompose the design, use different tools
to verify the isolated multiplier and the final adder separately,
and compose the proofs to show that the overall MAC module
is correct. However, this design methodology uses two vector
adders consecutively (one vector adder as part of the isolated
multiplier and one for adding c). Vector adders can make
up a large portion of the gate delay (and/or area) in such
circuits, and this design technique can increase the gate delay
considerably, making this approach a poor design choice.

Fig. 1. An efficient way to compute MAC result

Fig. 1 shows an alternative approach that uses only one vec-
tor adder. This MAC module does not implement a complete
isolated multiplier. Instead, it uses an incomplete multiplier.
We define incomplete multipliers as modules that multiply
two bit-vectors but do not use a final stage adder to return
the complete multiplication result; instead, they return the
two bit-vectors generated after the Wallace-tree reduction
(summing these two vectors would give the multiplication
result). This output form is also referred to as redundant

54

form. After the incomplete multiplication, the two bit-vector
outputs are summed together with the addend (c) using another
Wallace tree and a vector adder. This can be a preferable
design approach as it provides better gate-delay performance.
However, it removes the boundaries between multiplication
and summation, which complicates the job of a verification
engineer. Further complicating verification, an alternative de-
sign technique may sum c with the initial partial products
with a single Wallace-tree and vector adder, which can remove
the boundaries even further. In such cases, we cannot simply
decompose the design and use a multiplier verification tool
that works only with isolated multipliers.

We can see similar design methodologies in other mod-
ules. For example, a dot product design may use multiple
incomplete multiplier modules and sum all the output vector
pairs together in another summation tree using a Wallace-
tree and a final stage adder. This method would prevent
the increase in area and gate delay by using only one final
stage adder in the overall design. Similarly, a floating-point
module implementing FMA (fused multiply-add) may use an
incomplete integer multiplier.

C. Multi-purpose Multipliers

Some processing units may implement multipliers for vari-
ous arithmetic operations with different operand sizes. For ex-
ample, x86 chips have many integer multiplication instructions
such as PMADDWD (multi-lane multiply and add together,
in other words, dot-product), PMULHW (multi-lane multiply
and store upper half of the result), and PMULLW (multi-
lane multiply and store lower half). Multiplier circuits can
occupy a large implementation area, and it is common for such
instructions to share resources and reuse multiplier modules.

We have created an example arithmetic circuit that shows
how multiplier modules can be reused for different operations.
We call this arithmetic unit integrated multipliers whose
schematic diagram is shown in Fig. 2. This design multiplexes
various multipliers and adders to perform 4-point 32-bit dot-
product, 1-lane 64-bit multiply-accumulate, or 4-lane 32-bit
multiply-accumulate with options to return lower or upper
significant halves of the result. This module also includes an
accumulator register that can be used, for example, to perform
an 8-point 32-bit dot-product in two clock cycles, or 12-point
32-bit dot-product in three clock cycles, and so on. The mode
of operation is determined by the control signal mode.

This module implements four identical 32x32-bit incom-
plete multipliers whose inputs are two 32-bit numbers with
an additional sign bit and whose outputs are two bit-vectors.
Depending on the mode of operation, the outputs of these
multipliers are summed with another summation tree, and the
final result is calculated with vector adders. The datapaths for
32-bit MAC and dot-product operations are as described in
the previous section (Sec II-B). This module also supports
64-bit operands, in which case the outputs of the 32x32-bit in-
complete multipliers are appropriately shifted, sign-extended,
and summed to calculate the 64x64-bit multiplication result.
We call such operations merged multiplication, where multiple

Fig. 2. The circuit diagram of integrated multipliers, our example arithmetic
unit.

smaller multipliers are used to implement a larger multiplier.
The module can also add a number to the 64x64-bit multipli-
cation result and make this a 64-bit MAC operation.

We can verify this design for each possible mode of
operation. For example, we can set the mode signal to perform
dot product and check if the result matches the mode’s speci-
fication. Industrial designs are often much more intricate than
this module; however, it is often possible to reason about one
arithmetic operation at a time. Then, the verification problem
becomes as complex as verifying a single arithmetic operation.

III. RELATED WORK

The verification problem of multipliers continues to have
a great deal of research interest, and researchers offer new
techniques every year. This section covers the most recent and
prominent studies that attempt to solve this problem, particu-
larly for RTL designs with Booth encoding and Wallace-tree-
like structures.

A. BDDs, BMDs, SAT and SMT Solvers

Automated and well-studied generic tools and methods such
as BDDs, SAT, and SMT Solvers can theoretically be used to
verify multiplier designs. However, it has been shown that
these methods do not scale for designs larger than 12x12-
bit multipliers [1], [2]. SAT solvers may scale better when
generating counterexamples for buggy designs. Some success
has been achieved with BMDs but only for regularly structured
multipliers [14]. On the other hand, these automated tools may
be used to verify some multiplier design components, such as
the final stage adder [3].

B. Computer Algebra Methods

In computer algebra-based methods, multiplier circuits are
modeled with a set of polynomials. Basic logical gates of
a circuit are represented in terms of algebraic expressions
(e.g., ∀x, y ∈ {0, 1} x ∨ y = x + y − xy) as well as the
multiplication result (see Example 1 for a 2x2-bit unsigned
multiplier specification). The algebraic representation on its

55

own does not scale when verifying multipliers. Researchers
implement various heuristics and optimizations that are spe-
cific to multiplier designs to achieve efficient and practical
results. A notable optimization is identifying the logic from
adder modules implemented in target multiplier designs [3],
[4], [15]–[17].

Example 1. 4a1b1 + 2a1b0 + 2a0b1 + a0a0

Computer algebra methods have made a lot of progress
towards the multiplier verification problem. However, these
studies have focused mainly on isolated multipliers with
untruncated outputs and the same operand sizes (nxn-bit
multipliers with 2n-bit outputs). This makes it more difficult to
utilize them for real-world designs where truncation, shifting,
and integration with other arithmetic operations are common
(See Sec. II).

Ciesielski et al. [1] showed that their method could be
used for other multiplier-centric arithmetic operations, such as
MAC; however, they showed that they only verified multiplier
modules with regular structures. The benchmarks and their
verification tool are not provided. We do not know of any
publicly available tool that can scale and automatically verify
designs such as MAC and dot-product. The underlying theory
used by the computer-algebra methods may support verifica-
tion of such arithmetic circuits. However, some optimizations
that make these tools efficient may or may not be directly
applicable to modules beyond isolated multipliers.

Verifying multipliers whose output is truncated or shifted is
difficult for the computer algebra approach. Su et al. [18] dis-
cussed why computer algebra techniques are inefficient when
verifying truncated arithmetic circuits. They stated that in-
termediate expressions, which are manageable in untruncated
modules, can grow exponentially in truncated designs. They
suggested a method to reconstruct a truncated multiplier into a
complete multiplier by adding missing elements before verifi-
cation. They did not discuss the soundness of their approach,
their experiments were only on simple multipliers, and the
benchmarks and the tool are not provided. Kaufmann et al. [3]
suggested using modular arithmetic and defined a specification
in the ring Z2n [X] where n is the multiplier output size. They
showed that this approach works on a simple multiplier model,
but our experiments with RTL designs resulted in time-out. We
are not aware of any computer algebra studies that can verify
truncated and/or shifted RTL multipliers.

C. Industrial Methods

Verification efforts of commercial multipliers often involve
a great deal of manual work. A common method is to create a
simple reference design that is structurally close (isomorphic)
to the original and then repeatedly equivalence-check a litany
of ever-increasingly complex designs [19]. Some engineers
verify reference designs using mechanized proof systems [20].
Another common analysis method is to decompose a design
into smaller parts, reason about these parts separately, and
then compose these proofs into a top-level theorem [21]–[23].
Finding a workable decomposition and combining individual

proofs of multiplier fragments can be a cumbersome task.
Such methods help formal verification engineers verify various
multiplication operations such as multiply-accumulate and dot-
product; however, this usually entails extensive manual effort.
Moreover, these proofs are often design-specific, and even
a slight change in the design might cause a previous proof
procedure to fail.

IV. S-C-REWRITING ALGORITHM

In our previous work [7], we introduced a verified term-
rewriting algorithm that can verify a wide range of isolated
multiplier designs more quickly than the other state-of-the-
art tools. In this section, we summarize this term-rewriting
algorithm and discuss its recently discovered limitations.

We use the ACL2 theorem prover to verify and run our
multiplier verification tool. ACL2 is an interactive and auto-
mated theorem proving system, and a programming language
that is used by both industry and academia [24]. For a target
multiplier design, we try to prove conjectures of the form given
in Listing 1. defthm is a commonly used utility by ACL2
users, and it asks the ACL2 system to check conjectures. On
the left hand side, we specify symbolic simulation of a mul-
tiplier design representation. We use the SVL semantics [25]
to simulate designs, which are automatically translated from
Verilog (our verification tool can be used with other simulators
as well). The right hand side has the multiplier specification;
in this example, the target multiplier module returns a 128-bit
number equivalent to the multiplication of two 64-bit signed
numbers.

Listing 1. A correctness conjecture for a signed 64x64-bit isolated multiplier

(defthm multiplier_is_correct
(implies (and (integerp a)

(integerp b))
(equal (simulate :inputs (a b)

:design <signed_64x64_mult>)
(truncate 128

(* (signext 64 a)
(signext 64 b))))))

We prove such conjectures by rewriting both sides of the
equality to fixed final forms. We define two functions s (short
for sum) and c (short for carry) as given in Def. 1. The target
representations for the first few output bits of some modules
(half, full, vector adders, and multipliers) are given in Table I.
Our goal is to rewrite all such modules/operations to this form.
We call this s-c representation or s-c form.

Definition 1. Functions s and c are defined as follows.

∀x ∈ Z s(x) = mod2(x)

∀x ∈ Z c(x) =
⌊︂x
2

⌋︂
While verifying multiplier designs, we wish not to work

with the logical definition of adder modules but instead work
with their s-c representations. The SVL semantics allow
hierarchical reasoning such that if we previously prove that
symbolic simulation of an adder module can be replaced with
this s-c form, then the SVL system can use this form (as

56

TABLE I
TARGETED FINAL FORMS FOR SOME MODULES/FUNCTIONS

Function out2 out1 / cout out0 / sout
Half-adder - c(a+ b) s(a+ b)

Full-adder - c(a+ b+ cin) s(a+ b+ cin)

Bit-vector
addition
a+ b

s(a2 + b2
+c(a1 + b1
+c(a0 + b0)))

s(a1 + b1
+c(a0 + b0))

s(a0 + b0)

Bit-vector
multiplication
a ∗ b

s(a0b2 + a1b1
+a2b0
+c(a1b0 + a0b1

+c(a0b0)))

s(a1b0 + a0b1
+c(a0b0))

s(a0b0)

opposed to the adder’s logical definition) while expanding
the definition of multiplier designs. Therefore, we first prove
that each distinct adder module can be represented with the
s-c form. We use a term-rewriting algorithm to carry out
the proofs for adder modules [7]. Since verifying adders
is straightforward [3], we omit this rewrite algorithm here
for brevity. After the adder proofs, we start verifying the
target multiplier design. As we expand the definition of the
multiplier, our program replaces each instance of its adder
modules automatically with their s-c representation.

Using the s-c form for adders instead of their logical def-
initions can bring about simpler expressions representing the
output bits of a multiplier. An example of such an expression
is given in Example 2 for a Wallace-tree multiplier with simple
partial products.

Example 2. The 4th LSB of a Wallace-tree multiplier output
when its adders are represented in the s-c form:

s(s(s(a3b0 + a2b1 + a1b2)
+a0b3
+c(a2b0 + a1b1 + a0b2))

+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

We rewrite such terms to make them syntactically equivalent
to our target final form. To do that, we define a set of lemmas
of the form lhs = rhs such that terms that match lhs are
replaced with rhs with appropriate term bindings. All lemmas
are proved using ACL2 and we omit the proofs here.

We investigated such terms from multiplier designs and
realized that we could rewrite and simplify nested calls of
s with Lemma 1. Rewriting with this lemma when applicable
can simplify the term from Example 2 to the form given in
Example 3.

Lemma 1. ∀x, y ∈ Z s(s(x) + y) = s(x+ y)

Example 3. Example 2 simplified with Lemma 1:

s(a3b0 + a2b1 + a1b2 + a0b3
+c(a2b0 + a1b1 + a0b2)
+c(s(a2b0 + a1b1 + a0b2) + c(a1b0 + a0b1)))

Now, we observe more than one instance of c on the same
summation level. We rewrite and simplify them by a set of
lemmas. Lemmas 2-5 are applied to the term as rewrite rules,

where the function d is defined as ∀x ∈ Z d(x) = x
2 . Then,

we get the term in Example 4. This is syntactically equivalent
to our target form for the 4th output bit, and we can conclude
that the multiplier is correct for this output bit.

Lemma 2. ∀x, y ∈ Z c(x) + c(y) = d(x+ y − s(x)− s(y))

Lemma 3. ∀x, y ∈ Z c(x) + d(y) = d(x+ y − s(x))

Lemma 4. ∀x, y ∈ Z d(x) + d(y) = d(x+ y)

Lemma 5. ∀x ∈ Z d(−s(x) + x) = c(x)

Example 4. Example 3 rewritten with Lemma 2-5:

s(a3b0 + a2b1 + a1b2 + a0b3
+c(a2b0 + a1b1 + a0b2

+c(a1b0 + a0b1)))

As Booth encoding can incorporate multiple input bits when
generating partial products, we can see operators for logical
gates (e.g., logical OR, XOR) when verifying Booth encoded
multipliers. We use a few more simple lemmas to simplify
terms from Booth encoding and we derive the same final
form. These lemmas, along with examples, are provided in
our previous work [7], and we omit them here for brevity.
These extra lemmas are triggered automatically when Booth
encoding is present, and they do not affect other proofs when
simple partial products are used.

Once we are done rewriting the left-hand side in Listing 1,
we rewrite the right hand side (specification) to the same form
through proved rewrite rules from our library. When we see
that the two sides are syntactically equivalent, we conclude
that the multiplier is correct.

Note that our target representation has a separate term for
each output bit whereas the computer algebra methods specify
all output bits with a single expression (see Example 1). This
makes it easier for our method to verify designs whose output
may be manipulated on bit level such as by truncating, shifting,
and bit-masking.

Example 5. The first instance of a2b0 in Example 2 is replaced
by a2b1 to simulate a bug. Then, the rewriting algorithm
returned:

s(a3b0 + a2b1 + a1b2 + a0b3
+d(−s(a2b1 + a1b1 + a0b2)

−s(a2b0 + a1b1 + a0b2 + c(a1b0 + a0b1))
+s(a2b0 + a1b1 + a0b2)
+a2b1 + a1b1 + a0b2
+c(a1b0 + a0b1)))

In our previous work, we did not investigate what happens
when the design has a bug and whether or not the algorithm
can work beyond isolated multipliers. If our program cannot
verify a multiplier for some reason, it returns a term rewritten
with our lemmas. For example, when we introduce a simple
bug to the term in Example 2, the described rewriting algo-
rithm will return the term given in Example 5. The resulting
term is larger than the initial term, and the gap can grow even
larger for big designs. When a proof attempt fails, either due

57

to a bug in the design or some problem with our verification
method, resulting terms are often very large and users do not
receive a useful feedback from the program.

A proof attempt might fail even when the target design is
correct. We have found such an instance and we could not
verify some Booth encoded merged multipliers (See Sec. II)
larger than 16x16-bit multiplication. Since the resulting terms
are so large, we could not understand if there was a missing
lemma that could help finish the proofs. We encountered
similar issues with some dot-product and MAC designs, and
we were likewise unable to verify them.

V. IMPROVEMENTS TO S-C-REWRITING

We have developed and experimented with various alter-
natives to the existing S-C-Rewriting algorithm. Our goal
is to verify designs beyond isolated multipliers and return
small terms if a proof attempt fails due to a design bug or a
problem in the verification system. We have found a rewriting
scheme that meets these goals. Instead of rewriting c terms
with Lemmas 2-5, we use only the new Lemma 6. Similar to
Lemma 1, this lemma extracts the arguments of inner s calls
but it also creates a byproduct −c(x).

Lemma 6. ∀x, y ∈ Z c(s(x) + y) = c(x+ y)− c(x)

When the given designs are correct, this lemma helps
simplify multiplier designs without needing Lemmas 2-5. We
have also seen that when this lemma is used, proofs are
actually much faster for Booth encoded designs as well as
array multipliers by an order of magnitude (see Sec. VII).

For cases where a proof-attempt fails, we apply another
lemma (Lemma 7) to cancel out common terms shared be-
tween the specification and the design. After all our lemmas
are applied and the design is simplified, the rewriter compares
if the simplified design is syntactically equivalent to the
specification for each output bit. If they are not, then we
rewrite the term that represents the equivalence of these two
sides with Lemma 7.

Lemma 7. ∀x, y ∈ {0, 1} (x = y) ⇐⇒ (s(x+ y) = 0)

Lemma 6 and Lemma 7 help the program return a much
smaller term if a proof attempt fails. Assume that we are
rewriting a term that checks the equivalence of the term
from Example 2 to its specification (Example 4). When we
introduce the same bug from Example 5 to this term, our new
rewrite method will return the term in Example 6.

Example 6. When the same bug from Example 5 is rewritten
with the improved rewriting algorithm:

s(c(a0b2 + a1b1 + a2b0)
+c(a0b2 + a1b1 + a2b1))

= 0

As seen in this example, the returned term is considerably
smaller than what we would get from the older algorithm
(Example 5). We have observed the same behavior with larger
multipliers so much so that the returned term can sometimes

give a hint as to where the bug exists within the design.
Moreover, since these terms are often small, we use the
FGL [26] or the GL [27], [28] utilities in ACL2 to send
such returned terms to an external SAT Solver. We have seen
through our experiments (Sec. VII) that SAT Solver can return
a counterexample very quickly from simplified terms.

As noted in Sec. IV, proof attempts may fail even when
the design is correct. This was the case with our initial term
rewriting strategy for some Booth encoded merged multipliers
and some MAC and dot-product modules. Since the returned
terms are smaller with the modified term-rewriting, we could
find the source of the problem and determine the missing
lemmas needed to verify these designs. We found out that
we simply need to rewrite some c and s instances in terms of
logical operators (see Lemmas 8-11) when certain syntactic
conditions on their arguments are met. Those conditions are:
the arguments x, y and z (if available) need to be instances
of the logical AND (∧) function only, and the operands in y
and z (if available) need to be a subset of the operands of x.
For example, we can apply Lemmas 8-9 if x = a ∧ b ∧ c ∧ d,
y = a ∧ c, and z = b ∧ c but we cannot apply it if z = b ∧ e.
The resulting terms from these rewrites are simplified the same
way as Booth encoding logic. We have these strict syntactical
conditions so that the rewriting system is more deterministic
and there is minimal effect on the verification procedures
for other designs. We leave these lemmas enabled in our
program, and they help automatically verify the previously
failed designs, such as merged multipliers.

Lemma 8. ∀x, y, z ∈ {0, 1} c(x+y+z) = x∧y∨x∧z∨y∧z

Lemma 9. ∀x, y, z ∈ {0, 1} s(x+ y + z) = x⊕ y ⊕ z

Lemma 10. ∀x, y ∈ {0, 1} c(x+ y) = x ∧ y

Lemma 11. ∀x, y ∈ {0, 1} s(x+ y) = x⊕ y

Additionally, we tested this method with another simulation
tool, SVTV [24], to show that our method does not have to be
used with the SVL system. The SVTV system sources designs
from Verilog and flattens them before (symbolic) simulation.
We found a way to mark the adder modules before flattening
to easily rewrite them in the s-c form. We omit the details here
for brevity, and the readers may refer to our online tutorials
for details (http://mtemel.com/fmcad21).

VI. IMPLEMENTATION

All of our rewriting system consists of lemmas of the
form lhs = rhs. When patterns found in conjectures match
lhs, they should be replaced by rhs. Since conjectures for
multiplier designs may yield very large terms, we implement
a scalable mechanism to find such patterns and apply our
lemmas.

We use a verified rewriter [29] that follows an inside-out
rewriting strategy [30], [31]. Example 7 shows how a rewrite
rule can modify a term from inside out. We can prove the
associativity of summation (see the upper-left corner) using
the existing libraries and the built-in axioms in ACL2. The

58

defthm event saves the proved lemma as a rewrite rule.
When this rewrite rule is in the system, we can apply it
to terms whenever the left hand side pattern finds a match.
Assume that this is the only enabled rule, and we would like
to prove another conjecture which contains the term shown on
the upper-right corner. Since the rewriter performs inside-out
rewriting, it will start with the innermost term to search for
matching patterns. The first match occurs for the following
bindings: a to x3, b to x4, and c to x5. With these term
bindings, the term is replaced using the right hand side of
the rewrite rule, and we obtain the term in the lower-left
corner. The rule can find another match on this new term.
After similarly rewriting this term, we obtain the term in the
lower-right corner.

Example 7. A target term is rewritten with a rewrite rule.

Rewrite Rule Target Term

(defthm sum-assoc
(equal (+ (+ a b) c)

(+ a (+ b c))))

(+ (+ x1 x2)
(+ (+ x3 x4) x5))

After the First Rewrite After the Second Rewrite

(+ (+ x1 x2)
(+ x3 (+ x4 x5)))

(+ x1
(+ x2

(+ x3
(+ x4 x5))))

Even though the rewriter dives into every subterm, it keeps
track of already processed terms and it does not attempt to
rewrite them again. For example, assume that x4 in the target
term from Example 7 is not a variable but it is a very large
term that is already rewritten. After the first rewrite, x4 will
have moved within the term. Since the applied rule has a fixed
pattern on the left and right hand sides, the rewriter knows
to not process x4 again. On the other hand, if there was
an applicable rule, the new subterm (+ x4 x5) could be
rewritten.

Our overall rewriting system follows this basic rewriting
strategy with many more lemmas that work together har-
moniously. Fig. 3 shows a flow diagram when the rewriter
processes a conjecture for multiplier designs. Assume that we
are using the SVL system for simulation, and the user has
already created rewrite rules for adder modules to represent
them in the s-c form. When the user states a conjecture for
the target multiplier design (see Listing 1) and submits it to
ACL2, the rewriter dives into the innermost terms to search
for applicable rules. The first subterm that it rewrites is the
symbolic simulation instance for the target multiplier design.

The SVL system simulates designs by executing all the
functional blocks (e.g., Verilog assignments and submodules)
and one by one calculating the values for all internal wires and
registers. As the rewriter is symbolically simulating an SVL
design, derived expressions for internal wires and registers
are tested against rewrite rules. If the rewriter encounters an

Fig. 3. Steps taken by the rewriter when rewriting a conjecture for a multiplier
design

instantiation of an adder module, then it is replaced by the
s and c functions using the rules created by the user. If the
rewriter encounters some other module or an assignment, then
regular ACL2 expressions representing their functionality are
created from their logical definitions.

When new instances of the s and c are created after the
adder modules are rewritten, our lemmas for these functions
are triggered and our simplification algorithm is applied. For
example, when the new term is an instance of c and one of its
arguments is an instance of s, then Lemma 6 will be applied.
If the arguments of the new s and c instances contain some
Boolean expressions, then our lemmas for Booth encoding [7]
are applied.

As the symbolic simulation of the circuit finishes, we get
a term that is completely rewritten with our algorithm. After
that, the system rewrites the right hand side (specification) to
the s-c form with other rewrite rules in our library, compares
the two sides syntactically, and exits. If the final term is t,
then we can conclude that the multiplier is correct. Otherwise,
we can investigate this term and/or send it to a SAT solver so
as to generate counterexamples or attempt to finish the proofs.

Note that our lemmas described in Sec. IV, Sec. V, and our
previous work [7] do not trigger an expensive rewriting chain
upon application. They each have an almost constant time
complexity. The slowest component of the rewriting algorithm
is lexicographical sorting of the terms in column summations,
which are expected to be very small sets as compared to the
overall size of the given design. Since our lemmas are applied
as the circuit’s definition is expanded and we never perform
a global search, we observe an almost linear time complexity
with respect to the design size as shown in the next section.

VII. EXPERIMENTS

We verified various multiplier designs using our tool and
applicable tools from related work. We ran our experiments on
an Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz computer
with 32GB system memory. We used three RTL multiplier

59

TABLE II
PROOF-TIME RESULTS IN SECONDS (ROUNDED) FOR VARIOUS

UNTRUNCATED, SIGNED ISOLATED MULTIPLIER DESIGNS

Size Architecture RS [4] AMu [3] Prev [7] This work

64x64 sp-cwt-ks 39 42 1 .5
sp-ar-rc 3 2 1 .5
sp-dt-bk 5 2 1 .5
b4-wt-hc 154 28 1 1
b2-wt-hc 123 77 4 1
b4-dt-ks 17 28 1 1
b4-dt-csel 19 5 4 1
b4-os-bk 15 5 6 1
b4-wt-csu 21 5 5 2
b4-bdt-hc 131 6 5 2
b4-rbat-ks 19 7 5 2
b4-ar-vcska 17 5 12 2
b4-4:2-lf 30 5 8 3
b4-7:3-bcla 44 TO 12 6
b4-wt-cla 22 14 21 12

128x128 sp-cwt-ks 1001 TO 3 2
sp-ar-rc 96 10 20 2
b4-wt-hc TO 803 13 4
b4-dt-ks 773 785 8 4

256x256 sp-cwt-ks TO TO 16 7
sp-ar-rc 2416 176 556 11
b4-wt-hc TO TO 62 15
b4-dt-ks TO TO 47 15

512x512 sp-wt-lf TO 1577 76 44
sp-dt-bk TO 1562 64 40
b4-wt-hc TO TO 418 65
b4-dt-ks TO TO 282 71

1024x1024 sp-wt-lf TO 14005 345 240
sp-dt-bk TO 13247 397 220
b4-wt-hc TO TO MO 288
b4-dt-ks TO TO MO 300

MO: Out of memory (32GB) TO: Time-out (5400 secs./90 mins. for 64x64
and 128x128 multipliers, 16200 secs./270 mins. for the rest)

generators [32]–[34] to generate isolated multipliers, MAC,
and dot-product designs. The benchmarks and our tool are
available online (http://mtemel.com/fmcad21).

We verified various architectures with different configura-
tions. For partial product generation algorithms, the designs
use either simple partial products (sp), Booth encoding radix-
4 (b4) or radix-2 (b2). Summation tree reduction algorithms
include counter-based Wallace (cwt), array (ar), Dadda (dt),
traditional Wallace (wt), overturned-stairs (os), balanced delay
(bdt), redundant binary addition (rbat), 4-to-2 compressor
(4:2), 7-to-3 compressor (7:3) trees, and merged multipliers
with Dadda tree (mdt). For final stage addition, these multi-
pliers implement Kogge-Stone (ks), ripple-carry (rc), Brent-
Kung (bk), Han-Carlson (hc), Ladner-Fischer (lf), carry-select
(csel), conditional sum (csu), variable-length carry-skip (vc-
ska), block carry-lookahead (bcla) and regular carry-lookahead
(cla) adders.

As far as we are aware, there are only two other publicly
available tools from two different research groups that can ver-
ify these complex architectures for isolated multipliers. These
are computer-algebra-based tools RevSCA2 [4] (shortened as
RS) and AMulet 2.0 [3], [35] (shortened as AMu). The tools
from other studies are not publicly available and/or they do

TABLE III
PROOF-TIME RESULTS IN SECONDS FOR SOME MULTIPLIER DESIGNS IN

VARIOUS CONFIGURATIONS

Function & I/O Size Architecture AMu [3] Prev [7] This work

16x16 = 16 usp-dt-hc TO .1 .04
16x16 = 16 ssp-dt-hc NS .1 .04
16x16 = 16 ub4-dt-hc TO .1 .06
16x16 = 16 sb4-dt-hc NS .1 .05

20x40 = 60 ub2-wt-rp NS .3 .1
20x40 = 60 sb2-wt-rp NS .3 .1
33x17 = 40 ub4-wt-hc NS .2 .1
33x17 = 40 sb4-wt-hc NS .2 .1

64x64 = 64 ub4-dt-hc TO 1 .5
64x64 = 64 sb4-dt-hc NS 1 .4
64x64 = 64 (r. shifted) ub4-dt-hc NS 2 1
64x64 = 64 (r. shifted) sb4-dt-hc NS 2 1

64x64 = 128 ub4-mdt-ks 45 F 1
64x64 = 128 sb4-mdt-ks 44 F 1
64x64 = 128 ub2-mdt-lf 61 F 1
64x64 = 128 sb2-mdt-lf 59 4 1

2(32x32)+32 = 66 sb4-dt-hc NS F 1
2(32x32)+32 = 66 sb4-os-bcla NS F 1
2(32x32)+32 = 66 sb4-bdt-csu NS F 1
2(32x32)+32 = 66 sb4-ar-csel NS F 1
2(32x32)+32 = 66 sb4-4:2-rp NS F 2
2(32x32)+32 = 66 sb4-7:3-bk NS F 3

64x64+128 = 128 ub4-dt-ks NS 2 1
64x64+128 = 128 sb4-dt-ks NS 2 1
64x64+128 = 129 sb4-dt-hc NS F 2

TO: Time-out (5400 secs) NS: Configuration is not supported by the tool.
F: Failed proof-attempt. The tool returns a large rewritten term.

not provide competitive results for the designs in question.
RevSCA2 does not produce certificates and it is not verified.
AMulet provides certificates to check the validity proofs by
external tools; we include the certification time in our results
(they can be around 3 times faster without certification). The
verification tools from our previous and current work are
verified using ACL2; thus, no additional check is required.

Table II delivers the proof-time results in seconds for signed
and untruncated isolated multipliers. Our previous work scales
substantially better than (RS [4]) and (AMu [3]) but the
performance is not as strong for Booth encoded designs. Our
improved rewriting algorithm is much faster than our previous
work and others, and it can verify even very large Booth
encoded multipliers in at most 5 minutes.

Table III delivers proof-time results for various architectures
and configurations. This includes truncated or right shifted
outputs, merged multipliers, multipliers with different operand
sizes, two-point dot-product designs with accumulate, and
truncated or untruncated MAC modules. The designs in this
table are produced with two different generators [32], [33].
AMulet has a hard-coded specification and does not support
many of these configurations. Users can determine the design
specifications for our previous work, but our older tool can-
not prove some merged multipliers, dot-product, and MAC
designs. On the other hand, our new method could verify all
of them very quickly.

Table IV shows how the proof-time performance of our tool

60

TABLE IV
OUR TOOL’S PROOF-TIME RESULTS IN SECONDS FOR SIGNED MAC AND

DOT-PRODUCT DESIGNS

Size Dot-product length
N=1 N=2 N=4 N=8 N=16

N(32x32) 0.2 0.5 1.0 2.0 4.5
N(32x32)+64 0.2 0.5 0.9 1.9 4.2
N(64x64) 0.9 1.9 3.8 8.2 19
N(64x64)+128 0.9 1.8 3.7 7.7 17
N(128x128) 3.5 7.8 18 35 81
N(128x128)+256 3.5 7.6 15 33 76
N(256x256) 15 32 67 151 356
N(256x256)+512 14 30 64 144 340

All designs use Booth radix-4 encoding, Dadda tree and Ladner-Fischer adder.

TABLE V
OUR TOOL’S PROOF-TIME RESULTS IN SECONDS FOR OUR EXAMPLE

MODULE, INTEGRATED MULTIPLIERS, DESCRIBED IN SEC. II-C

Mode SVL SVTV
Signed Unsigned Signed Unsigned

1-lane MAC 1.0 0.9 2.8 2.9
4-lane MAC (lower half) 1.0 0.9 2.8 2.8
4-lane MAC (upper half) 1.0 1.0 3.0 2.9
4-point dot-product 1.8 1.2 4.4 3.4
8-point dot-product (seq.) 4.9 2.9 14.5 10.1

scales on dot-product designs with different sizes. Even though
it is not shown here, allocated system memory scales similarly.
Finally, Table V shows the proof-time results for our example
module integrated multipliers (see Sec. II-C) for both the SVL
and SVTV simulation systems.

In addition to the designs reported here, we have also
verified some private industrial designs at Centaur Tech-
nology with a similar performance. These designs include
multiply-accumulate, dot-product, multiplication of signed and
unsigned numbers, truncation, right-shifting, rounding, and
saturation. Our program is not designed to handle branches
implemented for saturation. Therefore, after our program sim-
plified the saturated designs, we sent the resulting terms to
a SAT Solver (glucose [36]) with the FGL utility [26], [37],
and we have seen that proofs finished successfully in a few
seconds.

We have also tried our tool on buggy designs and used
a SAT solver (glucose [36]) to create counterexamples from
simplified terms. We randomly inserted (one or more) bugs
into various 64x64-bit, 128x128-bit, and 256x256-bit designs
and experimented with 20 different scenarios. Our tool rewrote
each multiplier design and returned simplified terms within
the same amount of time as given in Table II. It took the SAT
solver between 0.1 to 10 seconds to return a counterexample
from rewritten terms. Our previous tool could not be used in
this workflow because it returns massive terms when proof-
attempts fail (see Sec. IV). Using the SAT solver with the
original conjecture (in other words, without rewriting with
our tool) could give a counterexample in some cases after
a few minutes, but it timed out (60 minutes) in the majority
of cases. Additionally, our tool can tell exactly which output
bits are mismatching the specification. With our new method,

we see that our term-rewriting strategy can be very practical
and efficient for debugging flawed designs.

VIII. CONCLUSION

We have presented a term-rewriting method that can be used
to verify digital circuit designs with embedded integer multi-
pliers. Our tool is efficient, automated, and provably correct.
We have shown that we can verify isolated multipliers as large
as 1024x1024-bit in less than 5 minutes. Our system allows
the user to modify the specification per the target design.
Therefore, we can verify multipliers with unusual operand
sizes, whose output may be truncated, right-shifted, rounded
or saturated. In addition, we can verify other multiplier-
centric arithmetic operations such as dot-product and multiply-
accumulate. Our library and tutorials are distributed with the
ACL2 system, and this content is available online for public
use (http://mtemel.com/fmcad21).

This work has been a continuation of our earlier study [7].
With the improvements detailed in this paper, we can verify
Booth encoded designs with a much better proof-time effi-
ciency, along with MAC, dot-product, and merged multiplier
designs. In addition, we can now generate counterexamples for
buggy designs. Moreover, we provide a more comprehensive
summary of various multiplier design techniques and discuss
why they might be challenging for verification tools.

We use the ACL2 programming language and interactive
theorem prover to run and verify our multiplier verification
tool, and we use the SVL semantics as our preferred method
to simulate Verilog designs. However, our term rewriting algo-
rithm does not require any specific feature from a particular a
theorem prover or anything unique to the SVL system. Using
a term rewriter and a simulator with hierarchical reasoning can
be enough to implement our algorithm on any platform.

We have exploited design hierarchy when implementing our
algorithm, whereas the other state-of-the-art tools [3], [4] work
on flattened designs. We should note that these tools more or
less depend on the original design having clear boundaries for
adder modules for their good proof-time performance in the
majority of cases. Our choice to use a symbolic simulation
system that allows hierarchical reasoning reduces engineering
costs and simplifies our program. This way, we do not need
to implement any detection algorithm for adder logic. If
necessary, using our term-rewriting algorithm for flattened
designs might be possible by implementing some preprocess-
ing techniques to reconstruct the design hierarchy. On the
other hand, incorporating hierarchical reasoning into computer
algebra methods may help improve their performance.

We continue to exercise and improve our method with ever
more complex designs such as floating-point multiplication.
We have laid a groundwork to permit verification procedures
with improved automation and efficiency. The convenience
that comes with our fast and automatic verification process can
contribute to building reliable hardware systems that include
embedded integer multipliers of varying sizes, including but
not limited to general-purpose processing units, image proces-
sors, digital signal processors, and secure cryptoprocessors.

61

REFERENCES

[1] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification
of gate-level arithmetic circuits by function extraction,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp.
1–6. [Online]. Available: https://doi.org/10.1145/2744769.2744925

[2] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler,
“Formal Verification of Integer Multipliers by Combining Gröbner Basis
with Logic Reduction,” in Proceedings of the 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). Research Publish-
ing Services, 2016, pp. 1048–1053.

[3] D. Kaufmann, A. Biere, and M. Kauers, “Verifying Large Multipliers
by Combining SAT and Computer Algebra,” in 2019 Formal Methods
in Computer Aided Design (FMCAD), Oct 2019, pp. 28–36.

[4] A. Mahzoon, D. Große, and R. Drechsler, “RevSCA: Using Reverse
Engineering to Bring Light into Backward Rewriting for Big and Dirty
Multipliers,” in Proceedings of the 56th Annual Design Automation
Conference 2019, ser. DAC ’19. New York, NY, USA: ACM, 2019,
pp. 185:1–185:6.

[5] M. Ciesielski, T. Su, A. Yasin, and C. Yu, “Understanding Algebraic
Rewriting for Arithmetic Circuit Verification: a Bit-Flow Model,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[6] A. Mahzoon, D. Große, and R. Drechsler, “PolyCleaner: Clean your
Polynomials before Backward Rewriting to verify Million-gate Multi-
pliers,” 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8, 2018.

[7] M. Temel, A. Slobodova, and W. A. Hunt, “Automated and scalable
verification of integer multipliers,” in Computer Aided Verification.
Cham: Springer International Publishing, 2020, pp. 485–507. [Online].
Available: http://doi.org/10.1007/978-3-030-53288-8%5F23

[8] C. R. Baugh and B. A. Wooley, “A Two’s Complement Parallel Array
Multiplication Algorithm,” IEEE Transactions on Computers, vol. C-22,
pp. 1045–1047, 1973.

[9] A. D. Booth, “A Signed Binary Multiplication Technique,” vol. 4, no. 2.
Oxford University Press (OUP), 1951, pp. 236–240.

[10] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans.
Electronic Computers, vol. 13, pp. 14–17, 1964.

[11] L. Dadda, “Some Schemes for Parallel Multipliers,” 1965.
[12] Brent and Kung, “A Regular Layout for Parallel Adders,” IEEE Trans-

actions on Computers, vol. C-31, no. 3, pp. 260–264, mar 1982.
[13] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation,” Journal

of the ACM (JACM), vol. 27, no. 4, pp. 831–838, oct 1980.
[14] R. E. Bryant and Y.-A. Chen, “”Verification of Arithmetic Functions

with Binary Moment Diagrams”,” in DAC 1994, 1994.
[15] M. A. Basith, T. Ahmad, A. Rossi, and M. Ciesielski, “Algebraic

approach to arithmetic design verification,” in Proceedings of the In-
ternational Conference on Formal Methods in Computer-Aided Design,
ser. FMCAD ’11. Austin, Texas: FMCAD Inc, 2011, p. 67–71.

[16] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel, “An
algebraic approach for proving data correctness in arithmetic data paths,”
in Computer Aided Verification, A. Gupta and S. Malik, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 473–486.

[17] A. Mahzoon, D. Große, C. Scholl, and R. Drechsler, “Towards formal
verification of optimized and industrial multipliers,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), 2020, pp.
544–549.

[18] T. Su, C. Yu, A. Yasin, and M. Ciesielski, “Formal verification of
truncated multipliers using algebraic approach and re-synthesis,” in 2017
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2017, pp.
415–420.

[19] C. Jacobi, K. Weber, V. Paruthi, and J. Baumgartner, “Automatic
formal verification of fused-multiply-add fpus,” in Proceedings of the
Conference on Design, Automation and Test in Europe - Volume 2, ser.
DATE ’05. USA: IEEE Computer Society, 2005, p. 1298–1303.

[20] D. M. Russinoff, Formal Verification of Floating-Point Hardware De-
sign: A Mathematical Approach. Springer, 2019.

[21] W. A. Hunt, S. Swords, J. Davis, and A. Slobodova, “Use of Formal
Verification at Centaur Technology,” in Design and Verification of
Microprocessor Systems for High-Assurance Applications. Springer,
2010, pp. 65–88.

[22] A. Slobodova, J. Davis, S. Swords, and W. A. Hunt, “A Flexible Formal
Verification Framework for Industrial Scale Validation,” in Proceedings
of the 9th IEEE/ACM International Conference on Formal Methods and

Models for Codesign (MEMOCODE). Cambridge, UK: IEEE/ACM,
July 2011, pp. 89–97.

[23] R. Kaivola and N. Narasimhan, “Formal Verification of the Pentium
® 4 Floating-Point Multiplier,” in 2002 Design, Automation and Test
in Europe Conference and Exposition (DATE 2002), 4-8 March 2002,
Paris, France, 2002, pp. 20–27.

[24] W. A. Hunt, M. Kaufmann, Moore, J S., and A. Slobodova, “Industrial
Hardware and Software Verification with ACL2,” Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 375, no. 2104, p. 20150399, sep 2017.

[25] M. Temel, “ACL2 SVL Documentation,” 2019. [Online].
Available: http://www.cs.utexas.edu/users/moore/acl2/manuals/current/
manual/?topic=ACL2 SVL

[26] S. Swords, “New rewriter features in FGL,” Electronic Proceedings in
Theoretical Computer Science, vol. 327, p. 32–46, Sep 2020. [Online].
Available: http://dx.doi.org/10.4204/EPTCS.327.3

[27] S. Swords and J. Davis, “Bit-blasting ACL2 theorems,” Electronic
Proceedings in Theoretical Computer Science, vol. 70, p. 84–102, Oct
2011. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.70.7

[28] S. Swords, “Term-level reasoning in support of bit-blasting,” Electronic
Proceedings in Theoretical Computer Science, vol. 249, p. 95–111,
May 2017. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.249.7

[29] M. Temel, “RP-Rewriter: An optimized rewriter for large terms in
ACL2,” vol. 327. Open Publishing Association, Sep 2020, p. 61–74.
[Online]. Available: http://dx.doi.org/10.4204/EPTCS.327.5

[30] H. R. Chamarthi, “Rewriting in ACL2,” 2021. [Online]. Available: http:
//www.ccs.neu.edu/home/harshrc/courses/cs2800-fall2010/f10-lec26.pdf

[31] M. Temel, “Automated, efficient, and sound verification of integer
multipliers,” Ph.D. dissertation, The University of Texas at Austin, 2021.

[32] ——, “Multgen: a fast multiplier generator,” 2021. [Online]. Available:
https://github.com/temelmertcan/multgen

[33] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi, “Arithmetic module
generator (AMG),” 2006. [Online]. Available: https://www.ecsis.riec.
tohoku.ac.jp/topics/amg/

[34] A. Mahzoon, D. Große, and R. Drechsler, “SCA multiplier generator
GenMul,” 2019. [Online]. Available: http://www.sca-verification.org

[35] D. Kaufmann and A. Biere, “AMulet 2.0 for verifying multiplier
circuits,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems , TACAS 2021., ser. Lecture Notes
in Computer Science, J. F. Groote and K. G. Larsen, Eds., vol. 12652.
Springer, 2021, pp. 357–364.

[36] N. Sörensson and N. Een, “Minisat v1.13-a sat solver with conflict-
clause minimization,” International Conference on Theory and Applica-
tions of Satisfiability Testing, 01 2005.

[37] S. Goel, A. Slobodová, R. Sumners, and S. Swords, “Balancing
automation and control for formal verification of microprocessors,”
in Computer Aided Verification - 33rd International Conference, CAV
2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, ser.
Lecture Notes in Computer Science, A. Silva and K. R. M. Leino,
Eds., vol. 12759. Springer, 2021, pp. 26–45. [Online]. Available:
https://doi.org/10.1007/978-3-030-81685-8 2

62

https://doi.org/10.1145/2744769.2744925
http://doi.org/10.1007/978-3-030-53288-8%5F23
http://www.cs.utexas.edu/users/moore/acl2/ manuals/current/manual/?topic=ACL2____SVL
http://www.cs.utexas.edu/users/moore/acl2/ manuals/current/manual/?topic=ACL2____SVL
http://dx.doi.org/10.4204/EPTCS.327.3
http://dx.doi.org/10.4204/EPTCS.70.7
http://dx.doi.org/10.4204/EPTCS.249.7
http://dx.doi.org/10.4204/EPTCS.327.5
http://www.ccs.neu.edu/home/harshrc/courses/cs2800-fall2010/f10-lec26.pdf
http://www.ccs.neu.edu/home/harshrc/courses/cs2800-fall2010/f10-lec26.pdf
https://github.com/temelmertcan/multgen
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
https://www.ecsis.riec.tohoku.ac.jp/topics/amg/
http://www.sca-verification.org
https://doi.org/10.1007/978-3-030-81685-8_2

Formal Methods in Computer-Aided Design 2021

IC3 with Internal Signals
Rohit Dureja

IBM
Arie Gurfinkel

University of Waterloo
Alexander Ivrii

IBM
Yakir Vizel
The Technion

Abstract—IC3 is a highly-effective algorithm for formal hard-
ware verification. It cleverly uses a SAT solver to compute an
inductive invariant, an over-approximation of reachable states,
of a hardware design. The invariant is computed in CNF as
a conjunction of lemmas. This CNF representation over state
variables, although efficient, leads to an obvious deficiency: IC3 is
not effective for designs that do not have a concise CNF invariant
over state variables. We show how to remedy this deficiency by
extending traditional IC3 to learn invariants not only in terms of
state variables, but also in terms of internal signals of the design.
Our proposed method can learn significantly more compact
invariants than IC3, while maintaining a highly-efficient CNF
representation. We evaluate our technique on several industrial
sequential equivalence checking (SEC) problems from IBM, SEC
problems derived from designs in the Hardware Model Checking
Competition (HWMCC) and SEC problems from academia. In
addition, we evaluate it on HWMCC benchmarks. IC3 with
internal signals is efficient for SEC and outperforms traditional
IC3 on an important class of benchmarks.

I. INTRODUCTION

IC3 [1], [2] is a powerful algorithm for formal hardware
verification, and is the primary model-checking engine in
various state-of-the-art formal verification tools. IC3, and its
several variants [3], is especially useful for establishing system
safety (i.e., discovering an inductive invariant). Whenever IC3
succeeds in proving safety, it finds an inductive invariant
justifying the property. Traditionally, such an invariant is a
conjunction of lemmas represented in CNF, each lemma is
a disjunction of literals, and each literal is either a state
variable or its negation. Conversely, IC3 does not succeed in
proving a property when it is unable to find such an inductive
invariant within the specified verification-resource limits. This
can happen for one of two reasons: (i) a small inductive
invariant exists but IC3 is unable to find it, or (ii) a small
inductive invariant does not exist. It is difficult to determine
which of these two cases is responsible for IC3 failing to prove
a property. Most research on improving IC3 (e.g., [4]–[6])
focuses on quickly finding the inductive invariant. However,
finding the inductive invariant quickly can only help if a
(reasonably) small invariant exists in the first place.

A known Achilles heel of IC3 are model-checking problems
for which any inductive invariant (over state variables) is
necessarily exponential in size. For example, let x1, . . . , xn be
state variables, and suppose that the set of reachable states is
characterized by {x1, . . . , xn | x1⊕· · ·⊕xn = 1}, while the set
of bad states is characterized by {x1, . . . , xn | x1⊕· · ·⊕xn =
0}. In this case the (only) inductive invariant is exponential in
size and contains 2n−1 clauses that correspond to representing
x1 ⊕ · · · ⊕ xn = 1 in CNF. With n = 3, the inductive

invariant contains four clauses: (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨
x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3). A possible
work-around is to extend the design with additional signals
that are necessary to concisely represent an invariant. In this
example, IC3 extended with a lemma over z = x1⊕· · ·⊕xn,
can find a tiny inductive invariant consisting of only a single
unit-clause lemma: (z = 1).

This leads to the question of which additional signals to
consider. A possible solution is to consider variables that
represent logic gates in the transition relation of the system
model. We refer to these as internal nets or innards. Prior
work [7] uses innards to extend ternary valued simulation of
counterexamples to induction in IC3, which enables a succinct
description of the set of states that IC3 must eventually block.
In this paper, we propose an approach based on learning
lemmas directly over innards that improves the performance
of IC3 in establishing safety by finding more concise inductive
invariants. Our method of learning lemmas over internal nets
can be viewed as a form of inductive generalization. A lemma
is first generalized as usual, and then literals corresponding
to latches are replaced by internal nets. Specifically, whenever
IC3 learns a lemma C over state variables, it also tries to
learn an additional lemma C2 over state variables and internal
signals. To this end, we first extend C to a lemma C1

that is logically equivalent to C but contains the literals of
C and (certain) internal nets. We obtain C2 by inductively
generalizing C1, while guiding the inductive generalization to
remove state variables. It is guaranteed that C2 is stronger than
C. Therefore, C2 blocks the same states (and maybe more) as
C. We then add lemma C2 to IC3’s inductive trace, so that it
can be used for predecessor queries and convergence checks.
A major advantage of our approach is that it can be easily
integrated with any existing mature IC3 implementation.

Our work is motivated by a challenging set of microproces-
sor verification problems that arise from the Aspect-Oriented
Design (AOD) methodology used at IBM. The verification
problem checks sequential equivalence of an original design
against a new version of the design with added aspects (e.g.,
clock-gating, logging, or debug interfaces). The complex veri-
fication challenge is broken into many sub-tasks using a com-
bination of the usual sequential equivalence checking (SEC)
approaches, including k-induction, speculative reduction, and
localization [8]–[11]. Verification sub-tasks that are not solved
by these techniques are then checked using Interpolation-based
Model Checking (IMC) or IC3. Traditional IC3 scales very
poorly for these verification problems. On the other hand, IMC
works rather well but is not stable – small changes in the

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 14 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-7152-8115
https://orcid.org/0000-0002-5964-6792
https://orcid.org/0000-0002-5655-1667
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_14
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_14
https://creativecommons.org/licenses/by/4.0/

design negatively impact verification times. The proposed IC3
algorithm with internal signals significantly outperforms both
IMC and traditional IC3.

The proprietary nature of IBM AOD verification problems
prohibits detailed public disclosure. Nevertheless, we apply
the IBM AOD sequential equivalence checking flow on two
selected benchmarks from the Hardware Model Checking
Competition (HWMCC) to validate equivalence between the
original design and its retimed [12] versions. Each such
equivalence-check generates hundreds of verification problems
of which some are solved by k-induction, but a significant
number remain unsolved. We note that IC3 with internal
signals is more effective than traditional IC3 in solving the
remaining equivalences for both SEC problems. We also
apply our algorithm on a small set of publicly available SEC
benchmarks [13] from academia, and note that our proposed
algorithm is able to solve a higher number of equivalences
compared to traditional IC3. This suggests that using internal
nets in IC3 is especially effective for difficult sequential
equivalence checking problems.

To further validate the efficacy of IC3 with internal signals,
we apply the proposed algorithm to a variety of single-property
benchmarks from HWMCC. However, the technique does not
show a significant improvement unlike our experience with
IBM AOD and other benchmarks. There are a few HWMCC
benchmarks that are solved significantly faster and some that
are uniquely solved by our algorithm, but overall, traditional
IC3 is superior. Interestingly, the number of designs where
the new technique succeeds increases in the latest competition
editions that are based on word-level designs. This points
to a deficiency of any benchmark set – the distribution of
problems in the set does not necessarily correspond to their
distribution in practice. Techniques that perform well on only
a few benchmarks in the set, might actually be very effective
in some practical application!

The rest of the paper is organized as follows. Section II
provides the necessary background. Section III describes mo-
tivating examples to highlight the core deficiency of IC3
addressed by our approach. Section IV describes the IC3
algorithm with internal signals, while Section V reports on
our experimental evaluation. Section VI discusses related and
future work, and Section VII concludes.

II. BACKGROUND

A. Safety Verification Problem

We represent a finite state transition system S as a tuple
〈i, x, Init(x),Tr(i, x, x′)〉, which consists of primary inputs i,
state variables x, predicate Init(x) defining the initial states,
and predicate Tr(i, x, x′) defining the transition relation. Next-
state variables are denoted as x′. We assume that Tr is
represented as a netlist, that is, a directed acyclic graph with
nodes corresponding to logic gates. Given the values of x
and i, the values of x′ may thus be uniquely computed by
(constant) propagation – i.e., using Boolean or three-valued
simulation. We say that a net is either an input, a state variable
or a logic gate. We refer to state variables and their negations

as latches, and to internal logic gates and their negations as
innards. We say that an innard is input-free if it does not have
any inputs in its combinational cone-of-influence.

A clause is a disjunction of literals, where each literal is
either a net or its negation. We say that a clause is over
latches to emphasize all the literals in the clause are latches.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. A cube is a conjunction of literals.
A Boolean formula in Disjunctive Normal Form (DNF) is a
disjunction of cubes. It is often convenient to treat a clause
or a cube as a set of literals, a CNF as a set of clauses, and
DNF as a set of cubes. For example, given a CNF formula F ,
a clause c and a literal `, we write ` ∈ c to mean that ` occurs
in c, and c ∈ F to mean that c occurs in F .

A trace is a sequence of Boolean valuations to the nets,
starting with an initial state satisfying Init and with successive
time-step valuations consistent with Tr . Reachable states,
denoted by Reach, are states that can be reached on a trace.
Let Bad(x) be a predicate defining bad (or unsafe) states.
The safety verification problem consists of checking whether
Reach ⇒ ¬Bad , that is either finding a trace that leads to a
state in Bad or showing that such a trace does not exist.

B. Traditional IC3

We give a very brief and high-level description of IC3,
concentrating on the components that are relevant for this
work. This description includes the classical IC3 algorithm [1],
[2], and some of its variants such as [6]. In what follows, we
refer to all these algorithms simply as IC3.

IC3 proves safety by finding a formula Inv(x), called a safe
inductive invariant, that satisfies the following conditions:

Init(x)⇒ Inv(x) (1)
(Inv(x) ∧ ∃i · Tr(i, x, x′))⇒ Inv(x′) (2)
Inv(x)⇒ ¬Bad(x) (3)

The computed formula Inv(x) is in CNF over latches. In-
ternally, IC3 maintains sets of clauses F0, F1, . . . called an
inductive trace. Each Fk in a trace is called a frame, each
clause c ∈ Fk is called a lemma, and the index of a frame
is called a level. We assume that F0 is initialized to Init and
that Init ⇒ ¬Bad . IC3 maintains the following invariant:

F0 = Init Fk+1 ⊆ Fk Fk ∧ Tr ⇒ F ′k+1

Note that the inductive trace maintained by IC3 is syntactically
monotone, and each Fk+1 is inductive relative to Fk. Let
Reach≤k denote the set of states reachable from Init in k
steps or less. It holds that Reach≤k ⇒ Fk, i.e., Fk is an
over-approximation of states reachable in k steps or less.

Additionally, IC3 maintains a queue of proof obligations
(or CTI’s) of the form 〈m, k〉 where m is a cube over latches
and k > 0 is a level. At each point of the execution, it
considers a proof obligation 〈m, k〉, and makes an initial query
SAT?(Init∧¬m) that checks whether a state in m is an initial
state, and a predecessor query SAT?(¬m∧Fk−1 ∧Tr ∧m′)
that checks whether a state in m can be reached from a

64

state in Fk−1. If both results are unsatisfiable, IC3 can add
the lemma ¬m to all Fj , for j ≤ k, refining the inductive
trace. However, for performance it is crucial to inductively
generalize ¬m first, finding a lemma ϕ ⊆ ¬m, that also
satisfies Init ⇒ ϕ and ϕ ∧ Fk−1 ∧ Tr ⇒ ϕ′ (some IC3-
variants such as Quip also keep an under-approximation of
Reach and modify Init to include this under-approximation).
The inductive generalization is typically done by removing
literals from ¬m while the two conditions remain satisfied.
We refer the reader to [3] for more details.

IC3 periodically pushes all lemmas, by checking if a lemma
ϕ ∈ Fk \Fk+1 can be added to Fk+1 as well. If at any point,
Fk = Fk+1 and Fk ⇒ ¬Bad , then we can take Inv = Fk as
the safe inductive invariant.

III. MOTIVATING EXAMPLES

In this section, we motivate our work with several examples.
Each is a series of problems such that inductive invariants in
CNF over latches grow exponentially, while the corresponding
inductive invariants over latches and innards grow linearly. The
examples are sketched briefly here, we provide full details with
AIGER and source files in the companion repository.1 Note
that the examples are distilled to their essence. For some, the
property itself is inductive. Thus, traditional IC3 that learns
invariants over latches and the property is able to solve them.
However, the illustrated problems remain when the examples
are parts of a larger design, and the property is more complex
and is no longer inductive on its own.

Example 1 (Parity) Let x1, . . . , xn be the latches. The set
of reachable states is characterized by {x1, . . . , xn | x1 ⊕
· · · ⊕ xn = 1}. The set of bad states is characterized by
{x1, . . . , xn | x1 ⊕ · · · ⊕ xn = 0}. Note that the only safe
inductive invariant over latches has 2n−1 clauses representing
x1 ⊕ · · · ⊕ xn = 1 in CNF. Yet, there is a safe inductive
invariant consisting of a single lemma, (z = 1), for the innard
z = x1 ⊕ · · · ⊕ xn. 2

Example 2 (from [14]) Consider two counters that count
modulo-2n, whose state bits are s = (s0, . . . , sn−1) and
t = (t0, . . . , tn−1), respectively. Let i be an input. When i = 0
both counters keep their values; when i = 1 both counters
increment their values by one modulo 2n. Suppose that the
initial state is {s 6= t}, and the bad state is {s = t}. The
work [14] argues that any safe inductive invariant for the usual
IC3 must contain at least 2n lemmas. Furthermore, there is a
much smaller safe inductive invariant for the Reverse IC3 that
consists of 2n lemmas required to represent s = t in CNF.
With innards, there is an inductive invariant consisting of a
single lemma, (z = 1), for the innard z = (s 6= t). 2

Example 3 (SEC) This example illustrates a sequential
equivalence checking problem between an original and a
retimed [12] design. Let the “original part” of the design
consist of latches x1, . . . , xn and inputs i1, . . . , in, such that
init(xk) = 0 and next(xk) = ik for k = 1, . . . , n, and a net

1https://github.com/agurfinkel/innard-benchmarks.

z = x1⊕· · ·⊕xn. Let the “retimed part” of the design consist
of a net u = i1 ⊕ · · · ⊕ in and a latch v with init(v) = 0
and next(v) = u. Let the the bad state be {z 6= v}. The only
safe inductive invariant is v ↔ (x1 ⊕ · · · ⊕ xn), that consists
of 2n lemmas in CNF. With innards, an alternative invariant
requires only two lemmas: v → z and z → v. 2

Example 4 This example is motivated by the benchmark
rast-p16 from HWMCC’20. The design contains latches
x1, . . . , xn and y1, . . . , yn, and innards z1 = x1 ∧ y1, . . . ,
zn = xn ∧ yn. Assume that the lemma C = (z1 ∨ · · · ∨ zn)
over innards is inductive. Representing C in CNF over latches
requires 2n lemmas. For example, for n = 3, the lemma
(z1 ∨ z2 ∨ z3) is equivalent to 8 lemmas (x1 ∨ x2 ∨ x3),
(x1 ∨ x2 ∨ y3), (x1 ∨ y2 ∨ x3), (x1 ∨ y2 ∨ y3), (y1 ∨ x2 ∨ x3),
(y1 ∨ x2 ∨ y3), (y1 ∨ y2 ∨ x3), (y1 ∨ y2 ∨ y3). 2

IV. FINDING LEMMAS OVER INNARDS

In this section, we provide an overview of our approach
(Sec. IV-A), followed by an algorithm for extending IC3
lemmas with innards (Sec. IV-B), and finally an algorithm for
inductive generalization in the presence of innards (Sec. IV-C).

A. The overall approach

Traditional IC3 learns lemmas by inductively generalizing
negations of blocked proof obligations. Both proof obligations
and lemmas are over latches. These lemmas are then added to
IC3’s inductive trace and used in future predecessor and con-
vergence checks. In our approach, proof obligations are also
over latches (exactly the same as in traditional IC3), however,
we extend learning lemmas over both latches and innards.
Our results apply to arbitrary innards, but for simplicity of
presentation in the rest of the paper, we restrict to input-free
innards, calling them simply innards. Note that unlike [7], our
restriction is for presentation only. Throughout the section, we
use the following running example.

Example 5 Let w, x, y, z be latches and i be an input. Let

Init , w ∧ x ∧ y ∧ z

Tr , (w′ = ¬w) ∧ (x′ = w) ∧ (y′ = w) ∧
(g = x ∧ y) ∧ (h = g ∧ i) ∧ (z′ = h)

This design has two gates: g = x ∧ y and h = g ∧ i, where g
is input-free and h depends on the input i. Hence, the set of
(input-free) innards is {g}. 2

We extend IC3 to reason about innards in the initial state
and the next state. To this end, let Tr inn be the part of the
transition relation that defines innards, and let Înit , Init ∧
Tr inn and T̂r , Tr ∧ Tr inn

′. In Example 5,

Tr inn = (g = x ∧ y) Înit = Init ∧ (g = x ∧ y)

T̂r = Tr ∧ (g′ = x′ ∧ y′)

where g′ is a copy of g in “the next state”. The following
definition extends relative induction [1] to lemmas over latches
and innards.

65

https://github.com/agurfinkel/innard-benchmarks

Input: Frame k, Lemma C over latches, s.t. C is
inductive relative to Fk

Output: Lemma C2 over latches and innards, s.t. C2 is
inductive relative to Fk

1 C1 ← ExtendLemma(C)
2 C2 ← InductivelyGeneralize(k, C1)
3 return C2

Fig. 1. Procedure LearnAdditionalLemma.

Definition 1 A lemma C over latches and innards is induc-
tive relative to a set of lemmas G iff (i) Înit ⇒ C, and
(ii) G ∧ T̂r ∧ C ⇒ C ′.

Def. 1 generalizes the original definition: if a lemma C
over latches is relatively inductive in the original sense of [1],
then C is also relatively inductive by Def. 1. In what follows,
by relatively inductive, we always mean Def. 1. Continuing
our running example, let C = (w ∨ x) (note that C is over
latches), and C1 = (w ∨ x ∨ g) (note that C1 is over latches
and innards). Then, both C and C1 are inductive relative to
G = >. Note that Înit ⇒ C, > ∧ T̂r ∧ C ⇒ C ′, Înit ⇒ C1,
> ∧ T̂r ∧ C1 ⇒ C ′1 hold.

The following lemma shows that using relatively inductive
(in the sense of Def. 1) lemmas in IC3 is sound.

Lemma 1 (Soundness) For any lemma C over latches and
innards, if Înit ⇒ C and Fk ∧ T̂r ∧ C ⇒ C ′ hold, then C
includes R≤k+1 (all the states reachable in up to k+ 1 steps
from Init). In particular, C can be added to IC3’s inductive
trace up to the frame k + 1.

Our approach of learning lemmas over innards is a
form of inductive generalization. Each time that IC3
blocks a proof obligation and learns a (relatively induc-
tive) lemma over latches, we generalize it into an (addi-
tional) lemma over latches and innards. The overall algorithm
LearnAdditionalLemma is shown in Fig. 1. We give
a high-level overview of LearnAdditionalLemma, while
the details of key functions are described in later sections. The
approach consists of two steps:

Step 1: The procedure ExtendLemma extends lemma C (over
latches) to a lemma C1 = C ∨ C0 (over latches and innards)
such that Tr inn ⇒ (C ⇔ C1), i.e. C and C1 are equivalent
modulo Tr inn. The details are in section IV-B. For instance,
in our example lemmas C = (w ∨ x) and C1 = (w ∨ x ∨ g)
are equivalent, given that g = x ∧ y. Indeed, modulo Tr inn:
(w ∨ x ∨ g) ≡ (w ∨ x ∨ (x ∧ y)) ≡ (w ∨ x). It also follows
(see Lemma 1) that C1 remains relatively inductive.

Step 2: The procedure InductivelyGeneralize induc-
tively generalizes C1 by removing literals, while prioritizing
removal of latches (the original literals of C), and more gener-
ally trying to leave only the “intereresting” innards. The details
are in section IV-C. In our example, lemma C1 = (w∨x∨ g)
can be generalized to C2 = (w ∨ g).

By construction, it follows that C2 remains inductive rela-
tive to Fk. Moreover, as Tr inn ⇒ (C ⇔ C1), and C2 ⇒ C1,
then C2 is potentially stronger than the original lemma C (but
the converse might not hold). In our example, C2 = (w∨g) is
equivalent to (w∨ (x∧y)) = (w∨x)∧ (w∨y), i.e. the lemma
C2 over latches and innards represents two different lemmas
over latches only. It is also interesting to note that while the
original lemma C was over latches {w, x}, the “additional”
lemma (w ∨ y) is over a different set of latches {w, y}.

Whenever ExtendLemma does not add any innards to
C, the procedure LearnAdditionalLemma stops imme-
diately, without calling InductivelyGeneralize. How-
ever, note that even when ExtendLemma adds new lit-
erals, it is possible that InductivelyGeneralize re-
moves them, resulting in the original lemma C! When
LearnAdditionalLemma returns a lemma C2 that is dif-
ferent from C, C2 is also added to IC3’s inductive trace (up
to frame Fk+1), and hence is also used in future predecessor
and pushing queries.

B. Extending lemmas with innards
The procedure ExtendLemma receives a lemma C over

latches as input and returns a lemma C1 over latches and
innards as output. It iteratively finds innards z such that
Tr inn ⇒ (z ⇒ C) and replaces C with C ∨ z. It works
as follows: instead of searching for an innard z that implies
C, it searches for all innards ¬z that are implied by ¬C
and take their negations. Specifically, given a lemma C =
(c1∨· · ·∨cm), we set each ci ∈ C to 0 and find which innards
are implied by constant propagation in the Tr inn part of the
netlist. The algorithm for constant propagation in a netlist is
standard and is not presented here.

Going back to our running example, given a lemma C =
(w ∨ x), we are looking for innards implied by the partial
assignment (w = 0)∧(x = 0). Since g = x∧y, by propagation
we obtain that g = 0. Thus, modulo Tr inn, g ⇒ C, and
hence C is equivalent to (C ∨ g) = (w ∨ x ∨ g). Note that
by not considering input-free innards only (recall, we consider
only input-free innards for simplicity of presentation), then, by
propagation, we would also obtain that h = (g ∧ i) = 0. This
would allow us to extend C to (C ∨ g ∨h) = (w∨x∨ g ∨h).
The following lemma follows by construction.

Lemma 2 Given lemma C over latches, the procedure
ExtendLemma returns a lemma C1 over latches and innards
such that Tr inn ⇒ (C1 ⇔ C).

Corollary 1 Let C and C1 be lemmas over latches and
innards respectively, such that (i) C is inductive relative to
some G, and (ii) Tr inn ⇒ (C1 ⇔ C). Then, C1 is also
inductive relative to G.

We remark that extending lemmas with literals that imply it
is closely related to asymmetric literal addition [15] in SAT.
We also remark that the condition that the original lemma C is
over latches is not essential, and ExtendLemma can be used
to extend lemmas that already have innards in them. This may
be potentially useful for additional IC3 extensions.

66

Input: Frame k, lemma C over latches and innards, s.t.
C is inductive relative to Fk

Output: (Inductively generalized) lemma C2 ⊆ C over
latches and innards, s.t. C2 is inductive relative
to Fk

1 C ← SortLemma(C) // C = {c1, . . . , cn}
2 for i = 1, . . . , n do
3 if ci has already been removed from C then

// do nothing
4 else if Tr inn ⇒ ((C \ ci)⇔ C) then
5 C ← C \ ci
6 else if Înit ⇒ C \ ci and

Fk ∧ T̂r ∧ (C \ ci)⇒ (C \ ci)′ then
7 C ← C \ ci
8 for j = i+ 1, . . . , n do
9 if cj not used in the above proofs then

10 C ← C \ cj
11 else
12 break
13 return C

Fig. 2. Procedure InductivelyGeneralize: inductively generalizes
lemmas over latches and innards.

C. Inductively generalizing lemmas with innards

Inductive generalization in traditional IC3 starts with a
relatively inductive lemma C over latches (satisfying the
conditions Init ⇒ C and Fk ∧ Tr ∧ C ⇒ C ′ with respect
to a given frame Fk), and attempts to remove literals from C
as long as C remains relatively inductive. The same procedure
can be immediately applied to a lemma over latches and
innards, once Înit and T̂r are used instead of Init and Tr ,
respectively. However, we found that a naive application of
inductive generalization gives poor results. In most cases,
it simply removes the innards that were previously added
by ExtendLemma, and therefore, ends up with the original
lemma over latches. Moreover, regular inductive generalization
does not exploit possible dependencies between innards.

Fig. 2 shows a variant of inductive generalization that is
better suited for generalizing lemmas over innards. The first
step (line 1), consists of sorting the nets in the lemma, from
the nets that we want to remove most to the nets that we want
to remove least. In particular, we want to prioritize removal
of latches, so as to obtain a different lemma that we started
with. In our current implementation, we sort the nets by their
logic level, so that latches have the lowest level and deeper
nets in general have higher level. This way deeper nets are
considered “more interesting” and the algorithm attempts to
remove shallower nets first. Other heuristics can be considered
as well, e.g., sorting the nets by the size of the supporting logic,
or even dynamic heuristics that measure the activity of a net
in previously generalized lemmas.

The main loop (lines 3–12) corresponds to inductive gen-
eralization in regular IC3: essentially, we remove literals of
C one by one, as long as C remains relatively inductive. We

provide a detailed description of one iteration of the loop.
Suppose that ci is the literal under consideration.
1) Note that multiple literals can be removed from C in a
single iteration of the loop (this optimization is also present
in regular IC3 inductive generalization), so at the start of the
iteration (line 3), we check if ci has already been removed. If
so, nothing needs to be done.
2) Lines 4–5 correspond to a special optimization that exploits
dependencies between innards: in some cases, we can detect
that ci can be removed without requiring a SAT query. For
instance, ci can be removed when one of the following
conditions holds:
(i) ci = a ∧ b, with a ∈ C,
(ii) ci = a ∨ b, with a, b ∈ C, or
(iii) there is an innard d ∈ C with d = ci ∨ b.
For example, suppose that C = (a∨c∨d) and {d = (b∨c)} ∈
Tr inn. Then, modulo Tr inn, C ⇔ (C \ c), i.e. (a ∨ c ∨ d)
can be replaced by (a∨d). This closely corresponds to hidden
literal elimination technique in SAT [16], and can be viewed
as the inverse of the argument used in ExtendLemma.
3) Line 6 checks whether ci can be removed using two SAT-
queries. One query checks the validity of Înit ⇒ (C \ ci), by
checking whether Înit ∧ ¬(C \ ci) is unsatisfiable. The other
query checks the validity of Fk ∧ T̂r ∧ (C \ ci)⇒ (C ′ \ c′i) by
checking whether Fk∧T̂r∧(C\ci)∧¬(C ′\c′i) is unsatisfiable.
If both of these queries are unsatisfiable, ci can be removed.
4) IC3 has the following standard optimization based on
considering which of the literals of (C \ ci) were potentially
required for unsatisfiability: if cj ∈ C was not required
for either checks, then cj can be removed. This is typically
implemented by passing the literals of ¬(C \ ci) via SAT
assumptions and analyzing the set of conflicting assumptions; a
mechanism supported by most modern SAT-solvers, following
MINISAT [17]. However, simply removing all non-required
literals regardless of their order in C is more likely to remove
the “more interesting” literals that we want to keep. So, our
variant of this optimization (lines 8–12) only removes non-
required literals with respect to the order. As an example,
suppose that C = (c1 ∨ c2 ∨ c3 ∨ c4 ∨ c5 ∨ c6) (in this order),
and that only the literals c4 and c6 were potentially required
for unsatisfiability queries involving C \ c1. In addition to
removing c1, we also remove c2 and c3, but not c5, and at the
end of the iteration of the loop, C = (c4∨c5∨c6). Intuitively,
this works better because leaving c5 in the lemma increases
the chances to remove c5 and to leave c6 (and not vice versa)
on the following iterations of the loop. Lastly, in most cases
an assumption-based SAT-solver applies assumptions in the
order as they are given, hence, the assumptions appearing
earlier are more likely to remain (while later assumptions
are more likely to be removed). Therefore, when performing
the SAT queries, we reverse the order of assumption literals,
for instance when checking whether c1 can be removed from
C = (c1 ∨ c2 ∨ c3 ∨ c4 ∨ c5 ∨ c6), the assumptions are ordered
from c6 to c2 (and not from c2 to c6).

Note that during the regular inductive generalization (i.e.,

67

when computing the original lemma over latches) it is benefi-
cial to make multiple passes over the main loop (lines 3–12).
However, when generalizing lemmas over innards, performing
multiple passes has not proven to be useful, so we only
perform a single pass.

Lemma 3 Given a lemma C1 over latches and innards, the
InductivelyGeneralize procedure returns a lemma C2

that is relatively inductive with respect to Fk.

Going back to our running example, suppose that C1 =
(w ∨ x ∨ g) is inductive relative to Fk = >. The procedure
SortLemma is not likely to change the order of nets, as the
latches already appear first. On the first iteration of the main
loop, we attempt to remove w, but this fails as the SAT query
> ∧ T̂r ∧ (x ∨ g) ∧ ¬x′ ∧ ¬g′ is satisfiable. On the second
iteration, we attempt to remove x, and succeed, reducing C1

to (w∨g). Finally, we attempt to remove g, which again fails.
The final lemma returned by the algorithm is C2 = (w ∨ g).

V. EXPERIMENTS

In this section, we present our experimental results. The
techniques described in this paper are implemented in the IBM
formal verification tool Rulebase: Sixthsense Edition [18]. In
what follows, we denote by IC3 the default variant of IC3
used by the tool (see [6]), and by IC3-INN the variant with the
additional learning of lemmas over innards. For these experi-
ments, we restrict to input-free innards. Table I summarizes the
experiments. The table contains the benchmark set (explained
in detail later), the number of instances in this set, time-limit
per instance, and the data on performance of IC3 and IC3-INN.
All the instances either are or expected to be unsatisfiable.
For both IC3 and IC3-INN, we list the number of solved
instances, and in parentheses – the number of uniquely solved
instances (that is, not solved by the other configuration), and
the cumulative runtime in seconds. Next, we describe each
benchmark set in detail.

A. IBM-AOD-SEC

This set of benchmarks comes from checking sequential
equivalence between two designs in the Aspect Oriented
Design flow at IBM. This SEC problem is very challenging,
and is traditionally solved as described in [8], [9], using spec-
ulative reduction to reduce the problem into multiple simpler
(but still hard) sub-problems. These are then solved using
a dedicated engine configuration consisting of combinational
rewriting, k-induction, localization, and, eventually, a proof-
based technique like IC3. Historically, Interpolation (IMC)
was used for the final step. Generally IMC works well, but
unfortunately, it’s not stable – small changes in the design
or in the solving configuration significantly affect verification
times. While trying to find an alternative configuration, it
was discovered that IC3 performs very poorly, while IC3-INN
significantly outperforms all other approaches.

In total, there are 3 605 sub-problems. Each sub-problem
contains 1–45 properties, 11–165 state elements, 126–2 290
inputs, and 754–15 924 gates. The (input-free) innards on

(a) Solved vs. Runtime (b) Invariant size

Fig. 3. Performance of IC3 and IC3-INN on AOD SEC benchmarks.

average constitute 3% of the gates. For this experiment, we
run both IC3 and IC3-INN with a time-limit of 300 seconds
per problem. Referring to Table I, regular IC3 peforms very
poorly: it can solve only 2 562 of the sub-problems and times
out in the 1 043 remaining cases. On the other hand, IC3-INN
performs extremely well: it can solve all of the problems, with
the maximum run-time being only 36 seconds. Interestingly,
IMC performs much better than IC3 on this set of problems
and is also able to solve all problems (albeit about 13 times
slower than IC3-INN). See the cactus plot in Fig. 3a for the
detailed comparison between IC3, IC3-INN, and IMC.

A further comparison consists of comparing the number of
lemmas in the safe inductive invariants discovered by IC3 and
IC3-INN respectively. The scatter plot Fig. 3b shows this data
for the 2 562 instances solved by both configurations. We can
see that IC3-INN discovers invariants that are significantly
more compact, with the inductive invariants discovered by
IC3-INN being on average 12× smaller than the invariants
discovered by IC3. This partially explains the success of IC3-
INN compared to IC3 on this set of benchmarks.

We also give data on the effectiveness of
LearnAdditionalLemma, averaged across all 3 605
test-cases. On average, the original lemma C (over
latches) has 7 latches; ExtendLemma adds 10 innards;
InductivelyGeneralize shrinks the lemma to 2
latches and 1 innards. The average logic level of innards
is 7. Thus, LearnAdditionalLemma is able to produce
significantly shorter lemmas using deep innards in the design.

Unfortunately, this benchmark set is proprietary and cannot
be publicly released at this time.

B. 6s119-SEC, 6s22-SEC

Inspired by the success of IC3-INN on internal IBM bench-
marks, we tried to manually create similar test-cases starting
from publicly available benchmarks. Specifically, we have
taken several HWMCC designs, and created problems to check
sequential equivalence between the original design and the
retimed design [12]. We have further applied the SEC flow
described above, consisting of breaking the main problem into
multiple sub-problems using speculative reduction. It turns
out that creating interesting benchmark sets in this way is
non-trivial: in many cases the speculatively reduced problems
turn out to be very easy, in many other cases some of these
speculatively reduced problems turn out to be satisfiable (in

68

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

benchmarks #instances time-limit per instance IC3 solved (unique) IC3 time IC3-INN solved (unique) IC3-INN time

IBM-AOD-SEC 3 605 300 2 562 (0) 424 885 3 605 (1 043) 2 465

6s119-SEC 364 600 364 (0) 2 906 364 (0) 1 207
6s22-SEC 310 600 262 (22) 32 701 278 (38) 24 774

AES-SEC 16 3 600 13 (0) 11 186 15 (2) 5 601

HWMCC11 278 3 600 277 (6) 40 186 272 (1) 55 557
HWMCC17 76 3 600 76 (0) 7 963 76 (0) 11 221
HWMCC20 192 3 600 190 (5) 35 907 187 (2) 41 448

(a) 6s119-SEC (b) 6s22-SEC

Fig. 4. Runtime of IC3 and IC3-INN on 6s119-SEC and 6s22-SEC.

the real SEC flow this would trigger refinement and another
speculative reduction). Nevertheless, we have created two
benchmark sets 6s22-SEC and 6s119-SEC, available at https://
github.com/agurfinkel/innard-benchmarks. The set 6s119-SEC
consists of 364 rather easy problems, so that both IC3 and
IC3-INN can solve all of them within 600 seconds, with IC3-
INN being about 2.4× faster. The set 6s22-SEC consists of
310 problems, out of which IC3 can solve 262 problems and
IC3-INN can solve 278 within 600 seconds. Please refer to
Table I. Again, IC3-INN performs better than IC3, and is on
average 1.3× faster. A more precise comparison is given in
scatter plots in Fig. 4. A detailed comparison against IMC
is not included as on both sets of problems IMC performs
significantly worse than either IC3 or IC3-INN (for instance,
within 600 seconds IMC cannot solve 64 out of 364 problems
even for the easy set 6s119-SEC).

C. Other SEC benchmarks; AES-SEC

As far as we know, there are no publicly available large SEC
benchmark sets. HWMCC competitions do include several
SEC benchmarks. However, in general we do not know which
benchmarks come from SEC or what kind of application they
represent. We believe it would be valuable to have a dedicated
repository for SEC benchmarks.

The AES-SEC benchmark set was used in [13]. We have
obtained this set from the authors of [13] in BTOR format,
and translated it to AIGER. The AIGER benchmarks are
available at https://github.com/agurfinkel/innard-benchmarks.
In total, there are 16 problems, 12 of which turn out to be
very easy for both IC3 and IC3-INN. Out of the 4 remaining

(a) HWMCC’11 (b) HWMCC’17 (c) HWMCC’20

Fig. 5. Runtime of IC3 and IC3-INN on HWMCC benchmarks.

problems, IC3 can solve 1, and IC3-INN can solve 3. Please
see Table I for details.

D. HWMCC benchmarks

We have run extensive experiments on the single-
property benchmarks from HWMCC’11, HWMCC’17 and
HWMCC’20 competitions (for the latter, we used the bench-
marks in the AIGER format). In each case, we run simple
combinational reductions prior to running IC3, and used the
time-limit of 3 600 seconds. In Table I, we only report data
for passing benchmarks that were solved either by IC3 or IC3-
INN. In general, IC3-INN performs worse than IC3 both in
terms of the number of properties solved and the total runtime.
Detailed comparisons are presented as scatter plots in Fig. 5.

Table II presents data for 4 selected benchmarks. The
benchmark rast-p16 is very interesting: regular IC3 times out,
yet IC3-INN solves the testcase in just 2 seconds. Futhermore,
this benchmark was solved by relatively few tools in the
HWMCC’20 competition. By closely examining the lemmas
learned by IC3-INN exposed the pattern from Example 4
from Section III. In other words, IC3-INN learns lemmas
over innards, each equivalent to a very large number of
lemmas over latches. This potentially explains the success
of IC3-INN in this case. Another noteworthy benchmark is
zipversa composecrc prf-p10, which IC3-INN solves under
5 minutes, and which was solved only by one tool in the
HWMCC’20 competition. The other two benchmarks ex-
posed a certain inefficiency in our current implementation of
IC3-INN. One can check that there are significantly more
innards in the selected test-cases (and in HWMCC test-
cases in general) as compared to IBM-AOD-SEC designs.
The procedure InductivelyGeneralize starts taking a
significant portion of the overall runtime, which negatively

69

https://github.com/agurfinkel/innard-benchmarks
https://github.com/agurfinkel/innard-benchmarks
https://github.com/agurfinkel/innard-benchmarks

TABLE II
SELECTED DESIGNS FROM HWMCC’20

Benchmark #gates #innards IC3 time IC3-INN time

rast-p16 3 019 332 timed-out 2
zipversa...prf-p10 1 688 694 timed-out 282
h RCU 920 442 3 410 timed-out
dspfilters fastfir...p45 21 301 5 289 2 381 timed-out

affects performance of IC3 when the lemmas over innards do
not seem to help.

VI. RELATED AND FUTURE WORK

The technique presented in this paper can be viewed as
an extension of regular IC3 that simply learns an additional
lemma during inductive generalization. As such, it is reason-
ably easy to integrate it in an existing IC3 implementation.
The main technical point being replacing Init by Înit and Tr
by T̂r in IC3’s SAT queries. The key difference with other
inductive generalization schemes (see for instance [3]) is that
we are able to learn lemmas over both state variables and
internal nets, which, in some cases, may exponentially reduce
the size of the inductive invariant.

Backes and Riedel [7] also exploit internal nets in the
design. However, the two approaches are very different: [7]
uses input-free innards to generalize proof obligations (POBs),
while we use arbitrary innards to generalize lemmas. Addi-
tionally, [7] uses only input-free innards (and, in fact, only
the nets on the boundary between input-free and non input-
free parts of the netlist), while we use all internal nets.
Even more importantly, in our work the decision of which
innards to include in the lemma was based on the ability to
inductively generalize this lemma and not whether the innards
are “boundary” or not. Above notwithstanding, it is interesting
to combine the two approaches, i.e., to allow both proof-
obligations and lemmas over internal nets. It is also interesting
to more carefully integrate our approach with Quip [6]. Quip
uses negations of lemmas as proof obligations, which would
also introduce innards into POBs.

Another very interesting direction for further research is to
extend the approach to learn lemmas over signals that are not
present in the original netlist. Our framework allows such an
extension: by including additional logic into the netlist (that is,
creating additional innards), we would be able to learn lemmas
over this new logic (even if this new logic is not in the cone-
of-influence of the original problem!). This is closely related
to implicit predicate abstraction of Tonetta et al. [19] that is
used to lift propositional IC3 to SMT-based logics.

Finally, we believe that there is a lot of room
to improve the current implementation. Currently, when
there are many innards in the design, the procedure
InductivelyGeneralize may require a large number of
SAT queries, and, hence, may take a considerable portion of
the overall runtime. Possibly, one can find better heuristics
of which innards to consider (e.g., only to consider innards

with high logic level, or only to consider higher-priority
innards), or find more efficient procedures to perform inductive
generalization (e.g., instead of the top-down approach that
removes literals one can consider a bottom-up approach that
adds literals). In the worst-case, if learning additional lemmas
takes a considerable amount of time, but does not seem useful,
the technique can be simply turned off.

A further extension of our approach is to allow lemmas
to be arbitrary formulas, not restricted to clauses in CNF.
This is commonly done in SMT-based extensions of IC3 algo-
rithms. For example, Sally [20] uses arbitrary SMT-formulas
as lemmas, and Spacer [21] uses clauses over complex First
Order signature. However, these techniques are difficult to
port efficiently in the context of Hardware Model Checker
since they rely on dynamic cnfization that is common in SMT-
solvers but not in SAT-solvers.

VII. CONCLUSION

Currently, IC3 is unquestionably the most effective tech-
nique for formal symbolic model checking. It has received a
lot of research attention, and has been extended in variety of
ways including better inductive generalization, better lemma
management, and search direction. However, one significant
hidden limitation remains – IC3 is limited to learning inductive
invariants in CNF over the latches (i.e., state variables) of
the design. Therefore, IC3 cannot be effective for any design
whose invariant has no concise CNF representation. No im-
provements in core IC3 parts can solve this problem.

In this paper, we propose to address this limitation by
extending IC3 to learn lemmas not only over latches, but
also over internal signals, that we call innards. We show
learning lemmas over innards is a natural generalization of
inductive generalization. Instead of simply dropping literals
to strengthen the lemma, we propose to replace literals by
internal signals that are forced by them. We also propose sev-
eral improvements to a naive strategy that lead to significantly
improved performance.

Our work is motivated by a specialized set of Sequen-
tial Equivalence Checking (SEC) benchmarks at IBM. These
benchmarks have been traditionally difficult for IC3, but not
for Interpolation (IMC). However, the performance of inter-
polation was not stable – being affected by small changes in
the verification flow. Our new implementation excels on these
benchmarks and leads to an order of magnitude improvement
in performance.

Unfortunately, similar performance gains do not manifest
on the publicly available HWMCC benchmarks that are the
de-facto metric for academic model checking research. We
believe this shows deficiency in the currently available bench-
marks. Techniques that might be effective in industry might
be missed by researchers since they do not perform well on
these benchmarks. To remedy this, we identified some publicly
available benchmarks, and created new benchmarks based on
SEC flow, that illustrate the advantage of our technique. We
hope this can stimulate further research and improvements to
IC3.

70

In the current work, we assume that the design is fixed, and
use internal signals that are already available. We think that
this opens an interesting direction by allowing IC3 to change
the design by synthesizing new innards that are useful for
a current verification run. This brings IC3 and interpolation
much closely together, and also paves way for bringing al-
gorithms from hardware verification to software verification,
and/or to word level.

ACKNOWLEDGMENTS

The authors would like to thank Jason Baumgartner, Robert
Kanzelman, Raj Kumar Gajavelly, Ziv Nevo, Hongce Zhang,
Sharad Malik, Alan Mishchenko, and Baruch Sterin. This work
was supported, in part, by Individual Discovery Grant from the
Natural Sciences and Engineering Research Council of Canada
and IBM Faculty Fellowship.

REFERENCES

[1] A. R. Bradley, “Sat-based model checking without unrolling,” in
Verification, Model Checking, and Abstract Interpretation - 12th
International Conference, VMCAI 2011, Austin, TX, USA, January
23-25, 2011. Proceedings, ser. Lecture Notes in Computer Science,
R. Jhala and D. A. Schmidt, Eds., vol. 6538. Springer, 2011, pp. 70–87.
[Online]. Available: https://doi.org/10.1007/978-3-642-18275-4 7

[2] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” in International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, Austin,
TX, USA, October 30 - November 02, 2011, P. Bjesse and
A. Slobodová, Eds. FMCAD Inc., 2011, pp. 125–134. [Online].
Available: http://dl.acm.org/citation.cfm?id=2157675

[3] A. Griggio and M. Roveri, “Comparing Different Variants of the
IC3 Algorithm for Hardware Model Checking,” IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 35, no. 6, pp. 1026–1039, Jun 2016.

[4] Y. Vizel, O. Grumberg, and S. Shoham, “Lazy abstraction and
sat-based reachability in hardware model checking,” in Formal Methods
in Computer-Aided Design, FMCAD 2012, Cambridge, UK, October
22-25, 2012, G. Cabodi and S. Singh, Eds. IEEE, 2012, pp. 173–181.
[Online]. Available: http://ieeexplore.ieee.org/document/6462570/

[5] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in
IC3,” in Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013. IEEE, 2013, pp. 157–164.
[Online]. Available: http://ieeexplore.ieee.org/document/6679405/

[6] A. Gurfinkel and A. Ivrii, “Pushing to the top,” in Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September
27-30, 2015, R. Kaivola and T. Wahl, Eds. IEEE, 2015, pp. 65–72.

[7] J. D. Backes and M. D. Riedel, “Using cubes of non-state variables
with property directed reachability,” in Design, Automation and Test in
Europe, DATE 13, Grenoble, France, March 18-22, 2013, E. Macii,
Ed. EDA Consortium San Jose, CA, USA / ACM DL, 2013, pp.
807–810. [Online]. Available: https://doi.org/10.7873/DATE.2013.171

[8] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen,
“Scalable sequential equivalence checking across arbitrary design
transformations,” in 24th International Conference on Computer Design
(ICCD 2006), 1-4 October 2006, San Jose, CA, USA. IEEE, 2006,
pp. 259–266. [Online]. Available: https://doi.org/10.1109/ICCD.2006.
4380826

[9] H. Mony, J. Baumgartner, A. Mishchenko, and R. K. Brayton,
“Speculative reduction-based scalable redundancy identification,” in
Design, Automation and Test in Europe, DATE 2009, Nice, France,
April 20-24, 2009, L. Benini, G. D. Micheli, B. M. Al-Hashimi, and
W. Müller, Eds. IEEE, 2009, pp. 1674–1679. [Online]. Available:
https://doi.org/10.1109/DATE.2009.5090932

[10] R. Brayton, N. Een, and A. Mishchenko, “Using speculation for sequen-
tial equivalence checking,” in 21st International Workshop on Logic &
Synthesis, IWLS 2012, 2012.

[11] R. Dureja, J. Baumgartner, R. Kanzelman, M. Williams, and K. Y.
Rozier, “Accelerating Parallel Verification via Complementary Property
Partitioning and Strategy Exploration,” in Proceedings of Formal Meth-
ods in Computer-Aided Design (FMCAD). Haifa, Israel: IEEE/ACM,
Sep. 2020.

[12] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in Computer Aided Verification, 13th
International Conference, CAV 2001, Paris, France, July 18-22,
2001, Proceedings, ser. Lecture Notes in Computer Science, G. Berry,
H. Comon, and A. Finkel, Eds., vol. 2102. Springer, 2001, pp. 104–117.
[Online]. Available: https://doi.org/10.1007/3-540-44585-4 10

[13] H. Zhang, W. Yang, G. Fedyukovich, A. Gupta, and S. Malik,
“Synthesizing environment invariants for modular hardware
verification,” in Verification, Model Checking, and Abstract
Interpretation - 21st International Conference, VMCAI 2020, New
Orleans, LA, USA, January 16-21, 2020, Proceedings, ser. Lecture
Notes in Computer Science, D. Beyer and D. Zufferey, Eds.,
vol. 11990. Springer, 2020, pp. 202–225. [Online]. Available:
https://doi.org/10.1007/978-3-030-39322-9 10

[14] T. Seufert and C. Scholl, “Sequential verification using reverse PDR,” in
Methoden und Beschreibungssprachen zur Modellierung und Verifikation
von Schaltungen und Systemen, MBMV 2017, Bremen, Germany, Febru-
ary 8-9, 2017, D. Große and R. Drechsler, Eds. Shaker Verlag, 2017,
pp. 79–90.

[15] M. Järvisalo, M. Heule, and A. Biere, “Inprocessing rules,” in
Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings, ser. Lecture
Notes in Computer Science, B. Gramlich, D. Miller, and U. Sattler,
Eds., vol. 7364. Springer, 2012, pp. 355–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-31365-3 28

[16] M. Heule, M. Järvisalo, and A. Biere, “Efficient CNF simplification
based on binary implication graphs,” in Theory and Applications of
Satisfiability Testing - SAT 2011 - 14th International Conference,
SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, ser.
Lecture Notes in Computer Science, K. A. Sakallah and L. Simon,
Eds., vol. 6695. Springer, 2011, pp. 201–215. [Online]. Available:
https://doi.org/10.1007/978-3-642-21581-0 17

[17] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, ser. Lecture Notes in Computer Science, E. Giunchiglia and
A. Tacchella, Eds., vol. 2919. Springer, 2003, pp. 502–518. [Online].
Available: https://doi.org/10.1007/978-3-540-24605-3 37

[18] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and
A. Kuehlmann, “Scalable automated verification via expert-system
guided transformations,” in Formal Methods in Computer-Aided
Design, 5th International Conference, FMCAD 2004, Austin, Texas,
USA, November 15-17, 2004, Proceedings, ser. Lecture Notes
in Computer Science, A. J. Hu and A. K. Martin, Eds.,
vol. 3312. Springer, 2004, pp. 159–173. [Online]. Available:
https://doi.org/10.1007/978-3-540-30494-4 12

[19] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “IC3 modulo theories
via implicit predicate abstraction,” in Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference,
TACAS 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings, ser. Lecture Notes in Computer Science, E. Ábrahám
and K. Havelund, Eds., vol. 8413. Springer, 2014, pp. 46–61. [Online].
Available: https://doi.org/10.1007/978-3-642-54862-8 4

[20] D. Jovanovic and B. Dutertre, “Property-directed k-induction,” in 2016
Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain
View, CA, USA, October 3-6, 2016, R. Piskac and M. Talupur, Eds.
IEEE, 2016, pp. 85–92.

[21] A. Komuravelli, A. Gurfinkel, and S. Chaki, “SMT-Based Model Check-
ing for Recursive Programs,” in Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, ser.
Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds., vol.
8559. Springer, 2014, pp. 17–34.

71

https://doi.org/10.1007/978-3-642-18275-4_7
http://dl.acm.org/citation.cfm?id=2157675
http://ieeexplore.ieee.org/document/6462570/
http://ieeexplore.ieee.org/document/6679405/
https://doi.org/10.7873/DATE.2013.171
https://doi.org/10.1109/ICCD.2006.4380826
https://doi.org/10.1109/ICCD.2006.4380826
https://doi.org/10.1109/DATE.2009.5090932
https://doi.org/10.1007/3-540-44585-4_10
https://doi.org/10.1007/978-3-030-39322-9_10
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-642-21581-0_17
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-30494-4_12
https://doi.org/10.1007/978-3-642-54862-8_4

Formal Methods in Computer-Aided Design 2021

Single Clause Assumption without
Activation Literals to Speed-up IC3

Nils Froleyks
nils.froleyks@jku.at

Johannes Kepler University, Linz, Autstria

Armin Biere
biere@cs.uni-freiburg.de

Albert–Ludwigs–University, Freiburg, Germany

Abstract—We extend the well-established assumption-based
interface of incremental SAT solvers to clauses, allowing the
addition of a temporary clause that has the same lifespan as
literal assumptions. Our approach is efficient and easy to im-
plement in modern CDCL-based solvers. Compared to previous
approaches, it does not come with any memory overhead and does
not slow down the solver due to disabled activation literals, thus
eliminating the need for algorithms like IC3 to restart the SAT
solver. All clauses learned under literal and clause assumptions
are safe to keep and not implicitly invalidated for containing an
activation literal. These changes increase the quality of learned
clauses, resulting in better generalization for IC3. We implement
the extension in the SAT solver CaDiCaL and evaluate it with the
IC3 implementation in the model checker ABC. Our experiments
on the benchmarks from a recent hardware model checking
competition show a speedup for the average SAT call and a
reduction in number of calls per verification instance, resulting
in a substantial improvement in model checking time.

INTRODUCTION

Modern SAT solving is based on Conflict-Driven Clause
Learning (CDCL) [1]. Many applications require solving a
sequence of related SAT problems incrementally [2], [3],
making use of inprocessing techniques [4], [5], [6] that make
modern SAT solvers so efficient. Among those applications
is the symbolic model checking algorithm IC3. In contrast
to other incremental SAT-based techniques, such as bounded
model checking (BMC) [7], [8] and k-induction [9], [10],
IC3 does not rely on unrolling the transition function. As a
result the SAT queries that IC3 poses are significantly smaller
and faster to solve. However, the number of queries that IC3
makes over the course of one model checking procedure is
significantly higher. We illustrate the kind of queries that IC3
makes in the following example.

000 001 010 011 100 101 110 111

Fig. 1. Transition system

Consider the transition system of a three-bit (b2b1b0)
counter, encoding integers up to seven, in Fig. 1. Non-
deterministically, the counter is incremented, remains un-
changed or is reset to zero after reaching five. Suppose we
want to ensure that starting at state zero, all states with

values greater than five are unreachable. A typical query asks
“is state six reachable from any other state?”, expressed as
SAT?[T ∧ (¬b2 ∨ ¬b1 ∨ b0) ∧ b′2 ∧ b′1 ∧ ¬b′0], where T
encodes the transition system for one step from b2b1b0 to
b′2b
′
1b
′
0. It is unsatisfiable, telling us that state six is in fact

unreachable. We can try to generalize this result to a set of
states by considering a cube – an assignment to a subset of
variables. The query SAT?[T ∧ (¬b1 ∨ b0) ∧ b′1 ∧ ¬b′0] is
satisfiable because state two can be reached from state one
and SAT?[T ∧ (¬b2 ∨ b0)∧ b′2 ∧¬b′0] is satisfiable due to the
transition from state three to state four. However, the query
SAT?[T ∧ (¬b2 ∨¬b1)∧ b′2 ∧ b′1] is unsatisfiable, allowing us
to conclude that all states in the cube b2∧b1 are not reachable
from outside the cube. We can use that insight to strengthen
T by adding ¬b′2∨¬b′1 to all future queries. This is in contrast
to the clauses we previously added for only one query.

The popular assumption-based interface pioneered by
MiniSat [2], [8] allows the user to specify a set of literals that
are assumed to be true and picked by the solver as the first
decisions. This allows us to add the assumption that a state
is within a certain cube after the transition (b′2 ∧ b′1), however
we still need to assume an additional clause encoding that the
state is currently not within said cube (¬b2 ∨ ¬b1). The most
common way to implement clause assumption, is to simulate
the desired behavior using activation literals [8], [11]. Let C
be a clause to add temporarily and a, the activation literal, a
free variable, i.e., it does not occur in the formula. By adding
C∨a to the formula and assuming ¬a, we achieve the same as
adding C to the formula. After a solution is found, the clause
a is added, effectively removing C from the formula.

The problem with IC3 specifically, is the large number of
queries made over the course of a single verification procedure.
After a few hundred calls the activation literals clutter up the
variable space and slow down the SAT solvers propagation.
The common solution to this problem is to fully restart the
SAT solver by replacing it with a fresh instance periodically,
thus also deleting all learned clauses and heuristic scores. How
to schedule these restarts in IC3 specifically, has been the topic
of a full journal paper [12]. Using the technique presented in
this paper, restarts are not necessary at all. Additionally learned
clauses are safe to keep and will not contain an activation
literal, which would make them useless for future calls.

Other approaches to clause assumption have been explored:
The logic solver Satire [13] supports pseudo-Boolean and

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_15 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0003-3925-3438
https://orcid.org/0000-0001-7170-9242
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_15
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_15
https://creativecommons.org/licenses/by/4.0/

other constraints. It records the dependencies of learned
constraints explicitly, thus allowing the deletion of arbitrary
clauses. In the SMT community, an interface based on pushing
and popping on the assertion stack is prevalent [14]. Since
constraints are removed in order, it is possible to mark a point
in the data structures that maintain learned knowledge and
remove everything past it, when a pop operation is executed.
The first implementation of IC3 [15] used the SAT solver
Zchaff [16]. It assigns an additional 32-bit integer to each
clause. When learning a clause the bits of all dependencies are
combined. The user can delete a group of clauses with a certain
bit. This approach mostly simulates the use of activation
literals and comes with a significant memory overhead.

This paper presents an extension of the prevalent assumption
mechanism to additionally allow the assumption of a single
clause, called constraint in the following. The extension can
be implemented by a simple modification to the decision
mechanism in a CDCL-based SAT solver. We implemented
it in under 100 lines of code in the state-of-the-art SAT solver
CaDiCaL. To evaluate our implementation we modify the IC3
engine in the model checker ABC to use CaDiCaL and clause
assumption. As a first result, the changes simplify SAT solver
usage and eliminate the need for restarts as well as some book-
keeping for activation literals. An empirical evaluation on the
2019 hardware model checking competition [17] benchmark
set shows that ABC spends less time outside of computing
SAT queries, the number of queries per verification is reduced
and the average SAT call is faster. Overall using clause
assumptions yields a substantial speedup in verification time.

INCREMENTAL SAT AND IC3
An incremental SAT solver solves a series of related formu-

las efficiently. It communicates with an application integrating
it through an interface such as IPASIR [11]. It is implemented
by all solvers participating in the incremental library track of
the SAT Competition since 2015. The popular solver MiniSat
along with all of its incremental descendants implement some-
thing very similar. We describe the relevant subset:
• add(lit) Add a literal to the current clause or if it

equals 0, add the clause to the formula.
• assume(lit) Assume the literal to be true for the next

solving attempt.
• solve() Return SAT if an assignment exists satisfying

the formula and all assumptions, otherwise UNSAT.
• val(lit) Valid in SAT-case. Return the truth value of

a literal in the satisfying assignment.
• failed(lit) Valid in UNSAT-case. Return true if the

literal was assumed and used to prove unsatisfiability.
A prominent applications of incremental SAT-solving is the
symbolic model checking algorithm IC3 by Bradley [15].
Given a transition system and a property P , IC3 tries to prove
that it is not possible to reach a state that violates the property.
It maintains a sequence of frames F0, F1, . . . Fk, each frame Fi

is a formula encoding an overapproximation of the set of states
reachable in at most i steps. The frames are refined by adding
additional clauses until one of the frames contains all reachable

states and none violates the property or a counterexample is
found. Each frame has its own SAT solver instance that is
initialized with an encoding of the transition function and
updated with the new frame clauses.

The solvers are used almost exclusively to answer queries
for predecessors of the form SAT?[T ∧ Fi ∧ ¬s ∧ s′], where
T is the transition function and s is a cube. To refine the
frames, a state s in the last frame that violates the property
is identified with the query SAT?[Fk ∧ ¬P]. If no such state
exists, a new frame is appended, otherwise IC3 tries to prove
that the state is not actually reachable. The frames are queried
for predecessors until an initial state is reached, thus producing
a counterexample, or one of the frames returns unsat. In the
latter case failed can be used to generalize the unreachable
state to a cube, the negation of which is added to the frame.
IC3 is guaranteed to eventually terminate with two consecutive
frames containing the same set of states.

ASSUMING CLAUSES

Our main contribution is an extension to incremental SAT
solvers that allows the assumption of an additional clause,
called constraint, which is only valid during the next satisfia-
bility query. Two functions are added to the interface:
• constrain(lit) Adds a literal to constraint. If a

finalized constraint exists, delete it. If the literal equals
zero, finalizes the current constraint.

• constraint_failed() Valid in UNSAT case. Re-
turn whether constraint was used to prove unsatisfiability.

Our approach is similar to the idea of model elimination [18].
We modify the decision heuristic to restrict the search to
assignments that satisfy the constraint. The modified decision
procedure is outlined in Fig. 2. The function decide is called
initially at decision level 0. Decisions assigned to the trail
are propagated outside of the function to assign truth values.
Whenever a conflict arises, the decision level decreases and
the assignments are backtracked [1]. Every assumption has a
fixed decision level. In the case where an assumption is already
satisfied, a pseudo decision level is introduced. Otherwise if an
assumed literal is assigned to false at this point, the assignment
is the result of propagating other assumptions together with
original or learned clauses. Therefore the formula is proven
unsatisfiable under the current assumptions if line 4 is reached.

At the first decision level after all assumptions have been
assigned, three cases need to be considered: if one of the
literals in the constraint is already satisfied, the search is not
restricted. Otherwise one of the literals is picked as a decision
to satisfy the constraint. In line 13 a variable selection heuristic
can be used to pick the most promising literals first, similarly
to [19], [20]. In the case where all literals are assigned to false,
they are implied by the assumptions, thus cannot be assigned
differently. The formula is therefore declared unsatisfiable
under the assumptions and the constraint. This might only
happen after additional clauses have been learned.

This approach to handle assumptions was pioneered by
MiniSat [2]. It has been improved upon by collectively propa-
gating the assumptions, using trail saving between incremental

73

decide ()

1 if level < |assumptions|
2 ` = assumptions[level]
3 if val(`) = false

4 analyzeFinal()
5 else if val(`) = true

6 level++ // pseudo decision level

7 else trail[level++] = `

8 else if level = |assumptions|
9 unassignedLit = 0
10 for ` in constraint
11 if val(`) = true

12 level++ // pseudo decision level

13 else if val(`) = unassigned

14 unassigendLit = `

15 if unassigendLit = 0
16 analyzeFinalConstraint() // cannot be satisfied

17 else trail[level++] = unassigendLit
18 else
19 ` = literalSelectionHeuristic()
20 trail[level++] = `

Fig. 2. Algorithm decide picks the next decision to propagate.

calls [21] or factoring out assumptions [22]. These techniques
can be combined with the presented constraint mechanism.

Modern SAT solvers not only report unsatisfiability as a
result, but also allow the user to query whether a particular
assumption failed, i.e., was used to prove unsatisfiability. This
concept, introduced as analyzeFinal by MiniSat [23], is
essential for the efficiency of many applications. If an original
or learned clause is inconsistent with the assumptions, the
last assumption picked as a decision is already assigned to
false. Using a simple breadth-first search, the reasons for
this assignment can be traced back through the implication
graph [1]. The assumptions at the leaves of the search tree
are marked as failed. In line 16, a similar search is initialized
with the negation of every literal in the constraint. Thus, all as-
sumptions necessary to prove unsatisfiability of the constraint
in conjunction with the formula are marked as failed.

EXPERIMENTS

We implemented the constraint interface in CaDiCaL [24]
version 1.3.1. To increase confidence in the correctness of
the SAT solver and its new extension, we used the model-
based tester [25] that is integrated with CaDiCaL. It generates
random sequences of API calls including assumptions and
constraints together with random configurations for the solver.
The returned models and failed assumption sets are checked
for correctness. We ran the tester on 8 cores for multiple days
to validate 1.2 billion test runs.

To evaluate our approach, we integrated CaDiCaL into the
bit-level model checker ABC1 [26], replacing the integrated
version of MiniSat [2]. There are two places where acti-
vation literals are used in ABC. The first is an alternative
implementation of cube generalization, that is not used in the
default configuration. In fact, it seems to not work correctly
in the default version of ABC1. The other usage of activation
literals is in the function that implements the predecessor query
SAT?[T ∧ Fi ∧ ¬s ∧ s′]. The transition function T and the
frame Fi will only be extended with additional clauses, the
cube s however changes at each query. The next-step cube s′

is in conjunction with the rest of the formula and therefore
translates to a set of unit clauses that can be implemented
with assumptions. To combat the slowdown due to unused ac-
tivation literals cluttering up the variable space, ABC replaces
the SAT solver with a new instance after adding 300 activation
literals. Using the extended interface, the negated cube ¬s can
be added as a constraint, thus eliminating the restarts.

We tested five configurations: the original version of
ABC (Og), disabled SAT solver restarts (Di), a version with
CaDiCaL as backend using activation literals (Ca) and one
also using CaDiCaL but the new constraint interface instead
of activation literals (Co). As an additional result we present a
slight modification to the last configuration that defers model
reconstruction [6] in the SAT-case and failed literal collection
in the UNSAT-case until a model or a failed literal is queried
respectively (De). Using a heuristic to pick the literals from
the constraint has not been successful. ABC uses a priority
metric to order the literals of the cube s by default. Using
this order for the constraint turned out to be superior to the
heuristics available in CaDiCaL.

Our evaluation follows the principles laid out in SAT
manifesto v1.0. [27]. The source code used for the evaluation
and the generated log files are available on our website2. The
experiments are run in parallel on 32 nodes of our cluster.
Each node has access to two 8-core Intel Xeon E5-2620 v4
CPUs running at 2.10 GHz (turbo-mode disabled) and 128 GB
main memory. We allocate 4 instances of ABC to every node.
The time limit is set to 1 hour of wall-clock time, memory
is limited to 30GB per instance. The memory limit is the
only aspect that differs from the setup used in the hardware
model checking competition. However, the maximum memory
consumption was observed to be below 1.5GB.

The evaluation is based on the benchmark set used in
the 2019 model checking competition [17]. It contains 219
instances, 15 of which we removed because they were not
solved by any tested configuration. We use PAR-2 scoring
to compare the configurations. PAR-2 assigns the runtime in
seconds or twice the time limit (7200) if an instance was not
solved. The other columns list additional measurements for
the two configurations using CaDiCaL, one with activation
literals (Ca) and the other using constraints instead (Co).
The number of restarts is zero if constraints are used and

1commit f87c8b4
2http://fmv.jku.at/assumingclauses

74

https://github.com/berkeley-abc/abc/commit/f87c8b434a3024972c6bc85c072d80adbed3e778
http://fmv.jku.at/assumingclauses

TABLE I
EXPERIMENTAL RESULTS.

PAR-2 Res. Calls TpC

Di Og Ca Co De Ca Ca Co Ca Co

Mean 80 46 16 8.93 8.21 61 19 15 0.61 0.51

beemTele6Int 136 7200 53 181 101 520 157 574 0.24 0.27
toyLock4 7200 483 1731 357 359 7459 2251 1098 0.42 0.25
visArraysField5 7200 1.6 0.58 51 34 1 1 113 0.53 0.41
nan 208 421 163 158 140 1381 420 423 0.29 0.32
beemColl6Int 241 258 322 133 108 398 123 91 2.31 1.24
cal110 213 168 130 110 122 191 59 42 1.96 2.39
cal109 179 197 102 117 86 110 34 44 2.71 2.44
cal93 186 136 121 118 140 206 63 58 1.69 1.8
cal94 127 160 115 95 131 171 52 41 1.94 2.1
cal100 112 42 67 67 54 148 45 44 1.23 1.29
cal131 46 44 77 58 60 136 42 35 1.58 1.41
cal146 47 39 71 42 38 131 41 23 1.51 1.55
cal136 34 46 59 43 35 100 31 23 1.62 1.59
cal128 52 38 46 37 40 99 31 25 1.29 1.27
beemExit5Int 51 17 26 16 15 357 110 86 0.18 0.15
cal134 38 47 50 48 36 79 25 26 1.72 1.57
cal132 39 36 48 42 32 83 26 24 1.57 1.54
cal144 30 34 41 33 42 64 20 17 1.7 1.64
beemLampNat5Int 26 23 23 35 31 193 61 102 0.28 0.3
cal89 16 14 32 33 25 68 22 18 1.23 1.6
beemRether4Bstep 13 4.29 16 7.16 6.99 91 29 13 0.42 0.49
beemBrp2Int 16 5.1 3.6 0.76 0.74 86 29 7 0.08 0.07
beemFrogs2Bstep 2.47 2.53 12 5.59 4.74 31 10 4 1.12 1.27
beemAdding5Int 1.78 3.9 2.07 1.12 1.09 53 17 11 0.08 0.07
visArraysTwo 1.35 2.89 3.89 0.57 0.55 99 30 5 0.09 0.07
Heap 2.02 1.9 3.38 1.68 1.63 57 22 13 0.11 0.09
Disable restarts, Original version of ABC, CaDiCaL backend, Constraint interface used, Defer model reconstruction

therefore not shown. Besides that, we list the number of SAT
calls (in thousands), along with the average time per call in
milliseconds. Table I presents the measured data for instances,
where at least one configuration took more than two seconds,
along with an average over all 204 instances.

Comparing the first two columns, it is evident that if
activation literals are used, solver restarts are necessary. It has
been suggested [12] that because the queries posed by IC3 are
small but numerous, IC3 implementations should prefer faster
SAT solvers to more powerful ones. Comparing the original
with the CaDiCaL version shows that while using MiniSat is
faster on a number of instances, using CaDiCaL seems to be
an advantage on the harder instances. In fact, using the newer
SAT solver, one additional instance can be verified. Over all
instances a speedup of 2.82 is observed.

With the version using CaDiCaL and activation literals as
a baseline, we observe a speedup of 1.84 when switching to
constraints. The time spend outside the SAT solver is reduced
to below 20%, by eliminating the actual SAT solver restarts
and the repeated loading of the transition relation [28]. Beyond
that, the average SAT call is 16% faster. This can partially be
explained by the solver not being slowed down by activation
literals. We conjecture that, more importantly, the “quality”
of the learned clauses in the solvers database is higher. Since
clauses are not deleted by restarts and none of the learned
clauses are implicitly disabled for containing an activation
literal, the solver can profit from shorter and more useful

clauses. Measuring this quality however, is outside the scope
of this paper. An additional effect is that these clauses allow
conflicts earlier in the search tree, resulting in fewer failed
literals and thus allows for better generalization in IC3. This
can explain why 21% fewer calls are made.

The last two columns listing PAR-2 scores reflect small
changes in the solver. Deferring the model reconstruction
results in an additional speedup of 9%, increasing the total
speedup compared to the original version to 5.64.

CONCLUSION

We present a simple extension to the commonly used
incremental SAT solver interface IPASIR that simplifies solver
usage and is easy to implement by modern SAT solvers. The
extension gives an alternative to the techniques described in
the journal paper [12] and partially implemented in ABC.
Our experiments using the new technique with ABC show
a substantial improvement in model checking time. Compared
to the original IC3 engine, our final implementation is more
than five times faster.

Handling more than one constraint can be achieved by using
a complete model elimination search over the constraints.
This would however increase the implementation effort. Addi-
tionally, inprocessing techniques cannot be applied, therefore
model elimination might be less effective than using activation
literals, if the number of temporary clauses is high. We leave
this investigation to future work.

75

Acknowledgements: This work is supported by the Austrian
Science Fund (FWF); projects W1255-N23 / S11408-N23 as
well as the LIT AI Lab funded by the State of Upper Austria.

REFERENCES

[1] Marques-Silva, Joao and Lynce, Ines and Malik, Sharad, “Chapter
4. Conflict-Driven Clause Learning SAT Solvers,” in Handbook of
Satisfiability: Second Edition, Biere, Armin and Heule, Marijn and van
Maaren, Hans and Walsh, Toby, Ed. IOS Press, feb 2021.

[2] Eén, Niklas and Sörensson, Niklas, “An Extensible SAT-Solver,” in
Theory and Applications of Satisfiability Testing, ser. Lecture Notes in
Computer Science, Giunchiglia, Enrico and Tacchella, Armando, Ed.
Berlin, Heidelberg: Springer, 2004, pp. 502–518.

[3] Audemard, Gilles and Lagniez, Jean-Marie and Simon, Laurent, “Im-
proving Glucose for Incremental SAT Solving with Assumptions,” in
Theory and Applications of Satisfiability Testing – SAT 2013, ser. Lecture
Notes in Computer Science, Järvisalo, Matti and Van Gelder, Allen, Ed.
Berlin, Heidelberg: Springer, 2013, pp. 309–317.

[4] Eén, Niklas and Biere, Armin, “Effective Preprocessing in SAT Through
Variable and Clause Elimination,” in Theory and Applications of Sat-
isfiability Testing, ser. Lecture Notes in Computer Science, Bacchus,
Fahiem and Walsh, Toby, Ed. Berlin, Heidelberg: Springer, 2005, pp.
61–75.

[5] Järvisalo, Matti and Heule, Marijn J. H. and Biere, Armin, “Inprocess-
ing Rules,” in Automated Reasoning, ser. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2012, pp. 355–370.

[6] Fazekas, Katalin and Biere, Armin and Scholl, Christoph, “Incremental
Inprocessing in SAT Solving,” in Theory and Applications of Satisfiabil-
ity Testing – SAT 2019, ser. Lecture Notes in Computer Science, Janota,
Mikoláš and Lynce, Inês, Ed. Cham: Springer International Publishing,
2019, pp. 136–154.

[7] Biere, Armin and Cimatti, Alessandro and Clarke, Edmund and Zhu,
Yunshan, “Symbolic Model Checking without BDDs,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, Cleaveland, W. Rance, Ed. Berlin,
Heidelberg: Springer, 1999, pp. 193–207.

[8] Eén, Niklas and Sörensson, Niklas, “Temporal Induction by Incremen-
tal SAT Solving,” Electronic Notes in Theoretical Computer Science,
vol. 89, no. 4, pp. 543–560, jan 2003.

[9] Bjesse, Per and Claessen, Koen, “SAT-Based Verification without State
Space Traversal,” in Formal Methods in Computer-Aided Design, ser.
Lecture Notes in Computer Science, Hunt, Warren A. and Johnson,
Steven D., Ed. Berlin, Heidelberg: Springer, 2000, pp. 409–426.

[10] Sheeran, Mary and Singh, Satnam and Stålmarck, Gunnar, “Checking
Safety Properties Using Induction and a SAT-Solver,” in Formal Meth-
ods in Computer-Aided Design, ser. Lecture Notes in Computer Science,
Hunt, Warren A. and Johnson, Steven D., Ed. Berlin, Heidelberg:
Springer, 2000, pp. 127–144.

[11] Balyo, Tomáš and Biere, Armin and Iser, Markus and Sinz, Carsten,
“SAT Race 2015,” Artificial Intelligence, vol. 241, pp. 45–65, dec 2016.

[12] Cabodi, G. and Camurati, P. E. and Mishchenko, A. and Palena, M. and
Pasini, P., “SAT Solver Management Strategies in IC3: An Experimental
Approach,” Formal Methods in System Design, vol. 50, pp. 39–74, mar
2017.

[13] Whittemore, J. and Kim, J. and Sakallah, K., “SATIRE: A New
Incremental Satisfiability Engine,” in Proceedings of the 38th Design
Automation Conference (IEEE Cat. No.01CH37232), jun 2001, pp. 542–
545.

[14] Barrett, Clark and Stump, Aaron and Tinelli, Cesare and others, “The
Smt-Lib Standard: Version 2.0,” in Proceedings of the 8th Interna-
tional Workshop on Satisfiability modulo Theories (Edinburgh, England),
vol. 13, 2010, p. 14.

[15] Bradley, Aaron R., “SAT-Based Model Checking without Unrolling,” in
Verification, Model Checking, and Abstract Interpretation, ser. Lecture
Notes in Computer Science, Jhala, Ranjit and Schmidt, David, Ed.
Berlin, Heidelberg: Springer, 2011, pp. 70–87.

[16] Fu, Zhaohui and Marhajan, Yogesh and Malik, Sharad, “Zchaff Sat
Solver,” 2004.

[17] Preiner, Mathias and Biere, Armin, “Hardware Model Checking Com-
petition 2019,” http://fmv.jku.at/hwmcc19/, 2019.

[18] Van Gelder, Allen, “Autarky Pruning in Propositional Model Elimination
Reduces Failure Redundancy,” Journal of Automated Reasoning, vol. 23,
no. 2, pp. 137–193, aug 1999.

[19] Goldberg, Evguenii I. and Novikov, Yakov, “BerkMin: A Fast and
Robust Sat-Solver,” in 2002 Design, Automation and Test in Europe
Conference and Exposition (DATE 2002), 4-8 March 2002, Paris,
France. IEEE Computer Society, 2002, pp. 142–149.

[20] Gershman, Roman and Strichman, Ofer, “HaifaSat: A New Robust
SAT Solver,” in Hardware and Software Verification and Testing, First
International Haifa Verification Conference, Haifa, Israel, November
13-16, 2005, Revised Selected Papers, ser. Lecture Notes in Computer
Science, Ur, Shmuel and Bin, Eyal and Wolfsthal, Yaron, Ed., vol. 3875.
Springer, 2005, pp. 76–89.

[21] Hickey, Randy and Bacchus, Fahiem, “Speeding Up Assumption-Based
SAT,” in Theory and Applications of Satisfiability Testing – SAT 2019,
ser. Lecture Notes in Computer Science, Janota, Mikoláš and Lynce,
Inês, Ed. Cham: Springer International Publishing, 2019, pp. 164–182.

[22] Lagniez, Jean-Marie and Biere, Armin, “Factoring Out Assumptions to
Speed Up MUS Extraction,” in Theory and Applications of Satisfiability
Testing – SAT 2013, ser. Lecture Notes in Computer Science, Järvisalo,
Matti and Van Gelder, Allen, Ed. Berlin, Heidelberg: Springer, 2013,
pp. 276–292.

[23] Eén, Niklas and Sörensson, Niklas, “MiniSat Page,” http://minisat.se/.
[24] Biere, Armin, “Cadical, Lingeling, Plingeling, Treengeling and Yalsat

Entering the Sat Competition 2018,” Proceedings of SAT Competition,
pp. 14–15, 2017.

[25] Artho, Cyrille and Biere, Armin and Seidl, Martina, “Model-Based
Testing for Verification Back-Ends,” in Tests and Proofs, ser. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp.
39–55.

[26] Brayton, Robert and Mishchenko, Alan, “ABC: An Academic Industrial-
Strength Verification Tool,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, Touili, Tayssir and Cook, Byron and
Jackson, Paul, Ed. Berlin, Heidelberg: Springer, 2010, pp. 24–40.

[27] Biere, Armin and Järvisalo, Matti and Le Berre, Daniel and Meel,
Kuldeep S. and Mengel, Stefan, “The SAT Practitioner’s Manifesto,”
sep 2020.

[28] Vizel, Y. and Grumberg, O. and Shoham, S., “Lazy Abstraction and
SAT-Based Reachability in Hardware Model Checking,” in 2012 Formal
Methods in Computer-Aided Design (FMCAD), oct 2012, pp. 173–181.

76

Formal Methods in Computer-Aided Design 2021

Logical Characterization of Coherent Uninterpreted
Programs

Hari Govind V K
University of Waterloo

Sharon Shoham
Tel-Aviv University

Arie Gurfinkel
University of Waterloo

Abstract—An uninterpreted program (UP) is a program whose
semantics is defined over the theory of uninterpreted functions.
This is a common abstraction used in equivalence checking,
compiler optimization, and program verification. While simple,
the model is sufficiently powerful to encode counter automata,
and, hence, undecidable. Recently, a class of UP programs, called
coherent, has been proposed and shown to be decidable. We
provide an alternative, logical characterization, of this result.
Specifically, we show that every coherent program is bisimilar
to a finite state system. Moreover, an inductive invariant of a
coherent program is representable by a formula whose terms
are of depth at most 1. We also show that the original proof, via
automata, only applies to programs over unary uninterpreted
functions. While this work is purely theoretical, it suggests a
novel abstraction that is complete for coherent programs but
can be soundly used on arbitrary uninterpreted (and partially
interpreted) programs.

I. INTRODUCTION

The theory of Equality with Uninterpreted Functions (EUF)
is an important fragment of First Order Logic, defined by a
set of functions, equality axioms, and congruence axioms. Its
satisfiability problem is decidable. It is a core theory of most
SMT solvers, used as a glue (or abstraction) for more complex
theories. A closely related notion is that of Uninterpreted
Programs (UP), where all basic operations are defined by
uninterpreted functions. Feasibility of a UP computation is
characterized by satisfiability of its path condition in EUF.
UPs provide a natural abstraction layer for reasoning about
software. They have been used (sometimes without explicitly
being named), in equivalence checking of pipelined micro-
procesors [1], and equivalence checking of C programs [17].
They also provide the foundations of Global Value Numbering
(GVN) optimization in many modern compilers [6], [8], [12].

Unlike EUF, reachability in UP is undecidable. That is, in
the lingua franca of SMT, the satisfiability of Constrained
Horn Clauses over EUF is undecidable. Recently, Mathur et
al. [9], have proposed a variant of UPs, called coherent unin-
terpreted program (CUPs). The precise definition of coherence
is rather technical (see Def. 3), but intuitively the program is
restricted from depending on arbitrarily deep terms. The key
result of [9] is to show that both reachability of CUPs and
deciding whether an UP is coherent are decidable. This makes
CUP an interesting infinite state abstraction with a decidable
reachability problem.

Unfortunately, as shown by our counterexample in Fig. 4
(and described in Sec. VI), the key construction in [9] is
incorrect. More precisely, the proofs of [9] hold only of

CUPs restricted to unary functions. In this paper, we address
this bug. We provide an alternative (in our view simpler)
proof of decidability and extend the results from reachability
to arbitrary model checking. The case of non-unary CUPS
is much more complex than unary. This is not surprising,
since similar complications arise in related results on Uniform
Interpolation [4] and Cover [5] for EUF.

Our key result is a logical characterization of CUP. We show
that the set of reachable states (i.e., the strongest inductive
invariant) of a CUP is definable by an EUF formula, over
program variables, with terms of depth at most 1. That is, the
most complex term that can appear in the invariant is of the
form v ≈ f(w⃗), where v and w⃗ are program variables, and f
a function.

This characterization has several important consequences
since the number of such bounded depth formulas is finite.
Decidability of reachability, for example, follows trivially by
enumerating all possible candidate inductive invariants. More
importantly from a practical perspective, it leads to an efficient
analysis of arbitrary UPs. Take a UP P , and check whether
it has a safe inductive invariant of bounded terms. Since
the number of terms is finite, this can be done by implicit
predicate abstraction [3]. If no invariant is found, and the
counterexample is not feasible, then P is not a CUP. At this
point, the process either terminates, or another verification
round is done with predicates over deeper terms. Crucially,
this does not require knowing whether P is a CUP apriori –
a problem that itself is shown in [9] to be at least PSPACE.

We extend the results further and show that CUPs are
bisimilar to a finite state system, showing, in particular, that
arbitrary model checking for CUP (not just reachability) is
decidable.

Our proofs are structured around a series of abstractions,
illustrated in a commuting diagram in Fig. 1. Our key ab-
straction is the base abstraction αb. It forgets terms deeper
than depth 1, while maintaining all their consequences (by
using additional fresh variables). We show that αb is sound
and complete (i.e., preserves all properties) for CUPs (while,
sound, but not complete for UP). It is combined with a
cover abstraction αC, that we borrow from [5]. The cover
abstraction ensures that reachable states are always expressible
over program variables. It serves the purpose of existential
quantifier elimination, that is not available for EUF. Finally,
a renaming abstraction αr is a technical tool to bound the
occurrences of constants in abstract reachable states.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 16 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-2789-5997
https://orcid.org/0000-0002-7226-3526
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_16
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_16
https://creativecommons.org/licenses/by/4.0/

⃝ △ ▽

□

αb αr

αC

Fig. 1: Sequence of abstractions used in our proofs.

The rest of the paper is structured as follows. We review
the necessary background on EUF in Sec. II. We introduce our
formalization of UPs and CUPs in Sec. III. Sec. IV presents
bisimulation inducing abstractions for UP. Sec. V presents our
base abstraction and shows that it induces a bisimulation for
CUPs. Sec. VI develops logical characterization for CUPs,
presents our decidability results, and shows that a finite state
abstraction of CUPs is computable. We conclude the paper in
Sec. VII with summary of results and a discussion of open
challenges and future work.

II. BACKGROUND

We assume that the reader is familiar with the basics of
First Order Logic (FOL), and the theory of Equality and
Uninterpreted Functions (EUF). We use Σ = (C,F , {≈, ̸≈})
to denote a FOL signature with constants C, functions F ,
and predicates {≈, ̸≈}, representing equality and disequality,
respectively. A term is a constant or (well-formed) application
of a function to terms. A literal is either x ≈ y or x ̸≈ y,
where x and y are terms. A formula is a Boolean combination
of literals. We assume that all formulas are quantifier free
unless stated otherwise. We further assume that all formulas
are in Negation Normal Form (NNF), so negation is defined
as a shorthand: ¬(x ≈ y) ≜ x ̸≈ y, and ¬(x ̸≈ y) ≜ x ≈ y.
Throughout the paper, we use ▷◁ to indicate a predicate in
{≈, ̸≈}. For example, {x ▷◁ y} means {x ≈ y, x ̸≈ y}. We
write ⊥ for false, and ⊤ for true. We do not differentiate
between sets of literals Γ and their conjunction (

⋀︁
Γ). We

write depth(t) for the maximal depth of function applications
in a term t. We write T (φ), C(φ), and F(φ) for the set of all
terms, constants, and functions, in φ, respectively, where φ is
either a formula or a collection of formulas. Finally, we write
t[x] to mean that the term t contains x as a subterm.

For a formula φ, we write Γ |= φ if Γ entails φ, that is
every model of Γ is also a model of φ. For any literal ℓ, we
write Γ ⊢ ℓ, pronounced ℓ is derived from Γ, if ℓ is derivable
from Γ by the usual EUF proof system PEUF .1 By refutational
completeness of PEUF , Γ is unsatisfiable iff Γ ⊢ ⊥.

Given two EUF formulas φ1 and φ2 and a set of constants
V ⊆ C, we say that the formulas are V -equivalent, denoted
φ1 ≡V φ2, if, for all quantifier free EUF formulas ψ such that
C(ψ) ⊆ V , (φ1 ∧ ψ) |= ⊥ if and only if (φ2 ∧ ψ) |= ⊥.

Example 1 Let φ1 = {x1 ≈ f(a0, x0), y1 ≈ f(b0, y0), x0 ≈
y0}, φ2 = {x1 ≈ f(a0, w), y1 ≈ f(b0, w)}, φ3 = {x1 ≈
f(a0, x0), y1 ≈ f(b0, y0)}, and V = {x1, y1, a0, b0}. Then,
φ1 ≡V φ2 but φ1 ̸≡V φ3. ✷

1Presented in our companion technical report [7].

⟨stmt⟩ ::= skip | ⟨var⟩ := ⟨var⟩ | ⟨var⟩ := f(⟨var⟩⃗) |
assume (⟨cond⟩) | ⟨stmt⟩ ; ⟨stmt⟩ |
if (⟨cond⟩) then ⟨stmt⟩ else ⟨stmt⟩ |
while (⟨cond⟩) ⟨stmt⟩

⟨cond⟩ ::= ⟨var⟩ = ⟨var⟩ | ⟨var⟩ ̸= ⟨var⟩
⟨var⟩ ::= x | y | · · ·

Fig. 2: Syntax of the programming language UPL.

While EUF does not admit quantifier elimination, it does
admit elimination of constants while preserving quantifier free
consequences. Formally, a cover [2], [4], [5] of an EUF
formula φ w.r.t. a set of constants V is an EUF formula ψ
such that C(ψ) ⊆ C(φ) \ V and φ ≡C(φ)\V ψ. By [5], such ψ
exists and is unique up to equivalence; we denote it by CV ·φ.

III. UNINTERPRETED PROGRAMS

An uninterpreted program (UP) is a program in the uninter-
preted programming language (UPL). The syntax of UPL is
shown in Fig. 2. Let V denote a fixed set of program variables.
We use lower case letters in a special font: x, y, etc. to denote
individual variables in V. We write y⃗ for a list of program
variables. Function symbols are taken from a fixed set F . As
in [9], w.l.o.g., UPL does not allow for Boolean combination
of conditionals and relational symbols.

The small step symbolic operational semantics of UPL is
defined with respect to a FOL signature Σ = (C,F , {≈, ̸≈})
by the rules shown in Fig. 3. A program configuration is a
triple ⟨s, q, pc⟩, where s, called a statement, is a UP being
executed, q : V → C is a state mapping program variables to
constants in C, and pc, called the path condition, is a EUF
formula over Σ. We use C(q) ≜ {c | ∃v · q(v) = c} to
denote the set of all constants that represent current variable
assignments in q. With abuse of notation, we use C(q) and q
interchangebly. We write ≡q to mean ≡C(q).

For a state q, we write q[x ↦→ x′] for a state q′ that is
identical to q, except that it maps x to x′. We write ⟨e, q⟩ ⇓ v
to denote that v is the value of the expression e in state q, i.e.,
the result of substituting each program variable x in e with
q(x), and replacing functions and predicates with their FOL
counterparts. The value of e is an FOL term or an FOL formula
over Σ. For example, ⟨x = y, [x ↦→ x, y ↦→ y]⟩ ⇓ x ≈ y.

Given two configurations c and c′, we write c → c′ if c
reduces to c′ using one of the rules in Fig. 3. Note that there
is no rule for skip – the program terminates once it gets into
a configuration ⟨skip, q, pc⟩.

Let C0 = {v0 | v ∈ V} ⊆ C be a set of initial constants. In
the initial state q0 of a program, every variable is mapped to
the corresponding initial constant, i.e., q0(v) = v0.

The operational semantics induces, for an UP P , a transition
system SP = ⟨C, c0,R⟩, where C is the set of config-
urations, c0 ≜ ⟨P, q0,⊤⟩ is the initial configuration, and
R ≜ {(c, c′) | c → c′}. A configuration c of P is reachable

78

⟨skip ; s, q, pc⟩ → ⟨s, q, pc⟩

⟨s1, q, pc⟩ → ⟨s′1, q′, pc′⟩
⟨s1 ; s2, q, pc⟩ → ⟨s′1 ; s2, q′, pc′⟩

⟨c, q⟩ ⇓ v (pc ∧ v) ̸|= ⊥
⟨assume(c), q, pc⟩ → ⟨skip, q, pc ∧ v⟩

⟨e, q⟩ ⇓ v x′ ∈ C(Σ) is fresh in pc

⟨x := e, q, pc⟩ → ⟨skip, q[x ↦→ x′], pc ∧ x′ = v⟩

⟨if (c) then s1 else s2, q, pc⟩ → ⟨assume(c) ; s1, q, pc⟩

⟨if (c) then s1 else s2, q, pc⟩ → ⟨assume(¬c) ; s2, q, pc⟩

⟨while (c) s, q, pc⟩ →
⟨if (c) then (s ;while (c) s) else skip, q, pc⟩

Fig. 3: Small step symbolic operational semantics of UPL,
where ¬c denotes x ̸= y when c is x = y, and x = y when c
is x ̸= y.

if c is reachable from c0 in SP . We denote the set of all
reachable configurations in SP using Reach(SP). The set of
all statements in the semantics of P , including the intermediate
statements, are called locations of P , and are denoted by
L(P). We often use P and SP interchangeably.

Our semantics of UPL differs in some respects from the
one in [9]. First, we follow a more traditional small-step
operational semantics presentation, by providing semantics
rules and the corresponding transition system. However, this
does not change the semantics conceptually. More importantly,
we ensure that the path condition remains satisfiable in all
reachable configurations (by only allowing an assume state-
ment to execute when it results in a satisfiable path condition).
We believe this is a more natural choice that is also consistent
with what is typically used in other symbolic semantics. UP
reachability under our semantics coincides with the definition
of [9].

Definition 1 (UP Reachability) Given an UP P , determine
whether there exists a state q and a path condition pc s.t., the
configuration ⟨skip, q, pc⟩ is reachable in P . ✷

A certificate for unreachability of location s, is an inductive
assertion map η (or an inductive invariant) s.t. η(s) = ⊥.

Definition 2 (Inductive Assertion Map) Let Σ0 ≜
(C0,F , {≈, ̸≈}), be restriction of Σ to C0. An inductive
assertion map of an UP P , is a map η : L(P) → EUF (Σ0)
s.t. (a) η(P) = ⊤, and (b) if ⟨s, q0, η(s)⟩ → ⟨s′, q′, pc′⟩, then
pc′ |= (η(s′)[v0 ↦→ q′(v) | v ∈ V]). ✷

In [9], a special sub-class of UPs has been introduced with
a decidable reachability problem.

Definition 3 (Coherent Uninterpreted Program [9]) An
UP P is coherent (CUP) if all of the reachable configurations

1 x := t;
2 y := t;
3 while (c != d) {
4 x := n(x);
5 y := n(y);
6 c := n(c);
7 };
8 x := f(a, x);
9 y := f(b, y);

10 assume(a == b);
11 assume(x != y);

x0 ≈ t0
x0 ≈ t0 ∧ y0 ≈ t0
x0 ≈ y0
x0 ≈ n(y0) ∧ c0 ̸≈ d0
x0 ≈ y0 ∧ c0 ̸≈ d0
x0 ≈ y0

x0 ≈ f(a0, y0) ∧ c0 ≈ d0
(a0 ≈ b0 ⇒ x0 ≈ y0) ∧ c0 ≈ d0
a0 ≈ b0 ∧ x0 ≈ y0 ∧ c0 ≈ d0
⊥

Fig. 4: An example CUP program and its inductive assertions.

of P satisfy the following two properties:
Memoizing for any configuration ⟨x := f(y⃗), q, pc⟩, if there

is a term t ∈ T (pc) s.t. pc |= t ≈ f(q(y⃗)), then there is
v ∈ V s.t. pc |= q(v) ≈ t.

Early assume for any configuration
⟨assume(x = y), q, pc⟩, if there is a term t ∈ T (pc) s.t.
pc |= t ≈ s where s is a superterm of either q(x) or q(y),
then, there is v ∈ V s.t. pc |= q(v) ≈ t. ✷

Intuitively, memoization ensures that if a term is recomputed,
then it is already stored in a program variable; early assumes
ensures that whenever an equality between variables is as-
sumed, any of their superterms that was ever computed is still
stored in a program variable. Note that unlike the original
definition of CUP in [9], we do not require the notion of an
execution. The path condition accumulates the history of the
execution in a configuration, which is sufficient.

Example 2 An example of a CUP is shown in Fig. 4. Some
reachable states in the first iteration of the loop are shown
below, where line numbers are used as locations, and pci
stands for the path condition at line i:

⟨2, q0[x ↦→ x1, y ↦→ y1], x1 ≈ t0 ∧ y1 ≈ t0⟩
⟨6, q0[x ↦→ x2, y ↦→ y2, c ↦→ c1], pc2 ∧

c0 ̸≈ d0 ∧ x2 ≈ n(x1) ∧ y2 ≈ n(y1) ∧ c1 ≈ n(c0)⟩
⟨9, q0[x ↦→ x3, y ↦→ y3, c ↦→ c1]⟩, pc6 ∧

c1 ≈ d0 ∧ x3 ≈ f(a0, x2) ∧ y3 ≈ f(b0, y2)⟩

The program is coherent because (a) no term is recomputed;
(b) for the assume at line 10, the only superterms of a0 and
b0 are f(a0, xn) and f(b0, yn), and they are stored in x and y,
respectively; and (c) for the assume (cn = d0) introduced by
the exit condition of the while loop, no superterms of cn, d0
are ever computed. The program does not reduce to skip (i.e.,
it does not reach a final configuration). Its inductive assertion
map is shown in Fig. 4 (right). ✷

Note that UP are closely related, but are not equivalent, to
the Herbrand programs of [12]. While Herbrand programs use
the syntax of UPL, they are interpreted over a fixed universe of
Herbrand terms. In particular, in Herbrand programs f(x) ≈
g(x) is always false (since f(x) and g(x) have different top-
level functions), while in UP, it is satisfiable.

79

IV. ABSTRACTION AND BISIMULATION FOR UP

In this section, we review abstractions for transition systems.
We then define two abstraction for UP: cover and renaming,
and show that they induce bisimulation. That is, for UP, these
abstractions preserve all properties. Finally, we show a simple
logical characterization result for UP to set the stage for our
main results in the following sections.

Definition 4 Given a transition system S = (C, c0,R) and a
(possibly partial) abstraction function ♯ : C → C, the induced
abstract transition system is ♯(S) = (C, c♯0,R♯), where

c♯0 ≜ ♯(c0)

R♯ ≜ {(c♯, c′♯) | ∃c, c′. c→ c′ ∧ c♯ = ♯(c) ∧ c′♯ = ♯(c′)}

We write c →♯ c′ when (c, c′) ∈ R♯. Note that ♯ must be
defined for c0. ✷

Throughout the paper, we construct several abstract transi-
tion systems. All transition systems considered are attentive.
Intuitively, this means that their transitions do not distinguish
between configurations that have q-equivalent path conditions.
We say that two configurations c1 = ⟨s, q, pc1⟩ and c2 =
⟨s, q, pc2⟩ are equivalent, denoted c1 ≡ c2 if pc1 ≡q pc2.

Definition 5 (Attentive TS) A transition system S =
(C, c0,R) is attentive if for any two configurations c1, c2 ∈ C
s.t. c1 ≡ c2, if there exists c′1 ∈ C s.t. (c1, c′1) ∈ R, then there
exists c′2 ∈ C, s.t. (c2, c′2) ∈ R and c′1 ≡ c′2 and vice versa. ✷

Weak, respectively strong, preservation of properties be-
tween the abstract and the concrete transition systems are en-
sured by the notions of simulation, respectively bisimulation.

Definition 6 ([11]) Let S = (C, c0,R) and ♯(S) =
(C, c♯0,R♯) be transition systems. A relation ρ ⊆ C × C is
a simulation from S to ♯(S), if for every (c, c♯) ∈ ρ:

• if c → c′ then there exists c′♯ such that c♯ →♯ c′♯ and
(c′, c′♯) ∈ ρ.

ρ ⊆ C × C is a bisimulation from S to ♯(S) if ρ is a
simulation from S to ♯(S) and ρ−1 ≜ {(c♯, c) | (c, c♯) ∈ ρ}
is a simulation from ♯(S) to S . We say that ♯(S) simulates,
respectively is bisimilar to, S if there exists a simulation,
respectively, a bisimulation, ρ from S to ♯(S) such that
(c0, c

♯
0) ∈ ρ. ✷

We say that a bisimulation ρ ⊆ C × C is finite if its
range, {ρ(c) | c ∈ C}, is finite. A finite bisimulation relates a
(possibly infinite) transition system with a finite one.

Next, we define two abstractions for UP programs and show
that they result in bisimilar abstract transition systems. The
first abstraction eliminates all constants that are not assigned to
program variables from the path condition, using the cover op-
eration. The second abstraction renames the constants assigned
to program variables back to the initial constants C0. Both
abstractions together ensure that all reachable configurations
in the abstract transition system are defined over Σ0 (i.e., the
only constants that appear in states, as well as in path condi-
tions, are from C0). There may still be infinitely many such

configurations since the depth of terms may be unbounded. We
show that whenever the obtained abstract transition system has
finitely many reachable configurations, the concrete one has an
inductive assertion map that characterizes the set of reachable
configurations.

Definition 7 (Cover abstraction) The cover abstraction
function αC : C → C is defined by

αC(⟨s, q, pc⟩) ≜ ⟨s, q,C(C \ C(q)) · pc⟩ ✷

Since pc ≡q C(C \C(q)) ·pc, the cover abstraction also results
in a bisimilar abstract transition system.

Theorem 1 For any attentive transition system S =
(C, c0,R), the relation ρ = {(c, αC(c)) | c ∈ Reach(S)}
is a bisimulation from S to αC(S). ✷

To introduce the renaming abstraction, we need some nota-
tion. Given a quantifier free formula φ, constants a, b ∈ C(φ)
such that a ̸= b, let φ[a↣ b] denote φ[b ↦→ x][a ↦→ b], where
x is a constant not in C(φ). For example, if φ = (a ≈ c∧ b ≈
d), φ[a↣ b] = (b ≈ c ∧ x ≈ d).

Given a path condition pc and a state q, let r0(pc, q) denote
the formula obtained by renaming all constants in C(q) using
their initial values. r0(pc, q) = pc[q(v) ↣ v0] for all v ∈ V
such that q(v) ̸= v0.

Definition 8 (Renaming abstraction) The renaming abstrac-
tion function αr : C → C is defined by

αr(⟨s, q, pc⟩) ≜ ⟨s, q0, r0(pc, q)⟩ ✷

Theorem 2 For any attentive transition system S =
(C, c0,R), the relation ρ = {(c, αr(c)) | c ∈ Reach(S)}
is a bisimulation from S to αr (S). ✷

Finally, we denote by αC,r the composition of the renaming
and cover abstractions: αC,r ≜ αC ◦ αr (i.e., αC,r (c) =
αr (αC(c))). Since the composition of bisimulation relations
is also a bisimulation, αC,r (S) is bisimilar to S .

Theorem 3 (Logical Characterization of UP) If αC,r in-
duces a finite bisimulation on an UP P , then, there exists
an inductive assertion map η for P that characterizes the
reachable configurations of P . ✷

PROOF Define η(s) ≜
⋁︁
{pc | ⟨s, q, pc⟩ ∈ Reach(αC,r (P))}.

Then, η(s) is such an inductive assertion map. ■

Intuitively, Thm. 3 says that inductive invariant of UP,
whenever it exists, can be described using EUF formulas over
program variables. That is, any extra variables that are added to
the path condition during program execution can be abstracted
away (specifically, using the cover abstraction). There are, of
course, infinitely many such invariants since the depth of terms
is not bounded (only constants occurring in them). In the
sequel, we systematically construct a similar result for CUP.

80

V. BISMULATION OF CUP

The first step in extending Thm. 3 to CUP is to design
an abstraction function that bounds the depth of terms that
appear in any reachable (abstract) state. It is easy to design
such a function while maintaining soundness – simply forget
literals that have terms that are too deep. However, we want
to maintain precision as well. That is, we want the abstract
transition system to be bisimilar to the concrete one. Just like
cover abstraction, the base abstraction function also eliminates
all constants that are not assigned to program variables. Unlike
cover abstraction, the base abstraction does not maintain C(q)-
equivalence of the path conditions, but, rather, forgets most
literals that cannot be expressed over program variables.

In this section, we focus on the definition of the base
abstraction and prove that it induces bisimulation for CUP.
This result is used in Sec. VI, to logically characterize CUPs.

Intuitively, the base abstraction “truncates” the congruence
graph induced by a path condition in nodes that have no
representative in the set of constants assigned to the program
variables (V in the following definition), and assigns to the
truncated nodes fresh constants (from W in the following
definition).

Congruence closure procedures for EUF use a congruence
graph to concisely represent the deductive closure of a set of
EUF literals [15], [16]. Here, we use a logical characterization
of a congruence graph, called a V -basis. Let Γ be a set of EUF
literals. A triple ⟨W,β, δ⟩ is a V -basis of Γ relative to a set of
constants V , written ⟨W,β, δ⟩ ∈ base(Γ, V), iff (a) W is a set
of fresh constants not in C(Γ), and β and δ are conjunctions
of EUF literals; (b) (∃W · β ∧ δ) ≡ Γ; (c) β ≜ β≈ ∪ β ̸≈ ∪ βF
and δ ≜ δ≈ ∪ δ ̸≈ ∪ δF , where

β≈ ⊆ {u ≈ v | u, v ∈ V } β ̸≈ ⊆ {u ̸≈ v | u, v ∈ V }
βF ⊆ {v ≈ f(w⃗) | v ∈ V, w⃗ ⊆ V ∪W, w⃗ ∩ V ̸= ∅}
δ≈ ⊆ {w ≈ u | w ∈ V ∪W,u ̸∈ V ∪W}
δ ̸≈ ⊆ {u ̸≈ w | u ∈W,w ∈W ∪ V }
δF ⊆ {v ≈ f(w⃗) | v, w⃗ ⊆ V ∪W, v ∈ V ⇒ w⃗ ⊆W}

(d) β ∧ δ ⊬ v ≈ w for any v ∈ V , w ∈ W ; and (e) β ∧ δ ⊬
w1 ≈ w2 for any w1, w2 ∈W s.t. w1 ̸= w2.

Note that we represent both equalities and disequalities in
the V -basis as common in implementations (but not in the
theoretical presentations) of the congruence closure algorithm.
Intuitively, V are constants in C(Γ) that represent equivalence
classes in Γ, and W are constants added to represent equiva-
lence classes that do not have a representative in V . A V -basis,
of any satisfiable set Γ, is unique up to renaming of constants
in W and ordering of equalities between constants in V .

Example 3 Let Γ = {x ≈ f(a, v1), y ≈ f(b, v2), v1 ≈ v2}
and V = {a, b, x, y}. A V -basis of Γ is ⟨W,β, δ⟩, where W =
{w}, β = {x ≈ f(a,w), y ≈ f(b, w)}, δ = {w ≈ v1, w ≈
v2}. Renaming w to w′ is a different V -basis: ⟨W ′, β′, δ′⟩ ∈
base(Γ, V) where W ′ = {w′}, β′ = β[w ↦→ w′] and δ′ =
δ[w ↦→ w′].

As another example, consider Γ = {x ≈ f(a, p), x ≈
f(a, n(p)), y = f(b, p), y = f(c, n(p))} and V =
{x, y, a, b, c}. A V -basis of Γ is ⟨W,β, δ⟩, where W =
{w0, w1}, δ2 = {w0 ≈ p, w1 ≈ n(w0)}, and

β2 =

{︄
x ≈ f(a,w0) x ≈ f(a,w1)

y ≈ f(b, w0) y ≈ f(c, w1)

}︄
✷

While a basis maintains all consequences of Γ (since (∃W ·
β ∧ δ) ≡ Γ), the V -base abstraction of Γ, defined next, is
weaker. It preserves consequences of β only:

Definition 9 (V -base abstraction) The V -base abstraction
αV for a set of constants V , is a function between sets of
literals s.t. for any sets of literals Γ and Γ′:
(1) αV (Γ) ≜ β, where ⟨W,β, δ⟩ ∈ base(φ, V),
(2) if there exists a β s.t. ⟨W1, β, δ1⟩ ∈ base(Γ, V) and

⟨W2, β, δ2⟩ ∈ base(Γ′, V), then αV (Γ) = αV (Γ
′). ✷

The second requirement of Def. 9 ensures that two formu-
las that have the same V -consequences, have the same V -
abstraction. For example, for a set of constants V = {u, v},
the formulas φ1 = {v ≈ f(u, x)} and φ2 = {v ≈ f(u, y)},
have the same V -base abstraction: v ≈ f(u,w). Note that
at this point, we only require that αV is well defined (for
example, it does not have to be computable.)

We now extend V -base abstraction to program configu-
ration, calling it simply base abstraction, since the set of
preserved constants is determined by the configuration:

Definition 10 (Base abstraction) The base abstraction αb :
C → C is defined for configurations ⟨s, q, pc⟩ ∈ C, where pc
is a conjunction of literals: αb(⟨s, q, pc⟩) ≜ ⟨s, q, αC(q)(pc)⟩.✷

Namely, the base abstraction αC(q) applied to the path
condition is determined by the state q in the configuration.
We often write αq(φ) as a shorthand for αC(q)(φ).

We are now in position to state the main result of this
section. Given a CUP P , the abstract transition system
αb(SP) = (C, cαb

0 ,Rαb) is bisimilar to the concrete transition
system SP = (C, c0,R). Note that at this point, we do not
claim that αb(SP) is finite, or that it is computable. We focus
only on the fact that the literals that are forgotten by the base
abstraction do not matter for any future transitions. The key
technical step is summarized in the following theorem:

Theorem 4 Let ⟨s, q, pc⟩ be a reachable configuration of a
CUP P . Then,
(1) ⟨s, q, pc⟩ → ⟨s′, q′, pc ∧ pc′⟩ iff

⟨s, q, αq(pc)⟩ → ⟨s′, q′, αq(pc) ∧ pc′⟩, and
(2) αq′(pc ∧ pc′) = αq′(αq(pc) ∧ pc′). ✷

The proof of Thm. 4 is not complicated, but it is tedious
and technical. It depends on many basic properties of EUF. We
summarize the key results that we require in the following
lemmas. The proofs of the lemmas are provided in our
companion technical report [7].

We begin by defining a purifier – a set of constants sufficient
to represent a set of EUF literals with terms of depth one.

81

Definition 11 (Purifier) We say that a set of constants V is a
purifier of a constant a in a set of literals Γ, if a ∈ V and for
every term t ∈ T (Γ) s.t. Γ ⊢ t ≈ s[a], ∃v ∈ V s.t. Γ ⊢ v ≈ t.✷

For example, if Γ = {c ≈ f(a), d ≈ f(b), d ̸≈ e}. Then,
V = {a, b, c} is a purifier for a, but not a purifier for b, even
though b ∈ V .

In all the following lemmas, Γ, φ1, φ2 are sets of literals;
V a set constants; a, b ∈ C(Γ); u, v, x, y ∈ V ; V is a purifier
for {x, y} in Γ, φ1, and in φ2; β = αV (Γ); and αV (φ1) =
αV (φ2).

Lemma 1 says that anything newly derivable from Γ and a
new equality a ≈ b is derivable using superterms of a and b:
Lemma 1 Let t1 and t2 be two terms in T (Σ) s.t. Γ ̸⊢ (t1 ≈
t2). Then, (Γ∧a ≈ b) ⊢ (t1 ≈ t2), for some constants a and b
in C(Γ), iff there are two superterms, s1[a] and s2[b], of a and
b, respectively, s.t. (i) Γ ⊢ (t1 ≈ s1[a]), (ii) Γ ⊢ (t2 ≈ s2[b]),
and (iii) (Γ ∧ a ≈ b) ⊢ (s1[a] ≈ s2[b]).
Lemma 2 and Lemma 3 say that all consequences of Γ that
are relevant to V are present in β = αV (Γ) as well.
Lemma 2 (Γ ∧ x ≈ y ⊢ u ≈ v) ⇐⇒ (β ∧ x ≈ y ⊢ u ≈ v).
Lemma 3 (Γ ∧ x ≈ y ⊢ u ̸≈ v) ⇐⇒ (β ∧ x ≈ y ⊢ u ̸≈ v).
Lemma 4 says that β = αV (Γ) can be described using terms
of depth one using constants in V .
Lemma 4 V is a purifier for x ∈ V in β.
Lemma 5 says that αV is idempotent.
Lemma 5 αV (Γ) = αV (αV (Γ)).
Lemma 6 and Lemma 7 say that αV preserves addition of new
literals and dropping of constants.
Lemma 6 αV (φ1 ∧ x ≈ y) = αV (φ2 ∧ x ≈ y).
Lemma 7 If U ⊆ V , then

(αV (φ1) = αV (φ2)) ⇒ (αU (φ1) = αU (φ2))

Lemma 8 extends the preservation results to disequalities. V is
a set of constants, x, y ∈ V . V is not required to be a purifier
(as it was in the previous lemmas).
Lemma 8 αV (φ1 ∧ x ̸≈ y) = αV (φ2 ∧ x ̸≈ y).
Lemma 9 extends the preservation results for equalities in-
volving a fresh constant x′ s.t. x′ ̸∈ C(φ1) ∪ C(φ2). y⃗ ⊆ V ,
V ′ = V ∪{x′}, and f(y⃗) be a term s.t there does not exists a
term t ∈ T (φ1)∪T (φ2) s.t. φ1 ⊢ t ≈ f(y⃗) or φ2 ⊢ t ≈ f(y⃗).
Lemma 9

αV ′(φ1 ∧ x′ ≈ y) = αV ′(φ2 ∧ x′ ≈ y) (1)
αV ′(φ1 ∧ x′ ≈ f(y⃗)) = αV ′(φ2 ∧ x′ ≈ f(y⃗)) (2)

We are now ready to present the proof of Thm. 4:

PROOF (THEOREM 4) In the proof, we use x = q(x), and y =
q(y). For part (1), we only show the proof for s = assume(x ▷◁
y) since the other cases are trivial.

The only-if direction follows since αq(pc) is weaker than
pc. For the if direction, pc ̸⊢ ⊥ since it is part of a reachable
configuration. Then, there are two cases:

• case s = assume(x = y). Assume (pc ∧ x ≈ y) |= ⊥.
Then, (pc ∧ x ≈ y) ⊢ t1 ≈ t2 and pc ⊢ t1 ̸≈ t2 for

some t1, t2 ∈ T (pc). By Lemma 1, in any new equality
(t1 ≈ t2) that is implied by pc∧ (x ≈ y) (but not by pc),
t1 and t2 are equivalent (in pc) to superterms of x or y. By
the early assume property of CUP, C(q) purifies {x, y} in
pc. Therefore, every superterm of x or y is equivalent (in
pc) to some constant in C(q). Thus, (pc∧x ≈ y) ⊢ u ≈ v
and (pc ∧ x ≈ y) ⊢ u ̸≈ v for some u, v ∈ C(q). By
Lemma 2, (αq(pc) ∧ x ≈ y) ⊢ u ≈ v. By Lemma 3,
(αq(pc)∧x ≈ y) ⊢ u ̸≈ v. Thus, (αq(pc)∧x ≈ y) |= ⊥.

• case s = assume(x ̸= y). (pc ∧ x ̸≈ y) |= ⊥ if and only
if pc ⊢ x ≈ y. Since x, y ∈ C(q), αq(pc) ⊢ x ≈ y. ■

For part (2), we only show the cases for assume and
assignment statements, the other cases are trivial.

• case s = assume(x = y), Since q′ = q, we need to
show that αq(pc ∧ x ≈ y) = αq(αq(pc) ∧ x ≈ y). From
the early assumes property, C(q) purifies {x, y} in pc.
By Lemma 4, C(q) purifies {x, y} in αq(pc) as well. By
Lemma 5, αq(pc) = αq(αq(pc)). By Lemma 6, αq(pc ∧
x ≈ y) = αq(αq(pc) ∧ x ≈ y).

• case s = assume(x ̸= y), Since q′ = q, we need to show
that αq(pc∧x ̸≈ y) = αq(αq(pc)∧x ̸≈ y). By Lemma 5,
αq(pc) = αq(αq(pc)). By Lemma 8, αq(pc ∧ x ̸≈ y) =
αq(αq(pc) ∧ x ̸≈ y).

• case s = x:=y. W.l.o.g., assume q′ = q[x ↦→ x′], for some
constant x′ ̸∈ C(pc). By Lemma 5, αq(pc) = αq(αq(pc)).
By Lemma 9 (case 1), αC(q)∪{x′}(pc ∧ x′ ≈ y) =
αC(q)∪{x′}(αq(pc)∧x′ ≈ y). By Lemma 7, αq′(pc∧x′ ≈
y) = αq′(αq(pc) ∧ x′ ≈ y), since C(q′) ⊆ (C(q) ∪ {x′}).

• case s = x := f(y⃗). W.l.o.g., q′ = q[x ↦→ x′] for some
constant x′ ̸∈ C(pc). There are two cases: (a) there is a
term t ∈ T (pc) s.t. pc ⊢ t ≈ f(y⃗), (b) there is no such
term t.

(a) By the memoizing property of CUP, there is a program
variable z s.t. q(z) = z and pc ⊢ z ≈ f(y⃗). Therefore,
by definition of αq , αq(pc) ⊢ z ≈ f(y⃗). The rest of
the proof is identical to the case of s = x := z.

(b) Since there is no term t ∈ T (pc) s.t. pc ⊢ t ≈
f(y⃗), there is also no such term in T (αq(pc)) as
well. By Lemma 5, αq(pc) = αq(αq(pc)). By
Lemma 9 (case 2), αC(q)∪{x′}(pc ∧ x ≈ f(y⃗)) =
αC(q)∪{x′}(αq(pc)∧x ≈ f(y⃗)). By Lemma 7, αq′(pc∧
x ≈ f(y⃗)) = αq′(αq(pc) ∧ x ≈ f(y⃗)) since C(q′) ⊆
(C(q) ∪ {x′}). ■

Corollary 1 For a CUP P , the relation ρ ≜ {(c, αb(c)) | c ∈
Reach(SP)} is a bisimulation from SP to αb(SP). ✷

Note that for an arbitrary UP, αb induces a simulation (since
αb only weakens path conditions).

By construction, for any configuration in an abstract system
constructed using αb, the path condition will be at most
depth-1. In Sec. VI, we use this property to build a logical
characterization of CUP and show that reachability of CUP
programs is decidable.

82

VI. LOGICAL CHARACTERIZATION OF CUP

In this section, we show that for any CUP program P ,
all reachable configurations of P can be characterized using
formulas in EUF, whose size is bounded by the number of
program variables in P .

Theorem 5 (Logical Characterization of CUP) For any
CUP P , there exists an inductive assertion map η, ranging
over EUF formulas of depth at most 1, that characterizes the
reachable configurations of P . ✷

The first step in the proof is to compose the renaming
abstraction (Def. 8) with the base abstraction (Def. 10). We
denote the composition with αb,r , i.e., αb,r ≜ αb ◦αr . Cor. 1
and Thm. 2 ensures that αb,r is sound and complete for CUP.
We split the rest of the proof into two cases: CUPs restricted
to unary functions, called 1-CUP, followed by arbitrary CUPs.

PROOF (THM. 5, 1-CUP) Let Σ1 be a signature containing
function symbols of arity atmost 1, Σ1 ≜ (C,F1, {≈, ̸≈}).
Let Γ be a set of literals in Σ1 and V be a set of constants.
By the definition of V -base abstraction (Def. 9), αV (Γ) =
β≈∧β ̸≈∧βF . β≈ and β ̸≈ are over constants in V . βF contains
two types of literals: βFV

and βFW
. βFV

are 1 depth literals
over constants in V . βFW

are literals of the form v ≈ f(w⃗)
where v ∈ V and w⃗ is a list of constants, at least one of
which is in V : w⃗∩V ̸= ∅ and w⃗ ̸⊆ V . Since Γ can only have
unary functions, βFW

= ∅. Therefore, all literals in αV (Γ)
are of depth at most 1 and only contain constants from V .
Hence, there are only finitely many configurations in αb,r (SP).
Therefore,

η(s) ≜
⋁︂

{pc | ⟨s, q0, pc⟩ ∈ Reach(αb,r (SP))}

is an inductive assertion map, ranging over formulas for depth
at most 1, that characterizes the reachable configurations of
P . Moreover, the size of each disjunct in η(s) is polynomial
in the number of program variables and functions in P . ■

An interesting consequence of the above proof is that, for 1-
CUPs, αb is efficiently computable (since, βFW

= ∅). Thus,
the transition system αb,r (SP) is finite, and can be constructed
on-the-fly. Hence, reachability of 1-CUP is in PSPACE.

PROOF (THM. 5, GENERAL CASE) In general, CUP programs
can contain unary and non-unary functions. Therefore, the
V -base abstraction (Def. 9) may introduce fresh constants.
We use the cover abstraction (Def. 7) to eliminate these
fresh constants. By Thm. 1, αC(αb,r (SP)) is bisimilar to
αb,r (SP). Notice that all the fresh constants introduced by
the V -base abstraction are arguments to function applications.
Therefore, all consequences of eliminating the fresh constants
are Horn clauses of the form

⋀︁
i(xi ≈ yi) ⇒ x ≈ y, where

xi, yi, x, y ∈ C0. Since V -basis is of depth at most 1, cover
of the V -basis is also of depth at most 1. Since there are
only finitely many formulas of depth at most 1 over C0,
αC(αb,r (SP)) has only finitely many configurations. Hence,

η(s) ≜
⋁︂

{pc | ⟨s, q0, pc⟩ ∈ Reach(αC(αb,r (SP))}

is an inductive assertion map that characterizes the reachable
configurations of P and ranges over depth-1 formulas. ■

Consider the CUP shown in Fig. 4. At line 9, the αb,r abstrac-
tion produces the following abstract pc: x0 ≈ f(a0, w)∧y0 ≈
f(b0, w) ∧ c0 ≈ d0. Using cover to eliminate the constant w
gives us Cw · pc = (a0 ≈ b0 ⇒ x0 ≈ y0) ∧ c0 ≈ d0, which is
exactly the invariant assertion mapping η(9) at line 9.

We have seen that all CUP programs have an inductive
assertion map that characterizes their reachable configurations
and ranges over a finite set of formulas. Therefore,

Corollary 2 CUP reachability is decidable. ✷

A. Relationship to [9]

In [9], Cor. 2 is proven by constructing a deterministic
finite automaton that accepts all feasible coherent executions.2

However, the construction fails for the executions of the CUP
in Fig. 4: the execution that reaches a terminal configuration
is infeasible, but it is (wrongfully) accepted by the automaton.
Intuitively, the reason is that the automaton is deterministic
and its states are not sufficiently expressive. The states of the
automaton keep track of equalities between program variables
(which correspond to β≈ in our abstraction), disequalities
between them (β ̸≈ in our case), and partial function inter-
pretations (βF). However, the partial function interpretations
are restricted to βFV

, i.e., do not allow auxiliary constants that
are not assigned to program variables. Thus, they are unable to
keep track of x0 ≈ f(a0, w)∧y0 ≈ f(b0, w)∧ c0 ≈ d0 in line
9, which is essential for showing infeasibility of the execution.
Eliminating the auxiliary constants, as we do in the cover
abstraction, does not remedy the situation since it introduces
a disjunction (a0 ̸≈ b0 ∧ c0 ≈ d0) ∨ (x0 ≈ y0 ∧ c0 ≈ d0),
which the deterministic automaton does not capture.

B. Computing a Finite Abstraction

We have shown that CUP programs are bisimilar to finite
state systems. However, all our proofs depend on αb, which
was not assumed to be computable. In this section, we show
how to implement αb, and, thereby, show how to compute a
finite state system that is bisimilar to a CUP program. Note
that our prior results are independent of this section.

The main difficulty is in naming the fresh constants, which
we always refer to as W , that are introduced by the base
abstraction. Since we require that base abstraction is canonical,
the naming has to be unique. Furthermore, we have to show
that the number of such W constants is bounded. We solve
both of these problems by proposing a deterministic naming
scheme. The scheme is determined by a normalization function
nV that replaces all the fresh constants in a V -basis with
canonical constants.

Let β be a V -basis. We denote the auxiliary constants in β
(C(β) \ V) by W = {w0, w1, . . .}, and by ‘?’ some unused
constant that we call a hole. Recall that constants from W
may only appear in literals of the form v ≈ f(w⃗). We define

2In our setting, feasible coherent executions correspond to paths in the
transition system of any CUP.

83

the set of W -templates as the set of all terms f(a⃗), where
each element in a⃗ is either a hole or a constant in W . A
term t matches a template f(a⃗) if t = f(b⃗), and a⃗ and
b⃗ agree on all constants in W . For example, let ξ be the
template f(? , w1, ? , w2). The term f(a,w1, b, w2) matches
ξ, but f(w0, w1, b, w2) does not, because one of the holes
is filled with w0 ∈ W . We say that a literal v ≈ f(b⃗)
matches a template ξ if f(b⃗) matches ξ. The W -context of
a W -template ξ in a set of literals L, denoted ZL(ξ), is the
set ZL(ξ) ≜ {ℓ[W ↦→?] | ℓ ∈ L ∧ ℓ matches ξ}, where
ℓ[W ↦→?] means that all occurrences of constants in W are
replaced with a hole. For example, let ξ = f(? , w1, w2, ?)
and L = {v ≈ f(a,w1, w2, b), u ≈ f(c, w1, w2, a), w ≈
f(x,w1, w2, b), x ≈ g(x,w1, w2, b))} then ZL(ξ) = {v ≈
f(a, ? , ? , b), u ≈ f(c, ? , ? , a), w ≈ f(x, ? , ? , b)}.

Since V and F are finite, the number of W -contexts is finite,
independent of W . Let wZ be a fresh constant for context Z.

Definition 12 (Normalization Function) The normalization
function nV (β) is defined as follows:
(1) for each t ∈ T (Γ) s.t. C(t) ∩W ̸= ∅, create a template

ξ by dropping all constants not in W . Let Ξ denote the
set of templates so obtained.

(2) Let Ctx ≜ {ZΓ(ξ) | ξ ∈ Ξ}.
(3) For each ℓ ∈ Γ, if ℓ[W ↦→?] ∈ Z for some Z ∈ Ctx ,

then replace all occurrences of W in ℓ with wZ . ✷

The normalization preserves V -equivalence of β because it
renames local constants, while maintaining all consequences
that are derivable through them. That is, nV (β) ≡V β.
Furthermore, nV (β) is cannonical.

Therefore, given a set of literals Γ, we use nV (β) as a com-
putable implementation of the V -base abstraction, αV (Def. 9).
That is, αV (Γ) ≜ nV (β) where ⟨W,β, δ⟩ ∈ base(Γ, V). Even
though nV (β) may not be a part of a V -basis for Γ, it satisfies
all the properties used in the proof of Thm. 4.

We define the normalizing abstraction in the usual way:

Definition 13 (Normalizing abstraction) The normalizing
abstraction function αn : C → C is defined by

αn(⟨s, q0, pc⟩) ≜ ⟨s, q0, n(pc)⟩ ✷

Let αb,r ,n ≜ αb ◦ αr ◦ αn be the composition of normal-
ization abstraction with renaming and base abstraction where
αb is implemented using normalization. Notice that, for any
state c = ⟨s, q, pc⟩, αb,r ,n(c) is computed by first computing
any V -basis of pc, applying nq , renaming all C(q) constants
to q0, and applying nq0 . The second normalization is required
to ensure that the fresh constants are canonical with respect to
q0. By definition αb,r ,n is computable. Hence, it can be used
to compute the finite abstraction of any CUP.

Theorem 6 For a CUP P , the finite abstract transition system
αb′,r ,n(SP) is bisimilar to P and is computable. ✷

Thm. 6 implies that any property that is decidable over
a finite transition system is also decidable over CUPs. In
particular, temporal logic model checking is decidable.

VII. CONCLUSION

In this paper, we study theoretical properties of Coher-
ent Uninterpreted Programs (CUPs) that have been recently
proposed by Mathur et al. [9]. We identify a bug in the
original paper, and provide an alternative proof of decidability
of the reachability problem for CUP. More significantly, we
provide a logical characterization of CUP. First, we show that
inductive invariant of CUP is describable by shallow formulas.
Hence, the set of all candidate invariants can be effectively
enumerated. Second, we show that CUPs are bisimilar to finite
transition systems. Thus, while they are formally infinite state,
they are not any more expressive than a finite state system.
Third, we propose an algorithm to compute a finite transition
system of a CUP. This lifts all existing results on finite state
model checking to CUPs.

In the paper, we have focused on the core result of Mathur
et al, and have left out several interesting extensions. In [9],
the notion of CUP is extended with k-coherence – a UP P
is k-coherent if it is possible to transform P into a CUP
P̂ by adding k ghost variables to P . This is an interesting
extension since it makes potentially many more programs
amenable to decidable verification. We observe that addition
of ghost variables is a form of abstraction. Thus, invariants
of P̂ can be translated to invariants of P using techniques
of Namjoshi et al. [13], [14]. This essentially amounts to
existentially eliminating ghost variables from the invariant
of P̂ . Such elimination increases the depth of terms in the
invariant at most by one for each variable eliminated. Thus,
we conjecture that k-coherent programs are characterized by
invariants with terms of depth at most k.

Mathur et al. [9] extend their results to recursive UP
programs (i.e., UP programs with recursive procedures). We
believe our logical characterization results extend to this
setting as well. In this case, both the invariants and proce-
dure summaries (i.e., procedure pre- and post-conditions) are
described using terms of depth at most 1.

Our results also hold when CUPs are extended with simple
axiom schemes, as in [10], while for most non-trivial axiom
schemes CUPs become undecidable.

Perhaps most interestingly, our results suggest efficient
verification algorithms for CUPs and interesting abstraction for
UPs. Since the space of invariant candidates is finite, it can be
enumerated, for example, using implicit predicate abstraction.
For CUPs, this is a complete verification method. For UPs it
is an abstraction. Most importantly, it does not require prior
knowledge to whether an UP is a CUP!

Acknowledgment: The research leading to these results has
received funding from the European Research Council under
the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement No [759102-SVIS]). This
research was partially supported by the United States-Israel
Binational Science Foundation (BSF) grant No. 2016260, and
the Israeli Science Foundation (ISF) grant No. 1810/18. We
also acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

84

REFERENCES

[1] J. R. Burch and D. L. Dill, “Automatic verification of pipelined
microprocessor control,” in Computer Aided Verification, 6th
International Conference, CAV ’94, Stanford, California, USA, June
21-23, 1994, Proceedings, ser. Lecture Notes in Computer Science,
D. L. Dill, Ed., vol. 818. Springer, 1994, pp. 68–80. [Online].
Available: https://doi.org/10.1007/3-540-58179-0 44

[2] D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin,
“Model completeness, covers and superposition,” in Automated
Deduction - CADE 27 - 27th International Conference on Automated
Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, ser.
Lecture Notes in Computer Science, P. Fontaine, Ed., vol. 11716.
Springer, 2019, pp. 142–160. [Online]. Available: https://doi.org/10.
1007/978-3-030-29436-6 9

[3] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “IC3 modulo theories
via implicit predicate abstraction,” in Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference,
TACAS 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014. Proceedings, ser. Lecture Notes in Computer Science, E. Ábrahám
and K. Havelund, Eds., vol. 8413. Springer, 2014, pp. 46–61. [Online].
Available: https://doi.org/10.1007/978-3-642-54862-8 4

[4] S. Ghilardi, A. Gianola, and D. Kapur, “Computing uniform interpolants
for EUF via (conditional) dag-based compact representations,” in
Proceedings of the 35th Italian Conference on Computational Logic
- CILC 2020, Rende, Italy, October 13-15, 2020, ser. CEUR
Workshop Proceedings, F. Calimeri, S. Perri, and E. Zumpano, Eds.,
vol. 2710. CEUR-WS.org, 2020, pp. 67–81. [Online]. Available:
http://ceur-ws.org/Vol-2710/paper5.pdf

[5] S. Gulwani and M. Musuvathi, “Cover algorithms and their
combination,” in Programming Languages and Systems, 17th European
Symposium on Programming, ESOP 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
ser. Lecture Notes in Computer Science, S. Drossopoulou, Ed.,
vol. 4960. Springer, 2008, pp. 193–207. [Online]. Available:
https://doi.org/10.1007/978-3-540-78739-6 16

[6] S. Gulwani and G. C. Necula, “A polynomial-time algorithm for
global value numbering,” in Static Analysis, 11th International
Symposium, SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings,
ser. Lecture Notes in Computer Science, R. Giacobazzi, Ed.,
vol. 3148. Springer, 2004, pp. 212–227. [Online]. Available:
https://doi.org/10.1007/978-3-540-27864-1 17

[7] H. G. V. K., S. Shoham, and A. Gurfinkel, “Logical characterization of
coherent uninterpreted programs,” CoRR, vol. abs/2107.12902, 2021.
[Online]. Available: https://arxiv.org/abs/2107.12902

[8] G. A. Kildall, “A unified approach to global program optimization,”
in Conference Record of the ACM Symposium on Principles of
Programming Languages, Boston, Massachusetts, USA, October 1973,
P. C. Fischer and J. D. Ullman, Eds. ACM Press, 1973, pp. 194–206.
[Online]. Available: https://doi.org/10.1145/512927.512945

[9] U. Mathur, P. Madhusudan, and M. Viswanathan, “Decidable
verification of uninterpreted programs,” Proc. ACM Program. Lang.,
vol. 3, no. POPL, pp. 46:1–46:29, 2019. [Online]. Available:
https://doi.org/10.1145/3290359

[10] ——, “What’s decidable about program verification modulo axioms?”
in Tools and Algorithms for the Construction and Analysis of Systems
- 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
II, ser. Lecture Notes in Computer Science, A. Biere and D. Parker,
Eds., vol. 12079. Springer, 2020, pp. 158–177. [Online]. Available:
https://doi.org/10.1007/978-3-030-45237-7 10

[11] R. Milner, Communication and concurrency, ser. PHI Series in computer
science. Prentice Hall, 1989.

[12] M. Müller-Olm, O. Rüthing, and H. Seidl, “Checking herbrand
equalities and beyond,” in Verification, Model Checking, and Abstract
Interpretation, 6th International Conference, VMCAI 2005, Paris,
France, January 17-19, 2005, Proceedings, ser. Lecture Notes in
Computer Science, R. Cousot, Ed., vol. 3385. Springer, 2005, pp. 79–
96. [Online]. Available: https://doi.org/10.1007/978-3-540-30579-8 6

[13] K. S. Namjoshi, “Lifting temporal proofs through abstractions,”
in Verification, Model Checking, and Abstract Interpretation, 4th

International Conference, VMCAI 2003, New York, NY, USA, January
9-11, 2002, Proceedings, ser. Lecture Notes in Computer Science,
L. D. Zuck, P. C. Attie, A. Cortesi, and S. Mukhopadhyay,
Eds., vol. 2575. Springer, 2003, pp. 174–188. [Online]. Available:
https://doi.org/10.1007/3-540-36384-X 16

[14] K. S. Namjoshi and L. D. Zuck, “Witnessing program transformations,”
in Static Analysis - 20th International Symposium, SAS 2013,
Seattle, WA, USA, June 20-22, 2013. Proceedings, ser. Lecture
Notes in Computer Science, F. Logozzo and M. Fähndrich, Eds.,
vol. 7935. Springer, 2013, pp. 304–323. [Online]. Available:
https://doi.org/10.1007/978-3-642-38856-9 17

[15] G. Nelson and D. C. Oppen, “Fast decision procedures based on
congruence closure,” J. ACM, vol. 27, no. 2, pp. 356–364, 1980.
[Online]. Available: https://doi.org/10.1145/322186.322198

[16] R. Nieuwenhuis and A. Oliveras, “Proof-producing congruence closure,”
in Term Rewriting and Applications, 16th International Conference, RTA
2005, Nara, Japan, April 19-21, 2005, Proceedings, ser. Lecture Notes
in Computer Science, J. Giesl, Ed., vol. 3467. Springer, 2005, pp. 453–
468. [Online]. Available: https://doi.org/10.1007/978-3-540-32033-3 33

[17] O. Strichman and B. Godlin, “Regression verification - A practical way
to verify programs,” in Verified Software: Theories, Tools, Experiments,
First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland,
October 10-13, 2005, Revised Selected Papers and Discussions, ser.
Lecture Notes in Computer Science, B. Meyer and J. Woodcock,
Eds., vol. 4171. Springer, 2005, pp. 496–501. [Online]. Available:
https://doi.org/10.1007/978-3-540-69149-5 54

85

https://doi.org/10.1007/3-540-58179-0_44
https://doi.org/10.1007/978-3-030-29436-6_9
https://doi.org/10.1007/978-3-030-29436-6_9
https://doi.org/10.1007/978-3-642-54862-8_4
http://ceur-ws.org/Vol-2710/paper5.pdf
https://doi.org/10.1007/978-3-540-78739-6_16
https://doi.org/10.1007/978-3-540-27864-1_17
https://arxiv.org/abs/2107.12902
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/3290359
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1007/978-3-540-30579-8_6
https://doi.org/10.1007/3-540-36384-X_16
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1145/322186.322198
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1007/978-3-540-69149-5_54

Formal Methods in Computer-Aided Design 2021

Data-driven Optimization of Inductive
Generalization

Nham Le
University of Waterloo

nv3le@uwaterloo.ca

Xujie Si
McGill University

CIFAR AI Chair, Mila
xsi@cs.mcgill.ca

Arie Gurfinkel
University of Waterloo

arie.gurfinkel@uwaterloo.ca

Abstract—Inductive generalization (IG) is the key to the
efficiency of modern Symbolic Model Checkers (SMCs). In this
paper, we introduce a data-driven method for inductive gener-
alization, whose performance can be automatically improved
through historical runs over similar instances. Our method is
inspired by recent advances for the part-of-speech (PoS) tagging
problem in natural language processing (NLP). Specifically, we
use a hierarchical recurrent neural network augmented with
syntactic and semantic information to predict essential parts of
a proof obligation that could be generalized, instead of checking
each part one by one. We develop a prototype called ROPEY by
incorporating our method into SPACER – a state-of-the-art SMC,
and perform evaluations on the KIND2’s simulation benchmarks.
ROPEY is evaluated in two settings: online learning – for a given
instance, we run SPACER for a number of iterations and collect its
trace on which ROPEY is trained, and then use ROPEY to guide
SPACER to finish the remaining solving process; and transfer
learning – ROPEY is trained over historical runs of SPACER in
advance, and for future instances, ROPEY is used directly to guide
SPACER from the very beginning. For non-trivial benchmarks,
ROPEY perfectly answers 72% and 77% of the queries in the
online and transfer learning settings, respectively. While the
speed improvement is not the focus of the paper, our preliminary
results are promising: for non-trivial instances, ROPEY’s end-to-
end running time is 25% faster.

I. INTRODUCTION

Model checking has been widely used in various important
areas such as robustness analysis of deep neural networks [27],
verification of hardware designs [16], software verification [3],
analysis [20] and testing [41], parameter synthesis in biol-
ogy [5], and many others. The central challenge of model
checking is to find a concise and sound approximation of
all possible states a given system may reach, which does not
cover any undesired states (i.e. violating given specifications).
Tremendous progress has been made by innovations in ef-
ficient data representations [10], scalable SAT solvers [43],
[35], [18], and effective heuristics [14], [13], [32]. Modern
model checkers share a common basis, namely, IC3 [7], of
which the key insight is inductive generalization (IG). This
idea has been generalized to support rich theories [26] that
are crucial for many verification tasks [30], [22] beyond
hardware verification. The generalized IC3 with rich theories,
also known as satisfiability checking for Constrained Horn

This work was supported, in part, by an Individual Discovery Grant from
the Natural Sciences and Engineering Research Council of Canada, and the
Canada CIFAR AI Chair Program.

Clauses modulo Theory (CHC) [6], becomes the core part of
a broad range of verification tasks.

Existing IG techniques follow either an enumerative search
process [7], [8] or ad-hoc heuristics [21], [31]. These heuristics
are effective but demand non-trivial domain-specific (or even
problem-specific) expertise. In this work, we aim to learn
such heuristics automatically from the past successful IGs. We
observe that verification problems as well as associated IGs are
not isolated from each other. Taking software verification as
an example, verifying different properties of the same program
involves similar or same IGs; different versions of programs
have a similar code base; and different software may use the
same conventions, idioms, libraries and frameworks, resulting
in similar structures.

Our approach is inspired by recent advances in deep learn-
ing, especially in NLP where non-trivial semantic correlations
between words are learned automatically using Neural Net-
works (NNs) [33]. However, IG raises many new challenges
for deep learning. First, the input and the output of IG are
symbolic expressions, which are highly structured with rich
semantics. Slight syntactic variations can lead to dramatic
changes in semantics. Second, more importantly, given that
neural networks hardly provide any reliable guarantees, how
to design a data-driven system based on deep neural networks,
which exhibits learnability from past experiences but still
preserves soundness? All these challenges have to be properly
addressed in building a data-driven reasoning framework. In
this work, we share our design choices and empirical find-
ings in building a data-driven inductive generalization engine
ROPEY, which introduces a neural component into SMC.
Specifically, we make the following contributions:
• we adapt standard deep learning models to effectively

represent symbolic expressions by incorporating both
syntactic and semantic information;

• we design a simple but effective learning objective so that
training data can be collected with nearly no changes of
existing model checkers;

• our integration algorithm achieves soundness by design,
and in the worst case, the learning component may only
hurt the running time performance;

• we implement ROPEY on top of SPACER, a state-of-the-
art CHC-solver. Our empirical evaluations indicate that
ROPEY can effectively predict perfect answers for IG

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 17 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0003-2800-9392
https://orcid.org/0000-0002-3739-2269
https://orcid.org/0000-0002-5964-6792
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_17
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_17
https://creativecommons.org/licenses/by/4.0/

Fig. 1: Literal co-occurrences in solving
PRODUCER_CONSUMMER_luke_2_e7_1068_e8_1019.

queries, and this predictive power directly translates to
an improvement in end-to-end running time.

The utility of our current solution is modest since its applica-
tions are restricted to two use-cases: verification of multiple
properties of a single system (transfer learning), and guiding
verification of a hard property using its partial run (online
learning). This, however, is already useful in the context of
multi-property verification that is common both in hardware
and software verification domain [12]. More importantly, we
demonstrate that NN-based heuristics can be effective in IC3-
style algorithms. We believe this will lead to many further
improvements, including heuristics that will eventually transfer
between systems.

The rest of the paper is structured as follows. Sec. II
shows a motivating example. Sec. III gives an overview of our
approach. Sec. IV describes two novel embedding methods
for converting symbolic expressions into numerical vectors.
Sec. V formalizes the learning problem and describes our
neural network architecture. Sec. VI presents our empirical
evaluation and ablation study. Finally, Sec. VII discusses
closely related work, and Sec. VIII concludes the paper.

II. A MOTIVATING EXAMPLE

In this section, we motivate our approach by illus-
trating the solving process of a particular CHC prob-
lem – the variant e7_1068_e8_1019 of the prob-
lem PRODUCER_CONSUMMER_luke_2 from KIND2 [11]
benchmarks. We identify a bottle neck in IG, observe a pattern
in the solving process, and explain how this leads to our
intuition. While we use a specific instance for illustration, the
results generalize to others in our benchmarks. We assume
familiarity with SMC [15] and inductive generalization of
IC3 [7]. These are also summarized in Sec. III.

SPACER cannot solve this variant in less than 930s. SPACER
proves that the instance is safe up to depth 29 in 883s, in which
545s (61%) is spent on IG – so this is the bottleneck.

During inductive generalization process, SPACER takes a
candidate lemma L, and uses an SMT solver to check whether
each literal of L can be dropped. Each call to the SMT solver
is potentially very costly. Thus, it is desirable to drop or skip
multiple literals together.

We conjecture that there is a pattern between literals: some
groups of literals may always be dropped or kept together. If
this correlation is known, it can be used to speed up IG.

Counter example
of length N
exists?

<Init, Tr, Bad>
N := 0

Inductive
generalization

Is it a safe
inductive
invariant?

Lgeneralized

UNSAFE
SAFE

NO, N:=N+1

NO
+

Bounded
lemma L

YES

(a) SMC architecture.

Inductive
generalization

SPACER's other components

<Init, Tr, Bad>

Lcandidate

Lgeneralized
L

L

(b) ROPEY architecture.

Fig. 2: Overview of Symbolic Model Checking and ROPEY.

To verify our hypothesis, in Fig. 1 we visualize the co-
occurrences of kept literals in the instance. Literals are ordered
by the time they are learned. Each cell Xij in the grid is the
number of times the literals `i and `j appear together in some
generalized lemma (normalized by the largest value). In the
figure, brighter cells indicate larger values.

The figure shows a strong geometric pattern, with literals
clustered into unusual groups. However, we are not able to tell
the exact heuristics describing those patterns. In this paper, we
turn this observation into a practical inductive generalization
method with the help of data-driven approach.

III. OVERVIEW

In this section, we give an overview of our technique,
outline the challenges involved, and our key insights to address
them. The context is symbolic SMT-based Model Checking
(SMC) [7], [26], [29], also known as satisfiability checking
for Constrained Horn Clauses modulo Theory (CHC) [6]. In
Model Checking, the high-level goal is to show that an infinite
state transition system (Tr) does not have an execution/path
that reaches a set of bad states (Bad) by finding a formula Inv
that is an inductive invariant of Tr and does not intersect with
Bad . The goal of CHC solving is to show that a set of First
Order Logic formulas Φ that satisfy the Horn restriction [6] is
satisfiable by exhibiting a symbolic formula Model that defines
an FOL model that satisfies Φ. The two problems are closely
related. Model Checking is often reduced to CHC solving.
Both problems are in general undecidable.

Fig. 2a shows the basic structure of an SMC algorithm based
on IC3 architecture. In the paper, we use SMC SPACER [29],
but the architecture is common to many engines. SMC iter-
atively unrolls Tr , uses an SMT solver to find a bounded
counterexample (which is usually decidable), and, if no coun-
terexample is found, attempts to create an inductive invariant.
The invariant is constructed as a set of so called lemmas, where
each lemma blocks a predecessor of Bad (a proof obligation),
and is a disjunction of atomic formulas. An example lemma
is x ≤ 0 ∨ y, which often written as a set for convenience,
i.e {x ≤ 0, y}. Many of the details of the algorithm are not
important, and we omit them here. The step we focus on in this
paper is inductive generalization (IG) (highlighted in blue in
Fig. 2a), that is responsible for generalizing learned lemmas.
In practice, IG is crucial for the performance of SMC.

87

Input: the original F-inductive lemma L = {`1, `2, ..., `n}
Output: a generalized F-inductive lemma K ⊆ L

1 K ← ∅ // kept literals
2 C ← L // literals to check
3 while C 6= ∅ do
4 K,C ← dropOne(K,C)

5 return K

6 function dropOne(K, C)
7 lit← pick(C)
8 if isInductive(K ∪ C \ {lit}) then
9 C ← C \ {lit}

10 else
11 K ← K ∪ {lit}
12 C ← C \ {lit}
13 return K,C

Fig. 3: ITERDROP algorithm.

Conceptually, inductive generalization is a simple process,
usually done with an algorithm similar to the one we call
ITERDROP1, shown in Fig. 3. ITERDROP starts with a valid
lemma L = {`1, . . . , `n}, and proceeds to generalize L by
removing an arbitrary chosen literal from L, and using an
SMT solver to check whether the lemma is still valid (by
calling isInductive). The details of isInductive are
not important – but it can be quite expensive. If the call
succeeds, the literal is removed, otherwise it is kept. The goal
is to generalize to a valid lemma with a minimal number
of literals. From now on, when the context is clear, we use
generalization instead of inductive generalization.

We illustrate ITERDROP with a sample run, shown in
Fig. 4a. Start from the given lemma L = {x3, x1, x6 =
1, x9 − x10 ≥ 41, x5 = 1}, ITERDROP proceeds as follows:

1) it tries to drop the first literal, x3, by checking whether
L′1 = {x1, x6 = 1, x9 − x10 ≥ 41, x5 = 1} is valid;

2) assume that L′1 is valid, then L← L′1, x1 is chosen next;
3) now, assume that L′2 = {x6 = 1, x9−x10 ≥ 41, x5 = 1}

is not valid. L remains as is and x6 = 1 is chosen next;
4) assume that L′3 = {x1, x9 − x10 ≥ 41, x5 = 1} is valid,

then L← L′3, and x9 − x10 ≥ 41 is chosen next;
5) assume that L′4 = {x1, x5 = 1} is not valid, then L is

unchanged, and x5 = 1 is chosen next;
6) assume that L′5 = {x1, x9 − x10 ≥ 41} is valid, then L′5

is the final generalized lemma.
The example highlights the difficulty of inductive gener-
alization. First, each call to isInductive is potentially
very expensive. Thus, reducing the number of the calls is
highly desirable. Second, many of the calls, like steps 3
and 5 are “useless” – no new lemma is learned from them.
Thus, reducing such “useless” calls is also highly desirable.
Finally, a solver makes many (up to thousands) such inductive
generalization calls per run.

Our key insight is that since generalization happens fre-
quently, and, while the lemmas are different, the literals are
similar, it is possible to learn the co-occurrence between

1While there are more advanced IG techniques, such as [23], we choose
ITERDROP since it is used in SPACER– a state-of-the-art CHC solver.

literals that do and do not occur in the same lemma together.
This co-occurrence, if learned, could then be used to improve
inductive generalization!

Crucially, SPACER learns new literals all the time, and
literals between different instances of the same problem are
often similar, for instance, x1− 2x3 ≥ 20 and x1− 2x3 ≥ 25.
Thus, an ML-based solution is useful to transfer knowledge
between different sets of literals. Our method is inspired by
the PoS-tagging problem in NLP, in which NNs automatically
learn co-occurrence patterns between words and their tags.
We elaborate more on this inspiration in Sec. V. We have
also tried creating our own hand-crafted heuristics for directly
calculating co-occurrence (for example, by using Boolean
abstraction of literals), but none worked well in practice.

Concretely, we propose a novel neural network architecture,
denoted by M , that learns from past IG queries, and is then
used to predict answers for new IG queries. As shown in
Fig. 4c, M outputs a binary mask (a list of zeros and ones)
corresponding to literals that should be dropped or kept in the
lemma. To evaluate M in the context of an SMC, we devise
a new neural-based IG algorithm called XDROP, that has M
at its core (Fig. 6). We have developed ROPEY, a prototype
SMC that uses XDROP to guide SPACER. (Fig. 2b).

In Fig. 4b, we illustrate a run of XDROP on our exam-
ple: (1) it runs M on the input L; (2) it creates a mask
{0, 1, 0, 1, 0}, corresponding to a candidate Lcand = {x1, x9−
x10 ≥ 41}; (3) it checks the inductiveness of Lcand; (4) it
accepts Lcand, and runs ITERDROP starting from Lcand. Note
that XDROP runs only 3 inductiveness checks, compared to 5
used by ITERDROP.

Challenges. To make ROPEY a practical verification engine,
we have to address challenges in both the machine learning
and the logical soundness aspect. For machine learning, the
challenge is in representing symbolic expressions as vectors,
while still maintaining their rich semantic structure. For logical
soundness, the challenge is in setting up the learning objective
and using the neural net in a way that guarantees the soundness
of a verification engine.

Representation learning of symbolic formulas. Literals
are symbolic formulas, which are structured and have mean-
ing sensitive to small changes. Simply viewing a literal as
a sequence of tokens fails to capture the subtle semantic
differences between structurally similar formulas.

We incorporate both syntactic and semantic information of
a literal into its representation. Our approach views a literal
as a directed acyclic graph (DAG), which is post-processed
from its abstract syntax tree (AST), and then adapts TREEL-
STM [44] to embed such a DAG structure. Our approach also
takes semantic information into consideration so that specific
properties of values are respected: embedding of numbers and
variables should preserve their relative order and equality.

Learning for inductive generalization. Directly using
ML to address the generalization problem is a non-trivial
structure prediction problem. It takes in a set of symbolic
formulas and outputs another set of symbolic formulas that
are more general and more concise. Rather than having an

88

 and (x_3)
 (x_1)
 (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_1)
 (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

 and (x_1)
 (x_5 = 1)

 and (x_1)
 (x_9 - x_10 >= 41)

inductive?

YES

NO

NO

YES

inductive?

inductive?

inductive?

 and (x_1)
 (x_9 - x_10 >= 41)

inductive?
YES

(a) ITERDROP example.

 and (x_3)
 (x_1)
 (x_6 = 1)
 (x_9 - x_10 >=41)
 (x_5 = 1)

Neural
network

 and (x_1)
 (x_9 - x_10 >= 41)

 and (x_1)
 (x_9 - x_10 >= 41)

inductive?
YES

 (x_9 - x_10 >= 41) NO
inductive?

 (x_1) NO
inductive?

XDROP

(b) XDROP example.

0 1 0 1 0 1 0 1

x_3 x_1 x_6 = 1 x_9 - x_10 >= 41 x_5 = 1

0 1

(c) XDROP’s neural network: 0 means drop, and 1 means keep.

Fig. 4: Examples of how ITERDROP and XDROP do inductive generalization on the same query.

end-to-end ML solution, we embed a learning component in
a classic symbolic approach of generalization. Specifically,
the learning component captures the co-occurrence between
literals appearing in past runs and predicts the likelihood of
keeping or dropping a literal in the current run. Furthermore,
uncertainties introduced by the learning component have to be
carefully controlled, which otherwise could lead to unsound
conclusion. ROPEY is designed to make sound progress no
matter what predictions the learning component provides. Bad
predictions may be harmful to the performance, but not to
soundness!

IV. REPRESENTATION LEARNING

Machine learning frameworks [36] and algorithms [44], [38]
operate over fixed-length numerical vectors. One challenge
for applying machine learning for IG is converting discrete
structures with rich semantic meanings into such numerical
representations. In this section, we describe how we embed the
basic unit of our inputs – symbolic formulas – into fixed-length
vectors, while still maintaining their syntactic and semantic
meaning to a certain extent.

A. Representing and normalizing symbolic formulas

Abstract Syntax Trees (ASTs) are natural representations of
formulas that are traditionally used in parsing and compilers.
They preserve the key structure of the formula, while hiding
(or abstracting) unnecessary details such as white space,
commas and parentheses. Alternative representations such as
sequences of tokens abstract too much of the structure of the
formula, while highlighting unnecessary differences. Thus, we
represent logical formulas using their ASTs: operators label
nodes of the tree, operands are children, constants (boolean
and numeric) and variables are leaves. An example of an AST
is shown in Fig. 5b.

Ideally, we would like to represent semantically equivalent
formulas with the same AST. However, this is not guaranteed
if one naively parses a formula into an AST. For example,
x+ 0 > y and x > y are semantically equivalent, yet differ in
the concrete syntax, and have different ASTs. To address this,
we rewrite each formula in a “normal” form by simplifying as

well as ordering commutative operators. Specifically, we use a
simplification engine of Z3 [17]. Our normalizer cannot handle
sophisticated semantic equivalences, such as normalizing 2/7 ·
x9 − 4/7 · x10 ≥ 6 into 1/7 · x9 − 2/7 · x10 ≥ 3. Improving
the normalization process to handle such cases would be an
interesting future work.

Note that semantically equivalent rewriting and normaliza-
tion make our representations of symbolic formulas essentially
directed acyclic graphs (DAGs) modulo semantic equivalence,
because semantically equivalent subtrees share the exact same
embedding. Indeed, representations of symbolic formulas in
our implementation are DAGs, although they are viewed as
if they were trees by the embedding model. Without further
notice, when we refer to a node in a tree, we actually mean
its corresponding node in the DAG.

We use TREELSTM [44] to embed a symbolic formula,
or more concretely its AST representation, into a fixed-
length vector. TREELSTM is essentially a recursive process,
where the embedding of a (sub-)tree is an aggregation of
the embedding of the root node and embeddings of its sub-
trees. The basic requirement of using TREELSTM is to have
an embedding for each node. In the rest of this section, we
describe the features used to embed each AST node into a
fixed-length vector.

B. Embedding features of an AST node

A common technique to map a node N to a vector is to
first map the infinite (or simply large) set Σ of all possible
nodes into a finite set T of tokens (a.k.a. encoding), and then
embed each token into a vector using an embedding matrix of
size |T | × demb.

a) Encoding: Under the standard encoding scheme,
many nodes have to be mapped into the same token. For
example, in NLP, all out-of-vocabulary words are mapped
into a token <UNK>. Similarly, variable names, and numerical
constants over an expression can be mapped into two tokens:
<VAR> and <NUM>, respectively.

Unfortunately, this encoding scheme is inadequate in our
setting. We believe that both the variable names and the values

89

Kind ::= 〈BOOL OP〉 | 〈BOOL VAR〉
| 〈REAL OP〉 | 〈REAL VAR〉 | 〈REAL〉
. . .

Value ::= Var | Op | Constant
Var ::= variable name
Op ::= + | − |<| · · ·

Constant ::= real constant
CEn(p) ::= [s, e1 · · · e2n+1]

s ∈ [1, 10) ⊂ R, ei ∈ {0, 1}
PEd(v) ::= [f1, f2 · · · fd]

fi ∈ (0, 1) ⊂ R

(a)
(b)

Fig. 5: (a) The grammar for AST node features, and (b) an example AST and its semantic features.

of the numeric constants are highly relevant for successful
generalizations! For example, consider two pairs of formulas:

x1 − 2x3 + 7x5 ≥ 10 x1 − 2x3 + 7x5 ≥ 14 (1)
x1 − 2x3 + 7x5 ≥ 10 x1 + x3 − x5 ≥ 0 (2)

Pair (1) represents two parallel hyperplanes, with the first
subsuming the second. Pair (2) represents two intersecting hy-
perplanes and cannot be simplified any further. The difference
between the two pairs disappears when all numeric constants
are mapped to a small finite set of tokens. Yet, this difference
is crucial for successful learning in our context!

Instead of abstracting variables (or constants) into a single
token, we propose a finer granularity abstraction as follows.
Each node is abstracted as a pair of 〈Kind,Value〉, whose
grammar is shown in Fig. 5a. Kind captures the type (or sort)
of the expression of an AST node. The encoding is one of
the pre-defined symbols, such as 〈BOOL OP〉 for a Boolean
operator, etc. Value captures the content of an AST node.
It could be a Variable Name, an Operator, or a Constant.
Operators are encoded as their string representation. Constants
are encoded as their string representations. Variable Names are
encoded using the form x_i, where x is some fixed string,
and i a numeric id of the variable.

Next, we describes how we embed the pair 〈Kind,Value〉
into a fixed-length vector.

b) Embedding: Kind is embedded into a fixed-length
vector of length dKind using a standard embedding matrix [34]
EKind of the size |Kind| × dKind. Value could be embedded
in the same manner. However, given Value is quite diverse,
we propose different embedding methods for different kinds
of values. When Value is an Op, we introduce the second
embedding matrix EOp of the size |Op| × dOp.

When Value is a Variable Name, we combine two embed-
ding methods. The first method, which we call Naive Embed-
ding, is the same as above, in which we use another embedding
matrix EV ar of the size |Var| × dV ar. The second method,
which we call Positional Embedding, based on the method
introduced in [46]. It embeds the id t of the normalized
variable name x_t as follows: The embedding of the position

t is a vector PEd(t) of length d. The value for the ith entry in
the vector PEd(t) is defined as follows:

PEd(t)i =

{
sin(ωk · t) if i = 2k
cos(ωk · t) if i = 2k + 1

where ωk = 10000−2k/d. This embedding satisfies many nice
properties: each position is mapped to a unique value, all en-
tries in the vector are between 0 and 1 (which makes learning
easier), and, lastly, for every fixed offset k, there exists a
transformation matrix T ∈ Rd×d s.t. T ·PEd(t)i = PEd(t+k)i
holds for any position t and index i [46]. This last property
allows the model to learn relative positions easily. In practice,
we combine the two methods by concatenating their vectors.

When Value is a Constant, we want to embed it in a way that
allows the network to quickly extract magnitudes of constants
along with their values. We propose the following Constant
Embedding method: Given a numerical value p, its embedding
is a vector CEn(p) of length 2(n + 1). To embed it, we first
write p in its scientific notation: p = s × 10e. The entries in
CEn(p) are then calculated as follows:

CEn(p)1 = s

CEn(p)i6=1 =

{
1 if i = 2 + n + e
0 if i 6= 2 + n + e

Simply put, we embed the significant s as the first entry
in the vector, and the rest is the one-hot encoding of e in
the range [−n, n]. For example, with n = 2, p = 42 =
4.2×101, its embedding is CE2(42) = [4.2 0 0 0 1 0]. Similarly,
CE3(0.42) = [4.2 0 0 1 0 0 0 0].

The final feature vector for a node is then the concatenation
of the embedding of Kind and Value. In our experiments,
we set dKind = dOp = dV ar = d = 64, and n = 6. We
conclude this section with an example. Fig. 5b shows an AST
for x9−x10 ≥ 41 and its transformation into a tree of feature
vectors, with n = 6 and d = 64.

V. LEARNING TO GENERALIZE

In this section, we elaborate on our insight first mentioned
in Sec. III, then we describe the details of our model.

90

Word Tag

Travelers noun
love verb
to preposition
park verb
here adverb

Literal Tag

x3 drop
x1 keep
x6 = 1 drop
x9 − x10 ≥ 41 keep
x5 = 1 drop

TABLE I: Two examples for PoS-tagging (left) and IG (right).

A. Lemma Labeling Problem

In Natural Language Processing, part-of-speech tagging
(PoS-tagging) is the process of labeling each word in a text
(corpus) a particular part of speech, based on its definition
and its context. Table I (left) shows an example of tagging a
sentence. To correctly tag each word, a tagger needs to know
that “park” in this context is a verb, not a noun. State-of-the-art
PoS-tagger tackles this problem purely from the probabilistic
view [45]: in the dataset, how many times “park” is tagged as
a NOUN, how many times “park” is tagged as a VERB given
that the following word is tagged as an ADVERB, etc.

Our insight is that the inductive generalization could be
viewed as a special case of PoS-tagging in which there are
only two tags: drop and keep. Table I (right) shows one such
example. We also view the problem in the same probabilistic
way: in the dataset, how many times x3 is kept, how many
times x3 is dropped given that x1 is kept, etc. It is reasonable to
expect there are shared patterns between different properties
of the same system, or between different points in time of
the same solving process. However, it is not expected that the
learned pattern is transferable between different systems (x3 in
one system is completely different from x3 in the others, just
like “park” in English and Korean are completely different).

Formally, we define our problem as an instance of the
sequence labeling problems:

Problem 1 (Lemma labeling problem) L is the set of all
possible literals. Given a list of literals L of length n and
a vector M of zeros and ones, |M| = n, train a tagger
M : Ln 7→ {0, 1}n s.t. M(L) ≈M.

Note that in the problem definition we keep the lemma as a list
instead of a set of literals. This means that given a different
ordering from the same set of literals, we might end up with a
different result. However, this is also the behavior of SPACER,
because SPACER maintains the lemma as a list of literals, and
pick(C) in Fig. 3 simply returns the first element in C.

B. Model

To handle inputs of different lengths, we use two variants
of the Long Short-Term Memory (LSTM) [25] network. At
the high level, the information (hidden state) at each timestep
t in a vanilla LSTM is

−→
ht = LSTM(it,

−−→
ht−1), where it is

the input at timestep t, and a vector of zeros is used for the
initial

−→
h0. Intuitively, the formula says that the hidden state at

timestep t captures information from every prior timestep.
The first variant, Bidirectional-LSTM [38], has been shown

to improve the labeling performance in NLP tasks [47]. It ex-
tends LSTM by including information from later timesteps as

Input: the original F-inductive lemma L = {`1, `2, ..., `n}
Output: a generalized F-inductive lemma

1 LCand ← {`i | ` ∈ L,M(L)[i] = 1}
2 if isInductive(LCand) then
3 return iterDrop(LCand)
4 else
5 return iterDrop(L)

Fig. 6: XDROP algorithm.

well, thus, allowing the network to use better context informa-
tion. Concretely, it adds the backward

←−
ht = LSTM(it,

←−−
ht+1).

Then, the hidden state ht is the concatenation [
←−
ht ,
−→
ht].

The second variant, TREELSTM [44], has been shown to be
suitable for tree-like inputs, such as ASTs. It extends LSTM
by considering the linear chain of timesteps as a special case
of a tree, in which each node has exactly one child. Given
a node ij in a tree, with H(ij) is the set of hidden states
corresponding to each child node of ij , TREELSTM extends
the equations with hj = TreeLSTM(ij , H(ij)). Intuitively,
TREELSTM passes information from all children to their
parent, allowing better topology information to be learned. In
this work, we use the information at the root node as the
summary of the whole tree.2

Fig. 4c shows our full model with a Bidirectional LSTM
layer on top of a TREELSTM layer in a hierarchical manner.
From top to bottom in Fig. 4c, at a literal `t corresponding to
an AST with root Roott, we calculate the following:

it = TreeLSTM (Roott, H(Roott))
←−
ht = LSTM (it,

←−−
ht+1)

−→
ht = LSTM (it,

−−→
ht−1)

ht = [
←−
ht ,
−→
ht] yt = W · ht + b

where W ∈ R|ht|×2 and b ∈ R2 are the weight matrix and
bias that transforms ht to a vector of size 2. Each equation
above corresponds to a layer in Fig. 4c. Finally, the predicted
label for `t is the index of the max value of yt.

Fig. 6 describes how we use the learned model in our neural-
based IG algorithm XDROP. Given that deep learning models
could make arbitrary predictions, special care need to be taken
in order to preserve soundness. In the worst case, XDROP
should be effectively the same as ITERDROP. More formally,
we have the following important yet straightforward theorem.

Theorem 1 XDROP is sound and terminating.

XDROP is implemented in Python using PyTorch [36],
while SPACER is implemented in C++. We implement a client-
server architecture in which XDROP is wrapped in a gRPC
server which connects to a gRPC client inside SPACER.

C. Discussion

Using NNs to guide generalization might seem arbitrary at
first. Perhaps a simpler heuristic based on counting frequency
is sufficient. In fact, we have tried many different handcrafted
heuristics first. However, two common problems arose: (a) the

2It is also possible to use the sum of every node in the tree as the summary,
as mentioned in [44].

91

0 500 1000 1500 2000
ind.gen queries (k)

0.5

0.6

0.7

0.8

0.9

1.0
pe

rfe
ct

 p
re

di
ct

io
n

ra
tio

(a) Online learning.

0 500 1000 1500 2000
ind.gen queries (k)

0.5

0.6

0.7

0.8

0.9

1.0

pe
rfe

ct
 p

re
di

ct
io

n
ra

tio

(b) Transfer learning.

Fig. 7: M ’s predictive power for benchmarks with at least k
IG queries.

heuristics do not work consistently across different bench-
marks; (b) even if a heuristic works, it does not transfer
to different properties since different literals are learned for
different properties and systems.

There are many alternative ways to guide generalization
using a neural component than the one we chose. Perhaps most
desirable is to have an end-to-end solution in which the neural
component takes an original lemma as input and produces a
generalized lemma as output. However, the symbolic reasoning
required for this is so complex that we believe that such
a solution is much harder to train and scale up. Another
alternative is to learn an approximation of the inductive check,
i.e., the function isInductive(Context , L) 7→ {true, false}
that determines whether a candidate lemma L is inductive in
the current context. We have tried such an approach, but could
not make it effective. The difficulty is that the Context that
is used by the inductive checker is a large symbolic formula.
This makes training the network difficult. We suspect it is as
hard as learning a neural SMT-solver [40], [39].

VI. EMPIRICAL EVALUATION

A. Benchmarks and environment setup

We evaluate ROPEY on a set of simulation benchmarks
publicly available 3 for the KIND2 model checker [11]
(simply called KIND2 from now on). This benchmark suite
corresponds to verification of systems that are known to
be challenging for IG, for which SPACER behaves poorly.
Furthermore, KIND2 benchmarks can be easily grouped into
training set (i.e. a set of original benchmarks) and testing set
(i.e. a set of corresponding variants). In total, KIND2 consists
of 324 benchmarks.

We train ROPEY’s neural network M using Adam optimizer
[28] with dropout rate 0.5. We set the hidden size of TreeL-
STM to be 64, and use embedding dimensions mentioned in
Sec. IV.4 We stop training when either the performance has
not been improved over the last 250 epochs or the number
of epochs reaches a predefined threshold (i.e. 1 500). Naive
Embedding, Positional Embedding and Constant Embedding
are always used. Ablation study for those embeddings is

3https://github.com/kind2-mc/kind2-benchmarks.
4These dimensions could be further fine-tuned, which we leave as interest-

ing future work.

discussed in Sec. VI-E. All experiments are performed on a
Linux desktop equipped with an Intel® Xeon E5-2680 v2, an
NVIDIA 1080 Ti GPU, and 64GBs of memory. The artifacts
including code and data are available on the project website
at https://nhamlv-55.github.io/Ropey.

Given that evaluating benchmarks with a short running time
(i.e. less than one second) is susceptible to noise, for all
experiments we report both the numbers for all benchmarks
and the numbers for non-trivial benchmarks. We define a non-
trivial benchmark as the one that takes at least 5 seconds to
solve, or has at least 100 IG queries (depending on whether we
are measuring running time or predictive power, respectively).

B. Predictive power

We evaluate the model M in two settings, namely, online
learning and transfer learning. Given a lemma in the form of
a list of literals, M predicts a likely inductively generalized
lemma, which is a sub-list of the given lemma. We define a
prediction returned by M as a perfect prediction iff given the
same input, vanilla SPACER produces the same exact answer.
Note that this is a conservative criterion because there might
be multiple valid inductive generalizations.

Online learning In this setting, we collect 144 benchmarks
from KIND2 that have at least 2 IG queries in their solving
trace. For each of them, we use SPACER to solve it until
completion or until a time limit of 930 seconds is reached.
Each solving trace is then split in half, and M is trained on
the first half to predict the answers to queries seen in the
second half of the trace (tail queries). We measure how many
percent of the tail queries are perfectly predicted by M . The
average length of queries is 9.75 literals.
M achieves 60.19% perfect prediction ratio for all bench-

marks and 72.18% for non-trivial benchmarks. The trend of
perfect prediction ratio along with the corresponding number
of queries are plotted in Fig. 7a, where Y-axis is the perfect
prediction ratio and X-axis is benchmarks ordered according
to their total number of IG queries. The plot shows that M
generally works better for larger benchmarks. For instance, M
returns perfect predictions for more than 90% of the queries
in benchmarks with 1 600 or more IG queries.

Transfer learning In this setting, we use 123 bench-
marks (i.e., 30 seed benchmarks and 93 variant bench-
marks) from KIND2 based on their naming convention. For
example, metros_2_e1_1116.smt2 is one variant of
metros_2.smt2. Note that we have fewer benchmarks in
this task since some seed benchmarks can be solved without
any IG queries, while its variants cannot. Those seeds and
variants are all excluded from the task. The average length of
the queries for this task is 8.43 literals.

We train M on traces generated by solving the seed bench-
marks to completion or until timeout. The models are then
used to predict queries asked during the solving process of
the corresponding variants.
M achieves 68.36% and 76.89% perfect prediction ratio

for all benchmarks and non-trivial benchmarks, respectively.
We also plot the trend of perfect prediction ratio in Fig. 7b.

92

https://github.com/kind2-mc/kind2-benchmarks
https://nhamlv-55.github.io/Ropey

0 200 400 600 800
seconds (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
pe

ed
 u

p

solving time + inf. time
solving time
ind. gen time + inf. time
ind. gen time

Fig. 8: ROPEY’s speedups for benchmarks taking more than s
seconds to solve.

All Non-trivial

solving + inf. time 0.81560 1.25385
solving time 1.14085 1.69792
ind. gen time 1.13570 1.63041
ind. gen + inf. time 0.70519 0.91891

TABLE II: ROPEY’s speedups compared with SPACER.

Similar to the online learning setting, M generally works
better for larger benchmarks. It is a little surprising that the
perfect prediction ratio of transfer learning setting is slightly
better than the ratio of online learning. This might indicate
that in our benchmarks, queries in the beginning and at the
end of the same benchmark are more different than queries
between seeds and variants. Quantifying this observation is an
interesting direction for future work.

C. Running time

ROPEY’s running time can be broken down into few com-
ponents: SPACER’s time (in which IG time is a subcompo-
nent), communication time over gRPC, data parsing time, and
model running time. We group the later three components
into inferencing time. On average, inferencing takes 48.1%
and 24% of the total running time for all and non-trivial
benchmarks, respectively. For future work, we state that there
are opportunities for engineering improvement to reduce the
inferencing time.

We measure the speedup in IG time and SPACER’s solving
time with and without the inferencing time. If ROPEY times
out, we measure the running time that ROPEY needs to verify
to the same depth as SPACER. The timeout is set to be 930
seconds, and in cases where ROPEY times out, we rerun it
with the timeout set to 2 790 seconds to allow it to verify to
the same depth as SPACER. The results are in Table II. We
also plot in Fig. 8 the speedups achieved at different running
time threshold s, e.g for benchmarks that takes more than 50
seconds to solve, 100 seconds to solve, etc.

For unsolved benchmarks, notice the spikes at the tail of
Fig. 8: ROPEY takes much less time to reach to the same depth
as SPACER, up to 2.8× faster (inferencing time included).

D. Training time

In this paper, we specifically consider realistic applications
where training time is not a bottleneck – train once on one
instance and apply to many similar instances (offline), or train
during a very long run (days or weeks) and apply to the rest of

0 500 1000 1500 2000
ind.gen queries (k)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

pe
rfe

ct
 p

re
di

ct
io

n
ra

tio

all embedding enabled
pos. embedding disabled
naive embedding disabled
const. embedding disabled

Fig. 9: Effects of using different embeddings for benchmarks
with at least k IG queries.

the run (online). For that reason, we do not optimize training
code, nor do we run training in an isolated environment
where time measurements are meaningful. Nonetheless, we
share some statistics of the training time – the minimum,
median and maximum training time are 17, 1027 (17 minutes),
and 165811 seconds (46 hours), respectively. More details
are hosted on our project webpage https://nhamlv-55.github.
io/Ropey/training time. Training any individual model (i.e.,
when GPU is used to train only a single model) is faster, but
training all models sequentially is too slow. Since we do not
consider training time itself to be of significant interest, we
train as many models in parallel as possible.

E. Ablation study

Embedding variables and constants is crucial for our tasks.
In this ablation study, we evaluate three embeddings we
proposed in Sec. IV-B for handling variables and constants.
Fig. 9 shows four plots of ROPEY with four different em-
bedding configurations. ROPEY achieves the best performance
when all embeddings are enabled. ROPEY’s performance drops
dramatically when the positional embedding is disabled, in-
dicating leveraging variable’s position information helps for
capturing co-occurence patterns. Disabling Naive Embedding
or Constant Embedding does not affect the performance much
for benchmarks with relatively small number (i.e. < 1 000)
of IG queries, however, the performance drops dramatically
when the number of IG queries becomes large.

VII. RELATED WORK

There has been a number of work studying neural learn-
ing for symbolic reasoning. Some studied the capability of
deep learning models on handling relatively simple symbolic
reasoning tasks, such as symbolic expression equivalence [1]
or logical entailment [19], which can be easily performed by
a symbolic engine like SMT solver. [2] and [37] focus on
learning embeddings of programs using paths over abstract
syntax trees or control flows, and the learned embeddings are
helpful for suggesting function or variable names. Our focus is
on improving state-of-the-art symbolic engines on non-trivial
symbolic reasoning tasks like symbolic model checking. The
most relevant work is [4], which predicts a high-level strategy
(or configuration) of an SMT solver based on static statistics
of a verification instance. In contrast, our approach learns from

93

https://nhamlv-55.github.io/Ropey/training_time
https://nhamlv-55.github.io/Ropey/training_time

dynamic runs and provides guidance for decisions in a finer
granularity. Two other related work are [24] and [42]. The
former also uses deep learning to guide numerical analysis,
where the soundness is not a concern as imperfect prediction
results in less precise (but still acceptable) numerical approxi-
mations. Like our problem, the latter also faces the soundness
issue and proposes an end-to-end reinforcement learning based
approach, which however suffers from scalability issues.

VIII. CONCLUSION

In this paper, we explore how deep neural networks can
be used in IC3. We chose inductive generalization because
it is (a) a common bottleneck; and (b) seemed suitable to
optimize with NNs. We view this as a first step in using data-
driven NNs to guide IC3. Specifically, we propose a data-
driven approach to improving inductive generalization, which
effectively embeds symbolic formulas in fixed-length vectors
and uses a hierarchical recurrent neural network to guide
inductive generalization (i.e., predict which literals of a lemma
should be kept or dropped). We build a prototype, ROPEY, and
evaluate it on KIND2 benchmark suite. We observe promising
predictive power of neural networks in inductive generalization
and modest improvement in terms of absolute running time
over the state-of-the-art SMC engine, SPACER, which boosts
the solving time for non-trivial instances by 25%.

Our work shows that it is possible for NNs to learn complex
symbolic patterns in IC3, and such learned patterns can be
used to improve IC3. ROPEY’s pure performance does not
show a strong gain yet, but is still encouraging. We envision
the performance gain would be much more significant by
improving ROPEY with better engineering effort or leveraging
advanced hardware acceleration for deep learning models in
the future (like TPUs). Another orthogonal improvement is
to explore more advanced transformer-based language models
like GPT-3 [9] to further improve the prediction accuracy.

REFERENCES

[1] M. Allamanis, P. Chanthirasegaran, P. Kohli, and C. A. Sutton, “Learning
continuous semantic representations of symbolic expressions,” in ICML
2017, vol. 70, 2017.

[2] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” POPL, vol. 3, 2019.

[3] T. Ball, “Secrets of software model checking,” in AGP 2002, 2002.
[4] M. Balunovic, P. Bielik, and M. T. Vechev, “Learning to Solve SMT

Formulas,” in NeurIPS, 2018.
[5] J. Barnat, L. Brim, A. Krejci, A. Streck, D. Safranek, M. Vejnar, and

T. Vejpustek, “On parameter synthesis by parallel model checking,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 9, no. 3, 2012.

[6] N. Bjørner, A. Gurfinkel, K. L. McMillan, and A. Rybalchenko, “Horn
clause solvers for program verification,” in Gurevich 75, 2015.

[7] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
2011.

[8] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “An incremental
approach to model checking progress properties,” in FMCAD, 2011.

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” in NeurIPS,
vol. 33, 2020, pp. 1877–1901.

[10] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, no. 8, 1986.

[11] A. Champion, A. Mebsout, C. Sticksel, and C. Tinelli, “The Kind 2
Model Checker,” in Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II, ser. Lecture Notes in Computer Science,
S. Chaudhuri and A. Farzan, Eds., vol. 9780. Springer, 2016, pp. 510–
517. [Online]. Available: https://doi.org/10.1007/978-3-319-41540-6 29

[12] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in Proceedings of the International
Conference on Formal Methods in Computer-Aided Design, ser. FMCAD
’11. Austin, Texas: FMCAD Inc, 2011, p. 135–143.

[13] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods Syst. Des., vol. 19, no. 1,
2001.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, 2000.

[15] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
Model Checking, 1st ed. Springer Publishing Company, Incorporated,
2018.

[16] E. M. Clarke, K. L. McMillan, S. V. A. Campos, and V. Hartonas-
Garmhausen, “Symbolic model checking,” in CAV, 1996.

[17] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS, 2008.

[18] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, 2003.
[19] R. Evans, D. Saxton, D. Amos, P. Kohli, and E. Grefenstette, “Can

neural networks understand logical entailment?” in ICLR, 2018.
[20] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and

R. Stata, “Extended static checking for java,” in PLDI, 2002.
[21] A. Griggio and M. Roveri, “Comparing different variants of the ic3

algorithm for hardware model checking,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 35, no. 6, 2016.

[22] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The seahorn
verification framework,” in CAV, 2015.

[23] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in
IC3,” in 2013 Formal Methods in Computer-Aided Design, 2013, pp.
157–164.

[24] J. He, G. Singh, M. Püschel, and M. T. Vechev, “Learning fast and
precise numerical analysis,” in PLDI, 2020.

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[26] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, vol. 7317, 2012.

[27] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W.
Barrett, “The marabou framework for verification and analysis of deep
neural networks,” in CAV, 2019.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.”
CoRR, vol. abs/1412.6980, 2014.

[29] A. Komuravelli, A. Gurfinkel, and S. Chaki, “Smt-based model checking
for recursive programs,” in CAV, 2014.

[30] A. Komuravelli, A. Gurfinkel, S. Chaki, and E. M. Clarke, “Automatic
abstraction in smt-based unbounded software model checking,” in CAV,
2013.

[31] H. G. V. Krishnan, Y. Chen, S. Shoham, and A. Gurfinkel, “Global
guidance for local generalization in model checking,” in CAV, 2020.

[32] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, 2006.
[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-
tionality,” in NeurIPS, 2013.

[34] ——, “Distributed representations of words and phrases and their com-
positionality,” in Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, 2013.

[35] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in DAC, 2001.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in NeurIPS, 2019.

94

https://doi.org/10.1007/978-3-319-41540-6_29

[37] V. K. S, R. Aggarwal, S. Jain, M. S. Desarkar, R. Upadrasta, and
Y. N. Srikant, “Ir2vec: A flow analysis based scalable infrastructure
for program encodings,” CoRR, vol. abs/1909.06228, 2019.

[38] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681,
1997.

[39] D. Selsam and N. Bjørner, “Guiding High-Performance SAT Solvers
with Unsat-Core Predictions,” in SAT, 2019.

[40] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill,
“Learning a SAT Solver from Single-Bit Supervision,” in ICLR, 2019.

[41] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs,” in SSP, 2002.

[42] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song, “Learning loop
invariants for program verification,” in NeurIPS, 2018.

[43] J. P. M. Silva and K. A. Sakallah, “GRASP – a new search algorithm
for satisfiability,” in ICCAD, 1996.

[44] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” in ACL,
2015.

[45] H. Tsai, J. Riesa, M. Johnson, N. Arivazhagan, X. Li, and A. Archer,
“Small and practical BERT models for sequence labeling,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3632–3636.
[Online]. Available: https://www.aclweb.org/anthology/D19-1374

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[47] X. Zhang and H. Wang, “A joint model of intent determination and
slot filling for spoken language understanding,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
ser. IJCAI’16. AAAI Press, 2016, p. 2993–2999.

95

https://www.aclweb.org/anthology/D19-1374

Formal Methods in Computer-Aided Design 2021

Model Checking AUTOSAR Components
with CBMC

Timothee Durand∗, Katalin Fazekas† , Georg Weissenbacher† and Jakob Zwirchmayr∗
∗TTTech Auto AG, Vienna, Austria

†TU Wien, Vienna, Austria

Abstract—Automotive software needs to comply with stringent
functional safety standards to reduce the risk of malfunction.
In particular, the ISO 26262 standard highly recommends the
use of formal verification for highly safety-critical software
components. Automated formal verification techniques (such as
Model Checking) enable the quick detection of intricate software
bugs and can, to a limited extent, even guarantee their absence.

We report our efforts to deploy the openly available verification
tool CBMC to verify AUTOSAR Software Components and
Complex Device Drivers using Bounded Model Checking and
k-induction combined with upfront static analysis.

I. INTRODUCTION

Modern cars now contain as many as 150 Electronic Con-
trol Units (ECUs) running software from different suppliers.
AUTOSAR, an open and standardized software architecture
for automotive applications, guarantees the interoperability
of automotive software components. This platform provides
a common development methodology based on a standard-
ized exchange format for describing software components
(ARXML), standardized communication interfaces and a Run-
Time Environment (RTE), and a basic software (BSW) layer
(see Fig. 1). The BSW comprises hardware-specific software
modules (including Complex Device Drivers (CDDs)) that
provide functions to the upper software layers. The RTE
middleware provides interfaces and functions for inter- and
intra-ECU communication between the application software
components. Software Components (SWCs) in the application
layer access the lower layers via the RTE, and can hence be
readily deployed on different vehicle and platform variants.

The ISO 26262 [1] functional safety standard establishes
safety requirements for automotive components (including
software). The norm defines four Automotive Safety In-
tegrity Levels (ASILs) ranging from A (low risk) to D (life-
threatening hazards). ASIL-D requires the highest degree of
rigor, including (semi-)formal verification in the development
process. Consequently, formal methods are frequently applied
in industrial dependable system design [2]. Moreover, ASIL-
code needs to be reverified whenever the implementation is
changed, re-generated, or re-configured.

In this context, automated static analysis techniques (such
as abstract interpretation or software model checking [3], [4])
are particularly attractive, as they require comparatively little
manual interaction and can detect intricate software bugs and,
to a limited extent, even guarantee their absence.

We investigate the applicability of model checking to AU-
TOSAR code written in ANSI-C. While commercial tools for

Application Layer/Software Components (SWC)

AUTOSAR Runtime Environment (RTE)

Complex
Device
Drivers
(CDDs)

Services Layer

ECU Abstraction Layer

MCU Abstraction Layer

Microcontroller (MCU)

Basic
Software
(BSW)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fig. 1. AUTOSAR Architecture

static analysis of AUTOSAR code exist [5], we focus on the
software model checking tool CBMC [6] because of the tool’s
availability, sustained development, and its permissive open
source license. The latter allowed us to adapt CBMC to our
work-flow and requirements: the specifics of AUTOSAR soft-
ware and the ISO 26262 requirements (such as the ARXML
description, the use of the RTE, and repeated verification runs)
imposes the need for an automated tool chain.

Contributions. Our report (based on the master’s thesis of
the first author [7]) describes the following contributions:

1) To apply CBMC to AUTOSAR code, we generate a test
harness and RTE-stubs from an ARXML description.

2) We deploy Bounded Model Checking (BMC) to detect
bugs, k-Induction to prove their absence, and combine
both techniques with an upfront static analysis to improve
verification performance and results.

3) We present case studies for SWCs and CDDs and discuss
the different challenges regarding their verification.

4) We report our learned lessons and the practicality of the
approach and identify open challenges and future work.

II. METHODOLOGY

To verify our SWCs and CDDs (described in subsect. III-A),
we need to (1) generate the verification environment and (2)
instrument and augment the code with static analysis results.

A. The AUTOSAR Platform

AUTOSAR uses three abstraction levels to describe the
SWCs of a system. The highest level—the Virtual Function

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 18 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-0497-3059
https://orcid.org/0000-0002-0143-632X
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_18
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_18
https://creativecommons.org/licenses/by/4.0/

1 int main_k_base() {
2 SWC_Init();
3
4 for(i=0; i < K; i++) {
5
6 SWC_Step();
7 assert(P);
8 }
9 }

1int main_k_step() {
2SWC_Init();
3mod_ndet_loop_variables();
4for(i=0; i < K+1; i++) {
5assume(P);
6SWC_Step();
7
8}
9assert(P); }

Fig. 2. Entry points for k-Induction experiments to prove property P

Bus (VFB)—describes types of SWCs and their connections to
other SWCs (PortInterfaces and PortPrototypes),
as well as the messages they exchange via their ports
(DataTypes). At the middle level—the RTE—the execution
behavior of SWCs, i.e., RunnableEntities and their
trigger events, are defined. Finally, at the implementation
level, these defined RunnableEntities are mapped to
their implementations (given as source or object code).

System constraints and the system configuration are de-
scribed in the ARXML format (see Fig. 3 for an example). In
the given context, the SWC Description and the RTE Extract
of the ECU Configuration are of relevance, since they describe
the messages and data-types that SWCs can exchange.

B. Generating Verification Environment

The RunnableEntities of an SWC (defined in the
corresponding ARXML model [8]) provide initialization and
step functions, which are invoked periodically in an order we
presume to be fixed (see also sect. V).

BMC focuses on checking the correctness of the program
only up to a predetermined number of iterations of each
loop, pruning all executions that require more. The entry
point of our generated test harness for BMC is a function
which, after initialization, calls the step functions of the
RunnableEntities in an (unbounded) loop.

The test harness for k-Induction1 has two entry points:
one for the base case and another for the inductive step.
Fig. 2 illustrates the principle of k-Induction: BMC is used
to establish the base case by checking whether the assertion
P holds for the first K loop iterations. Subsequently, we use
BMC to check whether P holds after K + 1 steps under the
assumption that it holds in the first K iterations starting from
an arbitrary program state. If both the base case and induction
step succeed, then P holds after any number of loop iterations.

SWCs exclusively interact with each other and with the
BSW through the RTE (see Fig. 1), and RTE ports are their
only external input [9]. We assume the correctness of the RTE
implementation and replace it with an appropriate abstraction.
This has two consequences: Firstly, it results in a smaller code
base that is more tractable for verification tools. Secondly, as
our RTE abstraction conservatively models the most general
environment of the SWC, it takes arbitrary interactions with
the environment (e.g., any communication via the RTE) into
account. This modular approach guarantees that a change in

1CBMC’s built-in support for k-Induction did not cope with the nested
loops in our SWCs, which is why we require a separate harness.

1 <IMPLEMENTATION-DATA-TYPE UUID="...">
2 <SHORT-NAME>Dt_Engine_RPM</SHORT-NAME>
3 ...
4 <COMPU-METHOD-REF DEST="COMPU-METHOD">
5 /DataTypes/CompuMethods/CM_Engine_RPM
6 </COMPU-METHOD-REF>
7 <IMPLEMENTATION-DATA-TYPE-REF DEST="...">
8 /AUTOSAR_Platform/ImplementationDataTypes/uint16
9 </IMPLEMENTATION-DATA-TYPE-REF>

10 ...
11 </IMPLEMENTATION-DATA-TYPE>
12 ...
13 <COMPU-METHOD UUID="...">
14 <SHORT-NAME>CM_Engine_RPM</SHORT-NAME>
15 ...
16 <COMPU-SCALE>
17 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
18 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">255
19 </UPPER-LIMIT>
20 <COMPU-RATIONAL-COEFFS>...</COMPU-RATIONAL-COEFFS>
21 </COMPU-SCALE>
22 ...
23 </COMPU-METHOD>

i void modif_nondet_Dt_Engine_RPM(Dt_Engine_RPM* tmp);
ii void modif_nondet_uint16(uint16* tmp);

iii Std_RetType get_nondet_Std_ReturnType();
iv Std_RetType
v Rte_Read_Engine_RPM_stub(Dt_Engine_RPM* tmp);

vi
vii void modif_nondet_Dt_Engine_RPM(Dt_Engine_RPM* tmp) {

viii modif_nondet_uint16(tmp);
ix assume(0 <= *tmp && *tmp <= 255);
x }

xi
xii Std_RetType

xiii Rte_Read_Engine_RPM_stub(Dt_Engine_RPM* tmp){
xiv modif_nondet_Dt_Engine_RPM(tmp);
xv return get_nondet_Std_ReturnType();

xvi }

Fig. 3. Parts of ARXML specification of data type Dt_Engine_RPM (above)
and an example of using it in generated RTE function stubs (below)

the environment (e.g., the deployment of other components)
does not invalidate prior verification results.

The ARXML specification [10] and the AUTOSAR meta
model [8] describe the DataTypes of messages, allowing us
to automatically generate an abstraction of the RTE communi-
cation functions. Fig. 3 depicts parts of a specification in the
ARXML format that defines data types on different abstraction
levels. Lines 7-9 state that Dt_Engine_RPM is implemented
as uint16. Lines 4-6 refer to a CompuMethod element that
specifies a range of valid values from 0 to 255 for the data
type. These limits guarantee that the computation will result
in a value representable by uint16. For a thorough definition
of data types and their constraints see [8, Sect. 5].

In our RTE abstraction parameters and return values of
RTE functions are first havoced and then constrained based
on information provided in the ARXML specification. These
constraints are automatically generated. We generate non-
deterministic modifier and generator functions that are in-
voked in the generated RTE API stubs (see, e.g., function
Rte_Read_Engine_RPM_stub in Fig. 3). Fig. 3 also
illustrates how the data constraints defined by the XML in
lines 17-18 translate into a C assumption (line viii) due to the
type Dt_Engine_RPM.

97

C. Static Analysis and Instrumentation of Code

As a next step, the verification target SWC source code, its
dependencies and the generated RTE stubs are built and linked
into a single object with CBMC. Though our software project
is complex and uses many architectural parameters, CBMC’s
goto-cc could seamlessly replace the compiler and linker in
our build process. We note that, in accordance with the ISO
26262 standard, our code base is written in a well-specified
and supported sub-set of the ANSI-C language.

Before starting the verification with CBMC, we perform an
upfront static analysis of the code to support and complement
the strengths of CBMC. To this end, we emit the complete
target project into a single source file and run Frama-C [11]
on the resulting code. While Frama-C provides a wide range
of static analysis techniques, we only employed its Evolved
Value Analysis (EVA [12]) plug-in, which is based on abstract
interpretation techniques. We used its default parameters that
do not rely on more advanced abstract domains. This analysis
can infer relatively small value sets for the variables (including
function pointers), which simplifies the task of CBMC, but
also provides indispensable type constraints for constructing
induction proofs in some of our k-Induction experiments. The
results of the static analysis are automatically incorporated as
assumptions constraining the values of global variables (which
represent the entire state of the system) and as replacements
of function pointers with explicit case statements.

Prior to instrumentation of the code with the constraints
provided by Frama-C, we verify (in independent k-Induction
runs) that the value sets provided by Frama-C are actually
inductive invariants. To verify the results of the function
pointer analysis, the bodies of functions that are unreachable
according to Frama-C are replaced with failing assertions
which are then checked using CBMC.

D. Implementation details

To automatically parse the ARXML specifications, RTE
headers and to generate C stubs, we relied on several openly
available Python modules (e.g. PyCParser [13], lxml [14],
and cogu-autosar [15]). Some missing POSIX stubs were
implemented manually, and we had to patch CBMC to emit
proper C code for the SWCs in our experiments.

III. CASE STUDIES

A. Component Descriptions

We analyse four AUTOSAR SWCs of an automotive soft-
ware platform that comprises of ECUs with multiple hosts. The
platform provides services such as a common time-base for the
hosts, global time-triggered scheduling, and time-triggered or
time-sensitive communication between hosts. A custom RTE
hides the fact that the underlying system is distributed and
hosted on multiple SoCs/CPUs from the Application SWCs.

LifeCycle Service Server (LCS-S) component: This com-
ponent is typically executed on the host with the highest
ASIL and implements a state machine that determines the state
(Init, Standby, Running, etc.) of each host. Running,
for instance, indicates that the platform started up successfully

and all hosts are operating under supervision. State transitions
are triggered by failing built-in self tests, or depend on the
states of other services. The LCS-S sends requests to its clients
to trigger transitions and ensures that all client hosts transition
correctly and report the expected lifecycle states.

While the LCS-S communicates with other SWCs via the
RTE, it is considered a CDD because it directly interacts with
other health- and safety-related platform services implemented
as CDDs. These interactions via non-standardized interfaces
require a few LCS-specific extensions of the verification envi-
ronment and hence knowledge about implementation details.

LifeCycle Service Client (LCS-C) component: implements
the same state machine as the LCS-S and periodically checks
whether state transitions are required or have been requested
by the LCS-S. An example for a transition requested by the
LCS-S and confirmed by the LCS-C is the power-off sequence,
where clients might store data in non-volatile memory.

Vehicle Communication Service (ApCom) component: This
Application SWC is typically either ASIL-B or D and receives
messages from the CAN bus (via the corresponding service in
the BSW) and transforms them into RTE data types. Thus, the
developers need not be aware of the underlying CAN specifics.

As ApCom utilizes only RTE and BSW COM interfaces,
it can be model checked with a generic abstraction of these
interfaces. Since large parts of the configuration and the
implementation are generated based on a mapping between the
CAN and RTE messages, the repeated (automated) verification
of this generated code is frequently necessary.

Middleware: This component is a CDD that communicates
with other hosts through a Transport Layer (e.g. Ethernet or a
time-sensitive version thereof), often relying on OS system
calls. Since the exchanged messages contain RTE data, it
requires non-standardized interaction with the RTE (such as
access to its buffer management system), which complicates
verification. While the implementation of the buffer manage-
ment is static, generated or configurable parts of the code
introduce the need for repeated analysis. Since it handles ASIL
data, the Middleware may be classified up to ASIL-D.

Table I presents some code metrics for each SWC to illus-
trate their complexity. More details are available in [7, Section
5]. The components of the LifeCycle service are simpler than
the other SWCs, with the LCS-S being the more complex one
of both due to supervision and platform initialization tasks.
The ApCom component relies heavily on calls-by-reference
and function pointers, as evidenced by the amount of pointer
arithmetic and dereference operations. Its buffer and data
frame manipulation operations make the Middleware the most
challenging component of our case study. The high complexity
metrics for ApCom and Middleware also denote the presence
of large chunks of generated code with repetitive structures
within these components.

B. Checked program properties

Our goal is to automatically detect potential errors and
vulnerabilities (expressed as assertions) in our code base. In
addition to assertions added by developers, we check the

98

TABLE I
CODE METRICS OF TARGET SOFTWARE COMPONENTS

LCS-C LCS-S ApCom MW.

O
pe

ra
tio

ns Pointer dereference 50 115 2222 2170
Add. & Subst. 31 129 330 3662
Mult. & Div. 36 76 898 471
Bitwise operations 10 14 11 304

C
on

tr
ol

flo
w If statements 119 243 1276 948

Loops 4 17 77 76
Function calls 129 309 1347 1328
Function returns 66 136 365 329

C
om

pl
ex

ity Lines of code 1469 4923 15973 16536
Program locations 529 1182 5935 7061
Global variables 34 94 427 584
MacCabe Cycl. Compl. 187 410 1681 1895

TABLE II
RUNNING TIMES FOR STATIC ANALYSIS OF THE TARGET SWCS

SW Comp. Frama-C EVA Slicing
Mem. (MB) Time (s) LOC (before) LOC (after)

LCS-C 1281.58 87.96 87340 1469
LCS-S 6564.27 474.04 216349 4923
ApCom 7635.43 596.77 216349 15973
Middleware 1628.26 360.34 106153 16536

properties automatically generated by CBMC (e.g. possible
arithmetic overflows, safety of pointer dereferences; see [6]).
To enable k-Induction, we instrumented our code base with the
necessary assumptions and assertions similarly to Fig. 2. In the
k-Induction experiments, we additionally checked constraints
on permissible values of variables (e.g., to identify invalid
states in the LifeCycle service). Note that defining these latter
properties is a manual step that requires insights into the
implementation details and the in-depth understanding of the
application domain, while the other introduced assertions are
automatically constructed.

C. Experiments and Results

For verification we used CBMC 5.23. All experiments were
conducted on an Intel(R) Xeon(R) CPU E5345@2.33GHz
equipped with 47.2 GB of memory, running Ubuntu 18.04.4.
For each run, we set a memory limit of 40 GB and a CPU time
limit of one hour, measured by the tool BenchExec [16].

1) Static Analysis: We introduced static analysis into our
work-flow to address three challenges. First, to avoid spurious
counter examples that were due to imprecise value analysis
(see for example our k-Induction experiments later in this
section). Second, in some of our benchmarks, due to the
imprecise value analysis of the function pointers, cycles in
the call graph led to non-termination of CBMC. Finally, the
computed call graph allows us to identify and exclude code
that is not part of the targeted code base, but is still included in
the compilation process. The difference in size (lines of codes)
before and after slicing unreachable functions in the input file
is given Table II. Hence, in our experiments static analysis is
an essential preprocessing step that provides valuable benefits.

To gain these benefits, however, an exhaustive static analysis
of the code base for each SWC is necessary. Table II presents
the running time and memory requirements of this step for
each SWC. Note that this analysis includes a precise value
analysis for every global variable and function pointer of the
code base and removes the unreachable sections of the SWCs.

2) Bounded Model Checking: We considered 5 iterations
of the loop calling the RunnableEntities of our SWCs
(cf. subsect. II-B). As most loops in automotive real-time soft-
ware are statically bounded, CBMC was able to automatically
determine bounds for most other loops. In addition, CBMC
can detect whether there exist executions that iterate the loop
more often than pretermined by the given bound, which we
used to identify loops that needed to be bounded manually (of
which there were less than 10 overall).

Table III (left) summarizes our BMC results, providing
for each SWC the number of checked assertions, memory
usage, and run-time. Though no real bugs were found, our
verification attempts revealed a modelling flaw in the ARXML
specification of the ApCom SWC. In our first verification
attempt, CBMC reported an arithmetic overflow in ApCom.
Analyzing the report showed that the ARXML specification
of the data type of one of the involved variables (whose value
was provided by our ARXML-derived RTE abstraction) was
too permissive. As the actual implementation of the RTE is
more restrictive, this overflow cannot occur in practice.

We identified a similar problem with the ARXML-derived
RTE model of the LCS-C component, which yielded a Not
Present state that is unreachable in the actual implementa-
tion. This revealed a limitation of our modular verification
approach, which lacks precise information about the states
reachable in other (abstracted) components. As before, this
bug cannot occur in the implementation.

The Middleware turned out to be too challenging to verify in
our experiments. Attempts to simplify the program (by e.g. ab-
stracting away the initialization of shared memory regions
which introduced large arrays in the resulting formulas) led
to numerous spurious error reports, rendering the approach
impractical. Since CBMC did not support some necessary
operations, our attempts to deploy a Satisfiability-Modulo-
Theory (SMT) solver as back-end also failed.

3) k-Induction: The right part of Table III presents the
results of our k-Induction experiments. The run-times are the
sum and the memory requirements are the maximum of the
two consecutive CBMC runs for the base case and induction
step (see Fig. 2). In our experiments, we observed that a
value of 1 is sufficient in all our (terminating) runs to prove
the properties, which we attribute to the auxiliary constraints
provided by the upfront static analysis. Hence, k-Induction
uses fewer resources than BMC in our setting.

Moreover, the value constraints provided by Frama-C
proved to be crucial. Our verification attempts without static
analysis led to spurious reports of out-of-bound array accesses
in the LCS-S component. This is owed to the fact that the
initial states (of the state machine) in the induction step
(Fig. 2) are arbitrary and hence potentially unreachable in

99

TABLE III
EXPERIMENTAL RESULTS OF BOUNDED MODEL CHECKING AND k-INDUCTION

SW Comp. Bounded Model Checking k-Induction
Assertions Memory (MB) Time (s) Outcome Assertions Memory (MB) Time (s) Outcome

LCS-C 366 1766.5 102.64 Bounded-Success 370 711.6 44.65 Success
LCS-S 1806 2072.2 135.34 Bounded-Success 1824 1334.7 91.04 Success
ApCom 15562 3406.4 157.58 Bounded-Success 15597 3184.0 292.27 Success
Middleware 9680 14635.7 3600.00 Time out 9780 10043.1 3600.0 Time out

the actual implementation. The value set information provided
by Frama-C constrains the initial states to reachable states
and strengthens our induction hypothesis. Other components
(LCS-C and ApCom) could be verified even without the use of
Frama-C. As in our BMC experiments, our attempts to verify
the Middleware timed out.

For a comparison of (an older version of) CBMC to alterna-
tive software model checking tools (such as CPAChecker [17]
and Ultimate Automizer [18]) on the presented SWCs, see [7]
(Section 6, pages 44-45).

IV. RELATED WORK

Ahmed and Safar [19] use the symbolic simulation tool
KLEE [20] to automatically extract test cases from the C
source code of an AUTOSAR BSW module. As testing of
safety-critical applications must be requirements-based [1],
generated test-cases need to be mapped to requirements. In
their CBMC-based automated testing method for the avionic
domain, Sun et al. [21] annotate the source code with low-
level requirements (expressed as pre- and post-conditions) to
establish such a mapping. Mittag [22] applies static analysis
to AUTOSAR components, focusing on comparatively simple
properties. Berger et al. [23] apply the CBMC-based verifier
BTC [24] to check automotive code generated by Simulink,
but do not address AUTOSAR. Fang et al. [25] use the
SPIN model checker to verify a hand-crafted model of an
AUTOSAR-based operating system. Westhofen [26] imple-
ments custom k-Induction on top of CBMC to efficiently
verify automotive C code.

V. DISCUSSION AND CONCLUSION

Automation was a primary goal, as it enables automated
regression verification and limits the effort for the verification
engineer. The CBMC model checker and its mature ANSI-C
support allowed to use our existing build system and largely
unmodified code base. The ARXML component descriptions
and the layered architecture of AUTOSAR made it possible
to delimit the SWCs and automate the generation of a test
harness and stubs that abstract the behaviour of the RTE.

We did, however, face challenges regarding automation,
modeling the environment, and scalability. Unlike SWCs,
CDDs are not standardized by AUTOSAR. They may use
interfaces that are not available to standardized SWCs (e.g., to
directly access peripherals). Consequently, the stubs for non-
standardized interfaces specific to a CDD need to be generated
manually. Moroever, even for SWCs, an overly abstract model
of the RTE may lead to false positives. This can be addressed

by providing a more precise model of the RTE (requiring
substantial insight into the details of the RTE) or by including
actual RTE code. The latter approach, however, amounts to
verifying the SWC in the absence of an environment.

As CBMC provides limited support for static analysis, we
combined it with an upfront run of Frama-C in order to reduce
the computational effort for the model checking – interfacing
the tools required a non-trivial implementation effort.

Preliminary experiments showed that verifying multiple,
interacting components reduces spurious bug reports. This,
however, would require to take into account all execution
schedules of the runnables, which we consider future work.
Another future work is to reuse our verification efforts of the
presented SWCs whenever a repeated analysis is necessary
(i.e. when the implementation is changed or re-configured) by
considering incremental verification techniques.

Overall, our conclusion and outlook is positive: despite
all challenges and the engineering effort required to deploy
CBMC to verify AUTOSAR components, we ultimately suc-
ceeded in checking non-trivial and realistic SWCs.

ACKNOWLEDGMENTS

This work was partially funded by the Vienna Science
and Technology Fund (WWTF) under grant NXT19-006. The
authors thank the anonymous reviewers for their valuable feed-
back and suggestions.

100

REFERENCES

[1] ISO/TC 22/SC 32, “ISO/DIS 26262 Road vehicles – Functional safety,”
International Organization for Standardization (ISO), Tech. Rep. 26262,
2018.

[2] W. Steiner, “Formal methods in industrial dependable systems design -
the TTTech example,” in Formal Methods in Computer-Aided Design
(FMCAD), D. Stewart and G. Weissenbacher, Eds. IEEE, 2017, p. 8.
[Online]. Available: https://doi.org/10.23919/FMCAD.2017.8102232

[3] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 27, no. 7,
2008.

[4] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., vol. 41, no. 4, 2009.

[5] A. Imparato, R. R. Maietta, S. Scala, and V. Vacca, “A comparative study
of static analysis tools for AUTOSAR automotive software components
development,” in International Symposium on Software Reliability En-
gineering (ISSRE) Workshops. IEEE, 2017.

[6] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), ser. LNCS, vol. 2988. Springer, 2004.

[7] T. Durand, “Model checking automotive software components,” Master’s
thesis, TU Wien, August 2020.

[8] “Software Component Template - AUTOSAR Rel.4.2.2,” Tech. Rep.
[9] “System Template - AUTOSAR Rel.4.2.2,” Tech. Rep.

[Online]. Available: https://www.autosar.org/fileadmin/user upload/
standards/classic/4-2/AUTOSAR TPS SystemTemplate.pdf

[10] “Specification of RTE - AUTOSAR Rel.4.2.2,” Tech. Rep.
[11] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and

B. Yakobowski, “Frama-C - A software analysis perspective,” in Soft-
ware Engineering and Formal Methods (SEFM), ser. LNCS, vol. 7504.
Springer, 2012.

[12] D. Bühler, “Structuring an Abstract Interpreter through Value and State
Abstractions: EVA, an Evolved Value Analysis for Frama-C.” Ph.D.
dissertation, University of Rennes 1, France, 2017. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01664726

[13] “GitHub eliben/pycparser,” https://github.com/eliben/pycparser, ac-
cessed: 2021-05-17.

[14] “lxml - XML and HTML with Python,” https://lxml.de/, accessed: 2021-
05-17.

[15] “GitHub cogu/autosar,” https://github.com/cogu/autosar, accessed: 2021-
05-17.

[16] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking: require-
ments and solutions,” Int. J. Softw. Tools Technol. Transf., vol. 21, no. 1,
2019.

[17] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable
software verification,” in Computer Aided Verification (CAV), ser.
LNCS, vol. 6806. Springer, 2011, pp. 184–190. [Online]. Available:
https://doi.org/10.1007/978-3-642-22110-1 16

[18] M. Heizmann, Y. Chen, D. Dietsch, M. Greitschus, J. Hoenicke,
Y. Li, A. Nutz, B. Musa, C. Schilling, T. Schindler, and
A. Podelski, “Ultimate automizer and the search for perfect
interpolants - (competition contribution),” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), ser. LNCS,
vol. 10806. Springer, 2018, pp. 447–451. [Online]. Available:
https://doi.org/10.1007/978-3-319-89963-3 30

[19] M. Ahmed and M. Safar, “Formal verification of AUTOSAR watchdog
manager module using symbolic execution,” in International Conference
on Microelectronics (ICM). IEEE, 2018.

[20] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in Operation Systems Design and Implementation (OSDI). USENIX
Association, 2008.

[21] Y. Sun, M. Brain, D. Kroening, A. Hawthorn, T. Wilson, F. Schanda,
F. J. G. Jimenez, S. Daniel, C. Bryan, and I. Broster, “Functional
requirements-based automated testing for avionics,” in International
Conference on Engineering of Complex Computer Systems (ICECCS).
IEEE, 2017.

[22] R. Mittag, “Entwicklung statischer Analysen für AUTOSAR
Steuergerätesoftware,” Master’s thesis, TU Chemnitz, 2018.

[23] P. Berger, J. Katoen, E. Ábrahám, M. T. B. Waez, and T. Rambow,
“Verifying auto-generated C code from Simulink - an experience report

in the automotive domain,” in Symposium on Formal Methods (FM), ser.
LNCS, vol. 10951. Springer, 2018.

[24] P. Schrammel, D. Kroening, M. Brain, R. Martins, T. Teige, and
T. Bienmüller, “Incremental bounded model checking for embedded
software,” Formal Aspects Comput., vol. 29, no. 5, 2017.

[25] L. Fang, T. Kitamura, T. B. N. Do, and H. Ohsaki, “Formal model-based
test for AUTOSAR multicore RTOS,” in International Conference on
Software Testing, Verification and Validation (ICST), 2012.

[26] L. Westhofen, “Verifying automotive C code using modern software
model checkers,” Master’s thesis, RWTH Aachen University, 2019.

101

https://doi.org/10.23919/FMCAD.2017.8102232
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TPS_SystemTemplate.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_TPS_SystemTemplate.pdf
https://tel.archives-ouvertes.fr/tel-01664726
https://github.com/eliben/pycparser
https://lxml.de/
https://github.com/cogu/autosar
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-89963-3_30

Formal Methods in Computer-Aided Design 2021

Automating System Configuration
Nestan Tsiskaridze , Maxwell Strange , Makai Mann , Kavya Sreedhar , Qiaoyi Liu ,

Mark Horowitz , Clark Barrett
Stanford University, Stanford, CA 94305, USA

E-mail: {nestan, mstrange, makaim, skavya, joeyliu}@stanford.edu, horowitz@ee.stanford.edu, barrett@cs.stanford.edu

Abstract—The increasing complexity of modern configurable
systems makes it critical to improve the level of automation
in the process of system configuration. Such automation can
also improve the agility of the development cycle, allowing
for rapid and automated integration of decoupled workflows.
In this paper, we present a new framework for automated
configuration of systems representable as state machines. The
framework leverages model checking and satisfiability modulo
theories (SMT) and can be applied to any application domain
representable using SMT formulas. Our approach can also be
applied modularly, improving its scalability. Furthermore, we
show how optimization can be used to produce configurations
that are best according to some metric and also more likely to
be understandable to humans. We showcase this framework and
its flexibility by using it to configure a CGRA memory tile for
various image processing applications.

I. INTRODUCTION

In systems engineering, the system configuration problem
arises when systems are parameterized to increase their flexi-
bility or functionality. It refers to the problem of choosing the
appropriate parameter values for the context or application in
which the system will be used. Most hardware and software
systems, including hardware IPs, operating systems, networks,
servers, and data centers, require some degree of configuration.
The need for configuration also often arises when integrating
decoupled parts of a system, including integrating software
and hardware.

The difficulty of the system configuration problem has
been gradually growing as systems increase in scale and
complexity. In particular, in an effort to make designs more
widely applicable and re-usable, there has been an increasing
use of hardware that is configurable, not only at design time
or setup time, but even during normal operation. Manual
configuration of such systems is error-prone and may even
be impossible, depending on how frequently the systems need
to be reconfigured.

Automation of the configuration problem can also be benefi-
cial during the system design process. In particular, it obviates
the need for new hand-coded configuration files every time
some configurable component changes. Increased automation
of such steps supports a move towards more agile design
processes. Agile approaches typically require the ability to
rapidly and (largely) automatically integrate changing parts
of a system while continuously maintaining correct end-
to-end functionality. Having design blocks that are flexibly
configurable aids this effort, as does the ability to automate
the configuration.

A potential disadvantage of automated configuration is that
it could lead to an increase in the opacity of the overall system.
Hand-written configurations can be documented and explained
to allow for easier understandability and maintainability. Thus,
an additional goal when automating configuration should be
to produce results that are comprehensible to humans and that
can be easily reviewed and maintained.

In this paper, we present a general framework for auto-
mated system configuration. It provides a flexible approach
for solving the configuration problem for systems composed
of software, hardware, or both. The systems are modeled
using transition systems, where transition formulas can use
the full expressive power of SMT-LIB [1], the language
used by satisfiability modulo theories (SMT) [2] solvers. The
framework provides a systematic approach to facilitate fully
automated or automation-guided system configuration. It is
well-suited for both stand-alone designs and for designs with
multiple configurable parts. For the latter, it is especially useful
during system integration and rapid development.

The main contributions of this paper are:

• We introduce a “programming by example” approach for
formalizing common input-output specifications. In an
exact formulation of the configuration problem, the input-
output specification would need to universally quantify
over the input variables. Our approach avoids the need
for quantifiers.

• We propose a new modular approach for configuration
finding in a general SMT setting that makes use of
abduction.

• We show how to leverage optimization to obtain human-
readable configurations.

• We present a case study—automated configuration of a
memory tile in the context of an agile hardware design
project targeting image processing applications.

The remainder of the paper is organized as follows. Sec-
tion II presents background and notation. Section III formal-
izes the configuration solving problem and introduces our
framework, including some extensions and limitations. In
Section IV, we show how optimization techniques can be
integrated into the approach, both for the purpose of improving
performance as well as for improving human readability, and
we discuss a few additional extensions of the framework.
In Section V we present a case study, giving the details of
a specific system design and showing how our framework
can be applied. Experimental results for this case study are

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 19 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-4729-9770
https://orcid.org/0000-0001-5945-1349
https://orcid.org/0000-0002-1555-5784
https://orcid.org/0000-0002-8456-6313
https://orcid.org/0000-0003-1083-9953
https://orcid.org/0000-0003-3245-7542
https://orcid.org/0000-0002-9522-3084
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_19
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_19
https://creativecommons.org/licenses/by/4.0/

then reported in Section VI. We survey the related work in
Section VII and conclude in Section VIII.

II. BACKGROUND

We assume the standard many-sorted first-order logic set-
ting with the usual notions of signature, term, formula, and
interpretation. A theory is a pair T = (Σ, I) where Σ is a
signature and I is a class of Σ-interpretations, i.e., the models
of T . A Σ-formula φ is satisfiable (resp., unsatisfiable) in T
if it is satisfied by some (resp., no) interpretation in I. We
define |=T over Σ-formulas: if φ and ψ are Σ-formulas, then
φ |=T ψ if all interpretations which satisfy φ also satisfy
ψ. In this case, we also call φ an abduct of ψ under T . For
generality, we assume an arbitrary but fixed background theory
T (which could be a combination of theories) with signature
Σ and an infinite set X of variables. We will assume that all
terms and formulas are Σ-terms and Σ-formulas whose free
variables are in X , that entailment is entailment modulo T ,
and that interpretations are T -interpretations that assign every
variable in X .

Given an interpretation I, a variable assignment s over a set
of variables V is a mapping that assigns each variable v ∈ V of
sort σ to an element of σI , denoted vs. The assignment over V
induced by an interpretation I (i.e., the assignment that maps
each variable in V to its interpretation in I) is denoted IV .
The assignment s restricted to the domain U ⊆ V is denoted
by sU . We write I[s] for the interpretation that is equivalent to
I except that each variable v ∈ V is mapped to vs. We write
f ◦ g for functional composition, i.e., f ◦ g(x) = f(g(x)).

Satisfiability Modulo Theories (SMT). Satisfiability Modulo
Theories [2] is an extension of the Boolean satisfiability
(SAT) problem to satisfiability in first-order theories. SMT
solvers combine the Boolean reasoning of a SAT solver with
specialized theory solvers to check satisfiability of many-
sorted first-order logic formulas. Some examples of commonly
supported theories are: fixed-width bit-vectors, uninterpreted
functions, linear arithmetic, and arrays. In our case study, we
utilize fixed-width bit-vectors for modeling a hardware design.

Symbolic Transition Systems.
A symbolic transition system (STS) S is a tuple S :=

⟨V, I, T ⟩, where V is a finite set of state variables (possibly of
different sorts), I(V) is a formula denoting the initial states of
the system, and T (V, V ′) is a formula expressing a transition
relation, with V ′ defined as follows. Let prime be a bijection
that maps each variable v ∈ V to a new variable (not in V)
v′ of the same sort. V ′ is the codomain of prime .

A state s of S is a variable assignment over V . A sequence
of states is called a path. An execution of S of length k is a pair
⟨I, π⟩, where I is an interpretation and π := s0, s1, . . . , sk−1

is a path such that I[s0] |= I(V) and I[si][si+1 ◦prime−1] |=
T (V, V ′) for all 0 ≤ i < k − 1.

Unrolling and Bounded Model Checking.
An unrolling of length k of a symbolic transition system is

a formula that captures an execution of length k by creating
copies of the transition relation. This is accomplished by

introducing fresh copies of every state variable for each state
in the execution path. We use V@i to denote the set of
variables obtained by replacing each variable v ∈ V with
a new variable called v@i of the same sort. We refer to
these as timed variables. Given an STS S , let unroll(S, k) =
I(V@0) ∧

⋀︁
0≤i<k T (V@i, V@(i+ 1)).

Bounded model checking (BMC) [3] is an unrolling-based
symbolic model checking approach. Let P (V) be a formula
representing a desired property of a symbolic transition sys-
tem. BMC creates an unrolled transition system and adds an
additional constraint that the property is violated at time k. The
BMC formula at bound k is thus: unroll(S, k)∧¬P (V@k). A
typical approach for BMC starts with k = 0 and incrementally
increases it if no counterexample is found at the current bound.
A satisfiable BMC formula can easily be converted into an
execution that violates the property.

Optimization. An optimization problem OP is a tuple
⟨t, A,≼, ϕ,O⟩ where:

• t is an objective term to optimize of sort σ;
• A is a set and ≼ is a total order over A.
• ϕ is a formula to satisfy; and
• O∈{min,max} is the optimization objective.

I is a solution to OP if σI = A, I |= ϕ, and for any I ′,
such that σI′

= A and I ′ |= ϕ:

(O=min→ tI≼ tI
′
) ∧ (O=max→ tI

′
≼ tI).

A multi-objective optimization problem MOP is a finite
sequence of optimization problems {OP1, . . . ,OPn} over the
same formula ϕ, where OPi := ⟨ti, Ai,≼i, ϕ,Oi⟩ and ti is
of sort σi for i ∈ [1, n]. I is a solution to MOP if σI

i = Ai,
I |= ϕ, and for any I ′, such that σI′

i = Ai and I ′ |= ϕ, either:
(i) tIi = tI

′

i for all i ∈ [1, n]; or
(ii) for some j∈ [1, n], tIi = tI

′

i for all i ∈ [1, j), and

(Oj = min → tIj ≺j t
I′

j) ∧ (Oj = max → tI
′

j ≺j t
I
j),

where ≺ is the strict total order associated with ≼.

III. CONFIGURATION SOLVING FRAMEWORK

In this section, we formalize the configuration problem and
introduce our automated framework for solving it. We also
describe how to improve scalability using a modular approach.

A. Problem Formalization

Suppose we have a configurable system that we want to use
in a particular application context. We assume the application
context can precisely define an input/output relationship that
it expects the system to adhere to. The configuration finding
problem is then: given a system S and an application-supplied
input-output relationship P for S, find a configuration C for
S such that S satisfies P with configuration C. In this paper,
we assume that P specifies behavior for only a finite number
of steps. The rationale is that for many configurable systems,
a segment of a desired execution is sufficient to partially (or
fully) determine what the configuration should be. This is the
case for the systems we target and for the case study we

103

Hardware/Software
System

𝑆

𝑽𝒊𝒏 𝑽𝒐𝒖𝒕

𝑽𝒄𝒐𝒏𝒇

Fig. 1: Formal system model.

describe later. More general specifications are an important
direction for future work.

Formally, a configuration problem CP is a tuple
⟨S, k, Vin, Vout, Vconf , P ⟩ where:

• S := ⟨V, I, T ⟩ is a symbolic transition system represent-
ing a configurable system S, as in Figure 1;

• k is the number of transitions over which the input-output
specification will be defined;

• Vin, Vout, Vconf are three distinguished subsets of the state
variables V of S; Vin contains input variables (input
variables do not appear in I(V), and their primed versions
do not appear in T); Vout contains output variables; and
Vconf ̸= ∅ contains the configuration variables; pairwise
intersections of these sets may either be empty or non-
empty, and V may contain variables that are not in any
of these sets; and

• P is an input-output property, or an input-output
specification, a formula capturing an input-output re-
lationship for k transitions: P (Vin@0, . . . , Vin@(k −
1), Vout@0, . . . , Vout@k); in this paper, we use a ”pro-
gramming by example” property, specifying a set of exact
values on input and output variables at each transition:⋀︁

0≤i<k Vin@i = ciin ∧
⋀︁

0≤i≤k Vout@i = ciout. This
approach works well on our case study (i.e. the config-
uration found for the given example generalizes to other
inputs), and it avoids the need for universal quantification
on the input variables. Handling other kinds of properties
is an important direction for future work.

A configuration C is defined as an assignment to the variables
in Vconf .

In this paper, we assume the configuration variables Vconf re-
main unchanged once configured (a reasonable assumption for
many systems, including the one in the case study we present
in Section V). We enforce this by explicitly adding an ad-
ditional configuration constancy constraint: conf (Vconf , k) =⋀︁

0≤i<k Vconf@(i + 1) = Vconf@i. The configuration finding
problem then reduces to checking the satisfiability of the
configuration formula:

ϕ(CP) = unroll(S, k) ∧ conf (Vconf , k) ∧
P (Vin@0, . . . , Vin@(k − 1), Vout@0, . . . , Vout@k) (1)

A configuration C is correct for CP if there exists an inter-
pretation I such that I |= ϕ and C = IVconf .

Configuration Solving Framework
Output:
A Correct
Configuration

Input:
𝐶𝑃 SMT

Solver Yes
No

Output:
Not configurable

Construct
Formula

𝜑

Fig. 2: Configuration solving framework (basic) scheme. CP
is a configuration problem. ϕ is a configuration formula.

Example 1. (simple ALU)
Let S := ⟨{x : int, a : int, cfg : Bool}, x = 0, x′ =

ite(cfg , x+a, x−a)⟩ be a transition system in a configuration
finding problem, where Vin = {a}, Vout = {x}, Vconf = {cfg},
and ite is the if-then-else operator. There are two ways to
configure S: as a system that always adds the current input
to the current state, or as a system that always subtracts
the current input from the current state. Let us consider two
instances of an input-output relation for k = 2:

1) P1(a@0, a@1, x@0, x@1, x@2) = a@0 = 1 ∧ a@1 =
1 ∧ x@0 = 0 ∧ x@1 = 1 ∧ x@2 = 2. We are interested
in whether there exists a value of cfg which satisfies
both the configuration constancy constraint (i.e., remains
unchanged) and P1. To determine this, we check the sat-
isfiability of unroll(S, 2)∧conf (cfg@0, cfg@1, cfg@2)∧
P1(a@0, a@1, x@0, x@1, x@2), which expands to:

x@0 = 0 ∧
x@1 = ite(cfg@0, x@0 + a@0, x@0− a@0) ∧
x@2 = ite(cfg@1, x@1 + a@1, x@1− a@1) ∧
cfg@1 = cfg@0 ∧ cfg@2 = cfg@1 ∧
a@0=1 ∧ a@1=1 ∧ x@0=0 ∧ x@1=1 ∧ x@2=2

The formula is satisfiable when cfg@0 = True .
2) P2(a@0, a@1, x@0, x@1, x@2) = a@0 = 1 ∧ a@1 =

1 ∧ x@0 = 0 ∧ x@1 = 1 ∧ x@2 = 0. For this case, the
formula to be checked is:

x@0 = 0 ∧
x@1 = ite(cfg@0, x@0 + a@0, x@0− a@0) ∧
x@2 = ite(cfg@1, x@1 + a@1, x@1− a@1) ∧
cfg@1 = cfg@0 ∧ cfg@2 = cfg@1 ∧
a@0 = 1 ∧ a@1 = 1 ∧ x@0 = 0 ∧ x@1 = 1 ∧ x@2 = 0

This formula is unsatisfiable, and thus there is no value
of cfg that satisfies the desired property.

The framework for the basic scheme just outlined is shown
in Figure 2. The input to the framework is a configuration
problem. The framework constructs formula (1) and calls a
solver to determine whether it is satisfiable. The output is
either “not configurable” or the configuration C.

There are two main sources of complexity that limit the
scalability of the approach. The first is the complexity of the

104

Algorithm 1 Modular configuration finding.
Procedure SOLVEMODULAR
Input: (CP1, CP2) a decomposition of CP .
Output: a pair (r, C) where if r = sat, then C is a configuration of S
1: ϕ1 := MAKECP(CP1)
2: (r, I1) := SOLVE(ϕ1),
3: if r = sat then
4: ϕ2 := MAKECP(CP2) ∧ GETABDUCT(ϕ1, I1)
5: (r, I) := SOLVE(ϕ2)
6: end if
7: return (r, IVconf)

design itself, and the second is the bound k required by P . To
address design complexity, we propose designing for modular
configuration, discussed in more detail in Section III-B below.
Designing systems that can be configured using only small
values of k is an interesting research challenge that we plan
to investigate in future work.

Another way to improve scalability is by using design
knowledge to strengthen the formula ϕ. For example, if a
configuration variable must be within a specific range, then
this can be added as a constraint. Any constraint expressible
in the language supported by the backend SMT solver can be
supported.

B. Modular Configuration

A natural remedy for design complexity is modular decom-
position. Here, we explain a systematic approach for modular
configuration, including conditions under which a full config-
uration can be recovered.

Given CP = ⟨S, k,Vin,Vout,Vconf ,P ⟩ with S = ⟨V, I, T ⟩, we
say (CP1, CP2) is a decomposition of CP (where CPi :=
⟨Si, k, V

i
in, V

i
out, V

i
conf , Pi⟩ and Si := ⟨Vi, Ii, Ti⟩ for i = 1, 2)

if: (i) T1(V1, V ′
1) ∧ T2(V2, V ′

2) =⇒ T (V, V ′); (ii) I1(V1) ∧
I2(V2) =⇒ I(V); (iii) P1 ∧ P2 =⇒ P ; and (iv) Vconf ⊆
V 1
conf ∪ V 2

conf .
We now describe a procedure SOLVEMODULAR, presented

in Algorithm 1, which, given a decomposition (CP1, CP2) of
a configuration problem CP , attempts to solve CP by solving
CP1 and CP2. The call to MAKECP on line 1 constructs the
configuration formula for CP1. The call to SOLVE on line 2
invokes a solver to check the satisfiability of the configuration
formula. If the formula is satisfiable, SOLVE returns a pair
(sat, I) where I is a satisfying interpretation found by the
solver. If the formula is unsatisfiable, SOLVE returns a pair
(unsat, I) where I is an arbitrary interpretation. Line 4
creates the configuration formula for CP2. The formula is
additionally constrained to ensure that the solution for CP2

still satisfies ϕ1. The call to GETABDUCT returns a formula
ψ such that ψ |=T ϕ1. The goal is to use the information in
I1 to generate a simple formula for ψ. The approach we take
is to find a set of sub-terms in ϕ1 such that, if we constrain
them to be equal to their values in I1, this ensures that ϕ1 is
satisfied. In the worst case, we could constrain ϕ1 itself to be
equal to ⊤, which would effectively require solving all of ϕ1
again at the same time as solving ϕ2. However, in practice, we
can do much better. For example, it is often sufficient to let

S1 S2𝑽𝒊𝒏 𝑽𝒐𝒖𝒕

𝑽𝟏𝒐𝒖𝒕 = 𝑽𝟐𝒊𝒏

𝑽𝟏𝒄𝒐𝒏𝒇 - 𝑽𝟐𝒄𝒐𝒏𝒇 𝑽𝟐𝒄𝒐𝒏𝒇 - 𝑽𝟏𝒄𝒐𝒏𝒇𝑽𝟏𝒄𝒐𝒏𝒇 ∩ 𝑽𝟐𝒄𝒐𝒏𝒇

S

Fig. 3: Modular decomposition of system S into systems S1

and S2. V 1
out and V 1

conf are the output and the configuration
variables of S1. V 2

in and V 2
conf are the input and the configu-

ration variables of S2. Vconf ⊆ V 1
conf ∪ V 2

conf .

ψ be the formula that assigns the free variables in ϕ1 to their
model values from I1.1 If the second call to SOLVE succeeds,
the result is a correct configuration for CP .

Theorem III.1. (Soundness)
If (CP1, CP2) is a decomposition of a configuration prob-
lem CP , and SOLVEMODULAR(CP1, CP2) returns a a pair
(sat, C), then C is a correct configuration of CP .

Proof. Let SOLVEMODULAR return (sat, IVconf). We prove
that IVconf is a correct configuration of CP . First, we notice
that SOLVEMODULAR returns r = sat iff both calls to
SOLVE(ϕ1) and SOLVE(ϕ2) return r = sat. Let (sat, I1)
and (sat, I) be the results of SOLVE(ϕ1) and SOLVE(ϕ2),
respectively. Let ψ = GETABDUCT(ϕ1, I1). From line 5,
I |= ϕ2. Thus, I |= MAKECP(CP2) and I |= ψ. Since
ψ |=T ϕ1, we also have I |= ϕ1. Consequently, I satisfies:
I1, T1(V1@i, V1@(i + 1)) for i ∈ [0, k − 1], conf (V 1

conf , k),
and P1. Furthermore, I satisfies: I2, T2(V2@i, V2@(i + 1))
for i ∈ [0, k − 1], conf (V 2

conf , k), and P2. By the definition
of decomposition, then, I satisfies I(V), T (V@i, V@(i+1))
for i ∈ [0, k − 1], and P . Finally, from I |= conf (V 1

conf , k),
I |= conf (V 2

conf , k), and condition (iv) of the definition of
decomposition (Vconf ⊆ V 1

conf ∪ V 2
conf), it follows that I |=

conf (Vconf , k). Thus, I satisfies the configuration formula
of CP . Therefore, C := IVconf is a correct configuration of
CP .

If SOLVEMODULAR returns r = unsat, this does not
(in general) imply that CP is unconfigurable. Rather, it may
be that the particular decomposition fails, or even that the
particular solution found for CP1 is at fault (and another
solution would have succeeded).

However, in practice, we have found that the algorithm
works well when the decomposition separates a module into
two largely independent parts. An example is shown in Fig-
ure 3. Here, the two submodules share only a subset of the
configuration variables as well as an interface where outputs
of the first module flow into inputs of the second module.

1See the appendix of an extended version of this paper for details on
when and why this works [4]. Investigating other possible implementations
for GETABDUCT is an interesting direction for future work.

105

Configuration Solving Framework

Optimization
Routine

A Correct
Configuration

No

Yes

Not Optimal

Optimal

Output:
A correct
Optimal
Configuration

Output:
Not
Configurable

Input:
CP
+
MOP
+

(Verification
Properties)

Output:
A correct
configuration

SMT
Solver

Construct
Formula

𝜑′

Fig. 4: Optimization-assisted configuration framework. The input is a configuration problem with optional optimization and
verification objectives. The framework can return: (i) a non-optimal but correct configuration, or (ii) an optimal and correct
configuration, or (iii) unsat. ϕ′ is a conjunction of the configuration formula ϕ and the optional verification properties.

IV. OPTIMIZATION-ASSISTED CONFIGURATION

A solver can return an unnatural or non-intuitive config-
uration, complicating the ability of users to understand or
maintain the configuration.

We observe that users tend to prefer the simplest configura-
tions, where the notion of simplest corresponds to minimizing
some metric when finding solutions. To this end, we show how
to extend our framework with optimization goals.

Figure 4 depicts our configuration framework extended with
support for multi-objective optimization. There are various
ways to combine optimization with configuration solving; we
depict one approach using iteration. One instance of this
approach works as follows: first a solution is found and the
value of the objective term is calculated; then the search space
is systematically explored by iteratively constraining the value
to be better than the current best value; when no better value
can be found, the optimal value has been discovered. There
are many different kinds of optimizations that fit this general
framework. We present several useful examples in the context
of the case study in Section V.

Further extensions. Figure 4 also includes an extension to
support combining configuration-finding with verification. In
this scheme, any invariants that the system should obey are
conjoined to the configuration formula. This ensures that any
configuration found satisfies the invariant up to bound k. To
check that an invariant holds for all reachable states requires
a separate run of an unbounded model checker.

Finding the configuration itself using unbounded model
checking is an interesting direction for future work. A sig-
nificant challenge is that this requires writing the input-output
property as a single state formula, which may be much harder
than writing it as a bounded set of input, output pairs (in
much the same way that loop invariants are difficult to come
up with in software). If the input-output property can be
written as a state formula P , it may be possible to utilize
invariant synthesis techniques by seeking to synthesize an
invariant of the form:

⋀︁
i(V

i
conf = Ci) =⇒ P , where the

left-hand side of the implication contains all configuration
variables V i

conf ∈ Vconf , and each Ci is a constant value to
be synthesized.

V. CASE STUDY

We present a case study with a course-grained reconfig-
urable architecture (CGRA) design developed in the Agile
Hardware Center at Stanford University [5]. Reconfigurable
architectures are appealing because they offer the high perfor-
mance of hardware with software-like flexibility. CGRAs in
particular use sophisticated reconfigurable elements with the
aim of narrowing the performance gap with custom ASICs [6].

However, configuring a CGRA is challenging, typically
requiring manual effort by an experienced engineer who fully
understands the application and the design. To the best of
our knowledge, ours is the first framework that finds correct
CGRA configurations fully automatically.

In this paper, we focus on configuring a memory tile of the
CGRA for image processing applications. In these applications
data is streamed into the memory tile and must be reordered
in various ways before being streamed out. Only the timing
and order of the data are changed; the data itself remains the
same. Below, we first describe the memory tile design, then
present some specific applications, and then explain how we
automate configuration of the design for these applications.

A. CGRA Memory Tile Design

The memory tile is a non-trivial design (34998 FF and
164696 gates). Figure 5 shows its architecture . It contains
three types of units: memories, addressors, and accessors. Ad-
dressors and accessors are reconfigurable units. The accessors
control when to write or read. The addressors control where
to write or read. There are three memory modules: an aggre-
gator module (AGG), a static random-access memory module
(SRAM), and a transpose buffer module (TB). Each module
has an input accessor and an input addressor associated with it
for writes, and an output accessor and an output addressor for
reads. The modules are chained: outputs of AGG are intputs

106

SIPO
SRAM

Accessors &
Addressors

Memory Tile

𝑽𝒊𝒏 𝑽𝒐𝒖𝒕

𝑽𝒄𝒐𝒏𝒇

re
ad

w
rit
e

re
ad

re
ad

Accessors &
Addressors

Accessors

SIPO PISO

PISO

Control

AGG TB

M
U
X

/ 16

/ 16

/ 16

/ 16
/ 64 / 64

/ 64

/ 64

/ 64

/ 64
512x64

Addressors AddressorsAddressors Addressors

w
rit
e

Accessors

w
rit
e

Fig. 5: Memory tile architecture. All accessors and addressors are included in the control box. Red arrows represent data flow.
Blue and purple arrows represent addressor and accessor control signals, respectively. Green boxes are local to a single module.
Orange boxes are shared between modules. Vconf consists of all accessor and addressor configuration variables.

Procedure AFFINESEQUENCE
Input: dim : a value indicating the number of nested loops,

ranges[dim]: an array of loop bounds, one for each loop,
strides[dim]: an array of strides, one for each loop,
offset : the offset for the address computation

Output: vals[Πiranges[i]]: a set of output addresses
1: var c[dim]; ▷ Index variables for each loop
2: var i := 0;
3: for c[dim − 1] in [0, ranges[dim − 1]) do
4: ...
5: for c[0] in [0, ranges[0]) do
6: vals[i] := Πdim−1

j=0 c[j] ∗ strides[j] + offset ;
7: i := i+ 1;
8: end for
9: end for

Fig. 6: Affine sequence generator using nested loops.

to SRAM, and outputs of SRAM are inputs to TB. Accessors
are shared between each pair of connected memory modules.
Shared accessors act as schedule generators for each memory
connection. They specify when the data should be transferred
and set any required delays between when the data is produced
and consumed. Addressors are unique for each module.

The addressors and accessors in the memory tile make use
of affine sequence generators to generate sequences of values
for reading and writing. Figure 6 shows pseudocode for an
affine sequence generator. It takes as input a number dim of
loops, an array ranges with bounds for each loop, an array
strides with strides for each loop, and offset which is a base
value. It then computes a sequence of outputs, vals , by running
dim nested loops, and computing the sum of the offset and
the product of each stride with its loop index in the innermost
loop. Each of the inputs to the procedure corresponds to a
configuration register in the hardware.

While each addressor and accessor contains an affine se-

quence generator, they differ in how they interpret vals . For an
addressor, vals contains raw addresses sent to a memory (for
either reading or writing). For an accessor, vals contains clock
cycle counts that are compared to a running cycle counter
to determine when to read or write. Note that an (accessor,
addressor) pair should have the same values for their dim
and ranges variables to ensure that they produce the same
number of values. There are 4 accessors (including 2 shared
with SRAM) and 4 addressors for AGG (1 for each memory
port). TB has 4 accessors (including 2 shared with SRAM)
and 4 addressors (1 for each memory port). SRAM has 2
addressors, and shares 2 accessors with AGG and 2 acessors
with TB.

The memory tile processes 16-bit words. However, it uses
a 512x64-bit SRAM which stores four 16-bit words at each
address. The rationale for this design is to emulate a multi-
ported SRAM while minimizing the energy consumption per
memory access [7]. To match the data width at the SRAM
interface, AGG and TB implement width converters. AGG
implements a serial-in to parallel-out (SIPO) converter—serial
data is loaded, one 16-bit word at a time, and these are packed
into 64-bit outputs. TB implements a parallel-in to serial-out
(PISO) converter—parallel data is loaded into the PISO as a
64-bit word and is shifted out of the PISO serially, one 16-bit
word at a time. The memory tile uses a 2-input and 2-output
port architecture to support more throughput. Thus, AGG and
TB contain two SIPOs and two PISOs, respectively.

B. Stencil Applications

We consider a common class of image-processing tech-
niques called stencils. Stencil computations usually consist of a
multi-stage pipeline, where each stage is a dense linear algebra
computation in a local region. So-called push memories are

107

inserted between computation units, whose job is to orchestrate
the order and the timing of the data explicitly [8]. We explore
configuring memory tiles as push memories for four stencil
applications:

• Identity. The identity stencil simply streams the input
back out in the same order. It is useful as a baseline
test and also can be used to implement a fixed delay on
a stream.

• 3x3 Convolution. This stencil is used in a variety of
image processing applications [9] (e.g., to blur images).
It multiplies a 3x3 sliding image window by a 3x3 kernel
of constant values.

• Cascade. This application implements a pipeline with two
convolution kernels executed in sequence. The Cascade
application requires configuration of two memory tiles,
denoted by conv and hw.

• Harris. Harris is a corner detection algorithm that can be
used to infer image features [10]. It extracts the gradients
of an image in different orientations and combines this
information using multiple convolutions. This is the most
complex of our applications, requiring the configuration
of five different memory tiles, which we denote as cim,
lxx, lxy, lyy, and pad.

C. Automating the Memory Tile Configuration

We decompose the memory tile into three sub-modules
(for scalability), following the approach shown in Figure 3.
The first sub-module includes AGG, its input/output acces-
sor/addressor modules, and the MUX (1372 FF, 19676 gates).
The second sub-module includes SRAM, both AGG read
accessors, and both TB write accessors (33712 FF, 150750
gates). The third sub-module includes TB and its input/output
accessor/addressor modules (1126 FF, 18538 gates). Shared
accessors contain the shared configuration variables, whose
values are propagated to the next module during modular
configuration.

In order to configure each module in the memory tile, we
look at the transition system defined by its memory and its
accessors and addressors. We then use the “programming by
example” approach described above. We specify the input-
output property P as a sequence of distinct input values (e.g.,
1,2,3,. . .), paired with the corresponding application-specific
desired output sequence based on those values. We then solve
for the configuration variables as described in Section III-A
above.

As mentioned in Section IV, it is important to generate
configurations that can easily be read and understood. Working
together with the designers, we devised a set of optimization
objectives that greatly improve the readability of memory tile
configurations. We explain these next. We apply the framework
of Figure 4 to configure and optimize each module separately.

Objective 1: we first minimize the dim variables in the
module, since this corresponds to using fewer nested loops
and fewer loop counters, resulting in simpler solutions in
general. We prioritize minimizing dim variables controlling
writes over those controlling reads, as lower write complexity

leads to lower read complexity anyway. We formalize this as
the following multi-objective optimization problem:

MOP1 := {OP1,OP1
w, . . . ,OPdw

w ,OP1
r, . . . ,OPdr

r } :

OP1 := ⟨Σi dimi, ABV ,≼BV , ϕ,min⟩ for i ∈ [1, d],

OPi
w := ⟨dimi

w, ABV ,≼BV , ϕ,min⟩ for i ∈ [1, dw]

OPi
r := ⟨dimi

r, ABV ,≼BV , ϕ,min⟩ for i ∈ [1, dr]

Here, ABV is the domain of bit-vectors (i.e., unsigned machine
integers), ≼BV is the usual total order on bit-vector values,
d is the number of affine sequence generators in the module,
and dimi for i ∈ [1, d] are all of the dim variables in the
module. These are further partitioned into write dimensionality
variables dimi

w, i ∈ [1, dw], and read dimensionality variables,
dimi

r, i ∈ [1, dr], with dw + dr = d. ϕ is the configuration
formula.

Objective 2: we minimize the products of the range configu-
ration variables in each loop-nest structure. The objective term
corresponds to the aggregate number of reads or writes that
occur to a particular memory. By minimizing this number,
we eliminate unnecessary reads and writes to the memory.
Formally, the optimization problem is:

OP2 := ⟨Σd−1
i=0Π

dimi−1
j=0 rangesi[j], ABV ,≼BV , ϕ,min⟩

Objective 3: we minimize stride variables to avoid generat-
ing configurations using unnecessarily large addresses.

Many different sets of values for strides could produce the
same vals stream in the end, so by choosing the smallest
values, we hope to generate the simplest solution. The op-
timization problem simply minimizes the sum of all stride
variables in the module:

OP3 := ⟨Σi stridesi , ABV ≼BV , ϕ,min⟩.

Objective 4: we also minimize offset configuration variables
in addressor modules. For addressor modules, minimizing
the offset addressor variable prevents unnecessary offsets,
improving the readability of the generated configuration. Note
that values of offset variables in the accessors are fixed by
the application. The corresponding problem is as follows,
minimizing the sum of all addressor offset variables in the
module:

OP4 := ⟨Σi offset i, ABV ,≼BV , ϕ,min⟩.

Combined objective: the combined optimization query in-
cludes all four objectives and captures the full set of opti-
mization objectives for each module:

MOPH := {MOP1,OP2,OP3,OP4}.

We solve and prioritize MOP1 by iteratively increasing
the bound on the sum Σidimi, and for each bound, trying all
possible assignments to the variables, in the order specified
by MOP1. Note that this approach does not directly fit
the scheme described in Figure 4, since it does not require
finding a first solution that is iteratively improved. Instead, it

108

iteratively widens the search space until the first solution is
found.

For the other objectives, we use a branch-and-bound algo-
rithm. First, a solution is found, and the value of the term is
calculated; then, the solution space is explored systematically,
by iteratively constraining the value of the objective term to
be better than the current best value. Each optimal solution is
propagated to the next optimiziation objective as a constraint.

VI. EVALUATION

Implementation. We have implemented our framework us-
ing Pono [11], an open-source SMT-based model checker.
Pono is built on Smt-Switch [12], a generic C++ API for
interacting with SMT solvers. Pono provides infrastructure
for reading in, unrolling, and otherwise manipulating tran-
sition systems. We use Boolector [13] as the underlying
SMT solver. We convert the memory tile design in our case
study from a SystemVerilog representation to its equivalent
representation in the Btor2 format [13], which is accepted
by Pono. We use Yosys [14], a Verilog synthesis suite,
to do the translation. The experimental code is available
at https://github.com/StanfordAHA/Configuration/.

Experimental Results. We evaluate our configuration-finding
framework using the memory tile design and the four stencil
applications described in Section V. For each application, we
generated benchmarks for various input image sizes, from
16x16 to 60x60. For applications that require more than one
memory tile (i.e., cascade and harris), we choose one repre-
sentative configuration problem: conv for Cascade and lxx for
Harris (more results appear in the appendix of an extended
version of this paper [4]). The number of transitions required
for each configuration problem is based on the number of clock
cycles it takes to process an image of a given size for a given
application.

For each benchmark, we first run the basic algorithm
described in Section III, which finds the first satisfying config-
uration. We try both with and without the modular approach
described in Section III-B. We then run our optimization-
assisted configuration algorithm (using only the modular ap-
proach) as described in Section IV. We run our experiments
on a 2x Intel Xeon E5-2620 v4 @ 2.10GHz 8-core 128GB
computer. Timeout is set to 4000 seconds. Memory limit is
100 GB.

The results are shown in Figure 7. Each chart shows
results for both the basic algorithm (First Configuration) and
the optimization-assisted algorithm (Optimal Configuration).
Within each of these categories, up to five different results
are shown for each image size: top is the time required
to configure the entire design, monolithically; agg, tb, and
sram refer to the time required to configure each of the sub-
modules independently; and sram agg tb is the time required
to configure the SRAM module after first configuring AGG
and TB (this is the most efficient order for these modules)
and then propagating the shared configurations from those
modules as described in Figure 3. Note that in the modular

approach, AGG and TB are configured independently; thus,
the configuration can be performed in parallel, and the total
design configuration time is the sum of sram agg tb and the
maximum of agg and tb. Timeouts are represented by full bars
(up to the timeout limit), and memory outs are represented
by omitting the bar completely. We also omit the bar for
sram agg tb if either AGG or TB is not solved within the
given time-memory budget. We make several observations
about the results below.

Modular Approach. As the experiments show, the full
memory tile is too large to solve within the given time-memory
budget—it times out for all image sizes. However, by using
the modular approach, we are able to configure the design
for all applications for reasonably useful image sizes. For the
Identity Stream, we can configure for all image sizes (with
unroll depths up to 3601) relatively easily using the modular
approach. Other applications are more challenging, but we are
still able to scale up to images of size 40x40 (and unroll depth
up to 1939 clock cycles).

We also observe that the AGG and TB modules take com-
parable time for the Identity Stream, but for other applications,
configuration of the TB module is more challenging. This
can be explained as follows. AGG and TB are both two-
port designs, comparable in size and complexity. But for all
applications, AGG can be configured by exploiting only a
single port, while only the Identity Stream allows a single-port
configuration of TB. Thus, we quickly find a simple configu-
ration for TB with the Identity Stream, but no comparatively
simple configuration exists for the other applications.

Optimal Configurations. The right-hand side of each chart
shows the results of running our optimization-assisted config-
uration algorithm for each application. There are several inter-
esting observations. First of all, for the AGG and TB modules,
finding optimal configurations is generally more expensive.
However, once these optimal configurations are found, it is
often easier to find the corresponding SRAM configuration,
suggesting that optimal configurations may help improve later
stages of modular configuration. The total configuration time
with optimization is generally comparable to or only slightly
worse than the time required to configure without optimiza-
tion. Given the value of optimal configurations in terms of
simplicity and readability, these results suggest that modular
configuration with optimization may be the best strategy in
practice.

VII. RELATED WORK

The problem of system configuration has been studied
in various formulations and domains, such as software tool
configuration, hardware configuration, network configuration,
distributed application configuration, and deployment strate-
gies. In one research stream, the configuration problem is to
select and arrange a set of components from a given set of
assets in order to construct an overall system with a desired
specification [15]–[18]. Other formulations take as input a
configuration database, including configuration variables, and
desired requirements to be met [19], [20]. The task is to find

109

https://github.com/StanfordAHA/Configuration/

(a) Identity Stream (b) 3x3 Convolution

(c) Cascade (conv) (d) Harris (lxx)

Fig. 7: Horizontal axis shows image sizes and number of clock cycles required for processing. Vertical axis shows time in
seconds.

values for the configuration variables which instantiate the
database so that it meets the requested requirement. The work
whose problem definition is closest to ours is [21], which also
uses transition systems. The authors define a configuration as
an initial state of a transition system, which is very similar to
our notion of configuration variables.

Constraint solving has been explored in various ways for
automating system configuration. Efforts have been made to
design declarative, constraint-based, object-oriented languages
and policy-based tools to configure systems as well as to
validate configurations [19], [22]–[24]. Early approaches were
based on constraint satisfaction and constraint logic program-
ming [18], [25], [26]. More recent approaches utilize SAT
and SMT solvers [17], [19], [27], and counterexample-guided
inductive synthesis and relational model finding [21], [28] for
dynamic configuration. However, the way these approaches
reduce configuration problems to constraint satisfaction prob-
lems is significantly different from our approach using in-
put/output examples and unrolling.

More significantly, our work differs in its use of modularity
and optimization to improve scalability and understandability.
Some automated configuration efforts do employ optimization
(e.g., [29]), but with a different goal, namely to configure a
system in a way that maximizes its performance.

VIII. CONCLUSION

We proposed a new approach for automatically configuring
systems representable as transition systems. Key contributions
of our approach include its ability to leverage modularity
and its use of optimization. Optimal configurations are more
human-understandable, and both modularity and optimization
can improve scalability. We demonstrated these claims with a
case study using a CGRA memory tile.

Future directions for this work include incorporating un-
bounded model checking, applying the framework to a wider
variety of designs, exploring modularity for more sophisticated
theories, and finding provably correct configurations for appli-
cations with repeating input/output patterns.

ACKNOWLEDGMENTS

This work was funded in part by the Stanford Agile Hard-
ware Center and by the Defence Advanced Research Projects
Agency under grant number FA8650-18-2-7854.

REFERENCES

[1] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[2] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, ser. Frontiers in Arti-
ficial Intelligence and Applications. IOS Press, 2009, vol. 185, pp.
825–885.

110

[3] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without bdds,” in TACAS, ser. Lecture Notes in Computer
Science, vol. 1579. Springer, 1999, pp. 193–207.

[4] N. Tsiskaridze, M. Strange, M. Mann, K. Sreedhar, Q. Liu, M. Horowitz,
and C. Barrett, “Automating system configuration,” 2021. [Online].
Available: https://arxiv.org/abs/2108.05987

[5] “Aha! agile hardware project at stanford university,” https://aha.stanford.
edu/.

[6] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,
“A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” ACM Comput. Surv., vol. 52,
no. 6, Oct. 2019. [Online]. Available: https://doi.org/10.1145/3357375

[7] A. Vasilyev, “Evaluating spatially programmable architecture for imag-
ing and vision applications,” Ph.D. dissertation, Stanford University,
2019.

[8] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan,
S. W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2019, pp. 137–151.

[9] R. Chandel and G. Gupta, “Image filtering algorithms and techniques:
A review,” International Journal of Advanced Research in Computer
Science and Software Engineering, vol. 3, no. 10, 2013.

[10] C. G. Harris, M. Stephens et al., “A combined corner and edge detector.”
in Alvey vision conference, vol. 15, no. 50. Citeseer, 1988, pp. 10–5244.

[11] M. Mann, A. Irfan, F. Lonsing, Y. Yang, H. Zhang, K. Brown, A. Gupta,
and C. Barrett, “Pono: a Flexible and Extensible SMT-based Model
Checker,” in CAV, ser. Lecture Notes in Computer Science. Springer,
2021.

[12] M. Mann, A. Wilson, Y. Zohar, L. Stuntz, A. Irfan, K. Brown,
C. Donovick, A. Guman, C. Tinelli, and C. W. Barrett, “Smt-Switch: A
Solver-agnostic C++ API for SMT Solving,” in International Conference
on Theory and Applications of Satisfiability Testing, ser. Lecture Notes
in Computer Science. Springer, 2021.

[13] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , btormc and
boolector 3.0,” in Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10981. Springer, 2018, pp. 587–595. [Online]. Available:
https://doi.org/10.1007/978-3-319-96145-3 32

[14] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free Verilog synthesis suite,”
in Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013.

[15] J. P. McDermott, “R1: A rule-based configurer of computer systems,”
Artif. Intell., vol. 19, no. 1, pp. 39–88, 1982. [Online]. Available:
https://doi.org/10.1016/0004-3702(82)90021-2

[16] M. A. Mansor, M. Kasihmuddin, and S. Sathasivam, “Vlsi circuit con-
figuration using satisfiability logic in hopfield network,” International
Journal of Intelligent Systems and Applications, vol. 8, pp. 22–29, 2016.

[17] R. Michel, A. Hubaux, V. Ganesh, and P. Heymans, “An smt-based
approach to automated configuration,” in 10th International Workshop
on Satisfiability Modulo Theories, SMT 2012, Manchester, UK, June 30
- July 1, 2012, ser. EPiC Series in Computing, P. Fontaine and A. Goel,
Eds., vol. 20. EasyChair, 2012, pp. 109–119. [Online]. Available:
https://easychair.org/publications/paper/bKGs

[18] D. Sabin and E. C. Freuder, “Configuration as composite constraint
satisfaction,” 1996.

[19] S. Narain, G. Levin, S. Malik, and V. Kaul, “Declarative infrastructure
configuration synthesis and debugging,” J. Netw. Syst. Manag.,
vol. 16, no. 3, pp. 235–258, 2008. [Online]. Available: https:
//doi.org/10.1007/s10922-008-9108-y

[20] S. Narain, “Network configuration management via model finding,” in
LISA, 2005.

[21] T. Nelson, N. Danas, T. Giannakopoulos, and S. Krishnamurthi,
“Synthesizing mutable configurations: Setting up systems for success,”
in 34th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ASE Workshops 2019, San Diego, CA, USA,
November 11-15, 2019. IEEE, 2019, pp. 81–85. [Online]. Available:
https://doi.org/10.1109/ASEW.2019.00034

[22] J. Hewson, “Constraint-based specifications for system configuration,”
2013.

[23] L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal, “Cauldron: A policy-
based design tool,” vol. 2006, 07 2006, pp. 10 pp.–.

[24] J. Hewson, “Constraint-based specifications for system configuration,”
Ph.D. dissertation, 11 2013.

[25] N. Sharma and R. Colomb, “Mechanising shared configuration
and diagnosis theories through constraint logic programming,” The
Journal of Logic Programming, vol. 37, no. 1, pp. 255–283, 1998.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743106698100109

[26] J. Tiihonen, M. Heiskala, A. Anderson, and T. Soininen, “Wecotin–a
practical logic-based sales configurator,” AI Communications, vol. 26,
no. 1, pp. 99–131, 2013.

[27] S. Peter and T. Givargis, “Component-based synthesis of embedded
systems using satisfiability modulo theories,” ACM Trans. Design
Autom. Electr. Syst., vol. 20, no. 4, pp. 49:1–49:27, 2015. [Online].
Available: https://doi.org/10.1145/2746235

[28] A. Wagner, “Where to begin? synthesizing initial configurations for
cellular automata,” 2020.

[29] J. A. Hewson, P. Anderson, and A. D. Gordon, “A declarative approach
to automated configuration,” in Strategies, Tools , and Techniques:
Proceedings of the 26th Large Installation System Administration
Conference, LISA 2012, San Diego, CA, USA, December 9-14, 2012,
C. Rowland, Ed. USENIX Association, 2012, pp. 51–66. [Online].
Available: https://www.usenix.org/conference/lisa12/technical-sessions/
presentation/hewson

111

https://arxiv.org/abs/2108.05987
https://aha.stanford.edu/
https://aha.stanford.edu/
https://doi.org/10.1145/3357375
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1016/0004-3702(82)90021-2
https://easychair.org/publications/paper/bKGs
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1007/s10922-008-9108-y
https://doi.org/10.1109/ASEW.2019.00034
https://www.sciencedirect.com/science/article/pii/S0743106698100109
https://www.sciencedirect.com/science/article/pii/S0743106698100109
https://doi.org/10.1145/2746235
https://www.usenix.org/conference/lisa12/technical-sessions/presentation/hewson
https://www.usenix.org/conference/lisa12/technical-sessions/presentation/hewson

Formal Methods in Computer-Aided Design 2021

Towards an Automatic Proof of Lamport’s Paxos
Aman Goel

University of Michigan, Ann Arbor
amangoel@umich.edu

Karem A. Sakallah
University of Michigan, Ann Arbor

karem@umich.edu

Abstract—Lamport’s celebrated Paxos consensus protocol is
generally viewed as a complex hard-to-understand algorithm.
Notwithstanding its complexity, in this paper, we take a step
towards automatically proving the safety of Paxos by taking
advantage of three structural features in its specification: spatial
regularity in its unordered domains, temporal regularity in its
totally-ordered domain, and its hierarchical composition. By
carefully integrating these structural features in IC3PO, a novel
model checking algorithm, we were able to infer an inductive
invariant that identically matches the human-written one pre-
viously derived with significant manual effort using interactive
theorem proving. While various attempts have been made to
verify different versions of Paxos, to the best of our knowledge,
this is the first demonstration of an automatically-inferred
inductive invariant for Lamport’s original Paxos specification. We
note that these structural features are not specific to Paxos and
that IC3PO can serve as an automatic general-purpose protocol
verification tool.

Index Terms—Distributed protocols, incremental induction,
inductive invariant, invariant inference, model checking, Paxos.

I. INTRODUCTION

In this paper, we focus on proving the safety of distributed
protocols like Paxos [1], [2] which form the basis for im-
plementing many efficient and highly fault-tolerant distributed
services [3]–[5]. Developed by Lamport, the Paxos consensus
protocol allows a set of processes to communicate with each
other by exchanging messages and reach agreement on a single
value. Verifying the correctness of such a concurrent system
requires the derivation of a quantified inductive invariant that,
together with the protocol specification, acts as an inductive
proof of its safety under all possible system behaviors.

Several manual or semi-automatic verification techniques
based on interactive theorem proving [6]–[9] have been pro-
posed to derive a safety proof for Paxos. Chand et al. [10]
formally verified the TLA+ [11] specification of Paxos by
manually deriving a proof using the TLAPS proof assis-
tant [7]. Padon et al. [12] used the Ivy [13] verifier, which
requires a user to manually refine automatically-generated
counterexamples-to-induction, to obtain an inductive invari-
ant for a simplified version of Paxos in the decidable EPR
fragment [14] of first-order logic. The approaches in [15]–
[19] are examples of manually-derived refinement proofs [20]–
[23] that show how a low-level implementation refines a
high-level specification. All these methods, however, require
a detailed understanding of the intricate inner workings of the
protocol and entail significant manual effort to guide proof
development.

A1-2

Voting

SimplePaxos

ImplicitPaxos

Paxos

FlexiblePaxos MultiPaxos

A3-6

A7-8

A9-11

Safety Property Input Strengthening Assertions

none

A1-2

A1-6

A1-8

A1-11

Increasing
Abstraction
Level

Hierarchical
Strengthening

Fig. 1: Hierarchical strengthening of Paxos and its variants. Each level
uses all strengthening assertions above that level as input, and outputs
the required remaining assertions, altogether inferring the inductive
invariant at each level.

In contrast, we propose an approach, implemented in
the IC3PO protocol verifier, to automatically infer the re-
quired inductive invariant for an unbounded distributed pro-
tocol by adding three simple extensions to the finite-domain
IC3/PDR [24], [25] incremental induction algorithm for model
checking [26]. Symmetry boosting, introduced in [27], takes
advantage of a protocol’s spatial regularity to automatically
infer quantified strengthening assertions that reflect the pro-
tocol’s structural symmetries. This paper describes range
boosting and hierarchical strengthening which take advantage,
respectively, of a protocol’s temporal regularity and hierar-
chical structure, and demonstrates how IC3PO was used to
automatically obtain an inductive invariant for Paxos using
the four-level hierarchy shown in Figure 1.
Our main contributions are:

– A range boosting technique that extends incremental
induction to utilize the temporal regularity in totally-
ordered domains, and thus, enables automatic invariant
inference for protocols with even infinite-state processes.

– A hierarchical strengthening approach to derive the re-
quired inductive invariant in a top-down step-wise pro-
cedure for hierarchically-specified distributed protocols
through incremental induction extended with symmetry
and range boosting, by automatically verifying high-level
abstractions first and using invariants of these higher-

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 20 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0003-0520-8890
https://orcid.org/0000-0002-5819-9089
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://creativecommons.org/licenses/by/4.0/

level abstractions as strengthening assertions to derive the
inductive invariant for the detailed lower-level protocol.

– Safety verification of Lamport’s Paxos algorithm, both
single- and multi-decree Paxos, through the derivation
of a compact, human-readable inductive proof that is
automatically inferred using IC3PO, resulting in a drastic
reduction in verification effort compared to previous
approaches [16], [28], [29].

The paper is structured as follows: §II presents preliminar-
ies. §III and §IV describe range boosting and hierarchical
strengthening. §V details the four-level hierarchy we used to
prove Paxos and §VI is a record of the IC3PO run showing
the actual assertions it inferred at each level of the hierarchy.
§VII discusses some of the features and interesting details on
this automatically-generated proof. Experimental comparisons
with other approaches are provided in §VIII and the paper
concludes with a brief survey of related work in §IX and a
discussion of future directions in §X.

II. PRELIMINARIES

A. Notation

We will use Init ,Next , and Safety to denote the quantified
formulas that specify, respectively, a protocol’s initial states,
its transition relation, and the safety property that is required
to hold on all reachable states. We use primes (e.g., φ′) to
represent a formula after a single transition step. The notation
V !A (resp. S !A, I !A, and P !A) means that assertion A
was inferred by IC3PO for the Voting (resp. SimplePaxos,
ImplicitPaxos, and Paxos) protocol.

As an example, consider a protocol P with two sorts, a sym-
metric sort aSort and a totally-ordered sort bSort, along with
relations p(aSort, bSort) and q(bSort) defined on these
sorts. Viewed as a parameterized system P(aSort, bSort),
we can specify its finite instance P(3, 4) as:

P(3, 4) : aSort3 , {a1, a2, a3}
bSort4 , [bmin, b1, b2, bmax] (1)

where aSort3 represents the finite symmetric sort of this
instance defined as a set of arbitrarily-named distinct constants,
while the finite totally-ordered sort bSort4 is composed of
a list of ordered constants, i.e., bmin < b1 < b2 < bmax. This
instance can be encoded using twelve p and four q BOOLEAN
state variables. A state of this instance corresponds to a
complete assignment to these 16 state variables, with a total
state-space size of 216. We will use Next

⋀︁

instead of Next to
denote the transition relation of the finite instance.

B. Clause Boosting and Quantifier Inference

The basic framework for inferring the quantified assertions
required to prove protocol safety is described in [27]. It
extends the finite IC3/PDR incremental induction algorithm
by boosting its clause learning during the 1-step backward
reachability checks performed through Satisfiability Modulo
Theories (SMT) [30] solving. Specifically, a clause φ is
learned in (and refines) frame Fi if the 1-step query ψi :=

Fi−1∧Next
⋀︁

∧ [¬φ′] is unsatisfiable. This means that cube ¬φ
in frame Fi is unreachable from frame Fi−1. Boosting refers
to: a) “growing” φ to a set of clauses that also satisfy this
unreachability constraint from frame Fi−1, and b) refining
the frame Fi with the entire clause set instead of just φ.
Such boosting accelerates the convergence of incremental
induction but, more importantly, makes it possible, under some
regularity assumptions, to represent this set of clauses by a
single logically-equivalent quantified clause Φ and is the key
to generalizing the results of such finite analysis to unbounded
domains.

C. Symmetric Boosting and Quantifier Inference

Protocols that are strictly specified in terms of symmetric sorts
can be characterized as having spatial regularity. For example,
the constants in a sort representing a finite set of k identical
processes are essentially indistinguishable replicas that can be
permuted arbitrarily without changing the protocol behavior.
A learned clause φ parameterized by the constants of such a
sort can be boosted by permuting its constants in all possible
k ! ways yielding a set of symmetrically-equivalent clauses,
i.e., its symmetry orbit φSymk under the full symmetric group
Symk . By construction, all clauses in φ’s orbit automatically
satisfy the unreachability constraint without the need to per-
form additional 1-step queries. Furthermore, the quantified
clause Φ that encodes φ’s orbit is algorithmically constructed
by a syntactic analysis of φ’s structure, and can involve
complex universal and existential quantifier alternations over
both state and non-state (auxiliary) variables. The reader is
referred to [27], [31] for the complete details of the connection
between symmetry and quantification and the procedure for
quantifier inference.

D. Finite Convergence

When a boosted finite incremental induction run terminates,
it either produces a finite counterexample demonstrating that
the specified safety property fails, or produces a set of quan-
tified assertions A1, · · · ,An that yield the inductive invariant
inv = Safety ∧ A1 ∧ · · · ∧ An proving safety for the given
finite size. At this point, an algorithmic finite convergence
procedure is invoked to check if the current instance size
has captured all possible protocol behaviors and, if not, to
systematically increase the finite instance size until protocol
behavior saturates and the cutoff size is reached [32]–[36].

III. RANGE BOOSTING

Clause boosting is not limited to clauses that are parameterized
by the constants of symmetric sorts, and can be extended
to clauses whose literals depend on the constants of totally-
ordered sorts such as ballot, round, epoch, etc., that are used
to model the temporal order of events in a distributed protocol.
However, the boosting procedure for such clauses differs from
symmetric boosting in two ways: a) the ordering relation
between totally-ordered constants must be explicitly preserved,
and b) adherence of a boosted clause to the unreachability

113

constraint is not guaranteed and must be explicitly checked
with a 1-step backward reachability query.

We extended IC3PO with a range boosting procedure that
complements its symmetry boosting mechanism, allowing it
to transparently handle protocols with both symmetric and
totally-ordered sorts.

Let φ be a clause that is parameterized by totally-ordered
constants and let φOrdered denote those variants of φ that are
obtained by ordering-compliant permutations of its constants.
Clause φ is boosted by making 1-step backward reachability
queries on φOrdered to identify its safe subset φSafe , i.e., those
variants that satisfy the unreachability constraint.

For example, consider the following clause φ1 defined on
the finite instance P(3, 4) from (1):

φ1 = p(a1, b1) ∨ q(b2) (2)

Since φ1 contains two ordered constants (b1, b2), it has six
ordering-compliant variants (bmin, b1), (bmin, b2), (bmin, bmax),
(b1, b2), (b1, bmax), and (b2, bmax). However only three of
these variants end up satisfying the unreachability constraint
yielding the following safe subset of φOrdered

1 :

φSafe
1 = [p(a1, b1) ∨ q(b2)] ∧

[p(a1, b1) ∨ q(bmax)] ∧
[p(a1, b2) ∨ q(bmax)] (3)

The inferred quantified clause that encodes these three clauses
is now constructed using two universally-quantified variables
X1,X2 ∈ bSort4 that replace b1 and b2 in φ1 and expressed
as an implication whose antecedent specifies a constraint over
the ordered “range” bmin < X1 < X2 that must be satisfied by
the quantified variables:

Φ1 = ∀X1,X2 ∈ bSort4 :

(bmin < X1) ∧ (X1 < X2)→ [p(a1,X1) ∨ q(X2)] (4)

In general, a clause that is parameterized by k constants
from a totally-ordered domain whose size is greater than k
can be range-boosted and encoded by a universally-quantified
predicate with k variables which is expressed as an implication
whose antecedent is a range constraint that evaluates to true
for just those combinations of the k variables that correspond
to safe variants of φ.

This procedure extends easily to the case of multiple totally-
ordered domains as well, allowing range boosting to be
performed independently for each such domain in any order
since constants from different domains do not interfere with
each other.

IV. HIERARCHICAL STRENGTHENING

As advocated in [37], hierarchical structuring is an effective
way to manage complexity during manual proof development.
It can also be easily incorporated in the IC3PO style of
invariant generation based on symmetry and range boosting.

Given a low-level specification L that implements a high-
level specification H , i.e., L ≺ H , hierarchical strengthen-

ing starts by automatically deriving strengthening assertions
H !AH that, together with the safety property H !Safety , proves
the safety of H . It then maps and propagates H !AH to L,
denoted as L!AH , and proceeds to prove the strengthened
property L!Safety ∧ L!AH in L by deriving any additional
assertions L!AL needed to establish the safety of L. The
underlying assumption in this procedure is that proving H
is much easier than proving L directly, and that any assertions
derived to prove H are also applicable, with suitable mapping,
to L. The final inductive invariant that proves L will, thus,
have the form L!inv = (L!Safety ∧ L!AH) ∧ L!AL which
can be interpreted as reducing the complexity of L’s proof by
strengthening its safety property with assertions derived for
H .

Such strengthening can be extended to a k -level hierarchy
H ≺ M1 ≺ · · · ≺ Mk−2 ≺ L, where M1 to Mk−2 are
suitably-defined intermediate levels between H and L. This,
in turn, allows single-level automatic verification techniques
based on incremental induction, like IC3PO, to scale to
complex protocols like Paxos, by step-wise verifying higher-
level abstractions first and using their auto-generated proofs
to incrementally build the proof for the lower-level protocol.

V. HIERARCHICAL SPECIFICATION OF PAXOS

This section describes in detail the multi-level hierarchical
structure of the Paxos protocol, as shown earlier in Figure 1.

A. Lamport’s Voting Protocol

Figure 2 presents the TLA+ [11] description1 of the Voting
protocol [38], which is a very high-level abstraction of Paxos
that formalizes the way Lamport first thought about the Paxos
consensus algorithm without getting distracted by details in-
troduced by having the processes communicate by messages.
Voting has three unordered sorts named value, acceptor

and quorum, and a totally-ordered sort named ballot. The
protocol has two state symbols, votes and maxBal defined
on these sorts that serve as the protocol’s state variables.
votes(a, b, v) is true iff an acceptor a has voted for value v in
ballot number b. maxBal(a) returns a ballot number such that
acceptor a will never cast any further vote in a ballot numbered
less than maxBal(a). The global axiom (line 5) defines the
elements of the quorum sort to be subsets of the acceptor sort
and restricts them further by requiring them to be pair-wise
non-disjoint. Lines 6-9 specify definitions chosenAt , chosen ,
showsSafeAt , and isSafeAt , which serve as auxiliary non-
state variables. Protocol transitions are specified by the actions
IncreaseMaxBal and VoteFor (lines 10-11), and lines 12-
14 specify the protocol’s initial states, transition relation, and
safety property.

1Lamport’s TLA+ encoding uses sets to denote variables. For example
in [38], votes[a] represents the set of votes cast by acceptor a . Throughout
this paper, we use an equivalent representation based on relations/functions to
enable encoding for SMT solving. ⟨b, v⟩ ∈ votes[a] is equivalently encoded
in relational form as votes(a, b, v) = ⊤.

114

MODULE Voting

1 CONSTANTS value, acceptor, quorum

2 ballot
∆
= Nat ∪ {−1}

3 VARIABLES votes,maxBal

4 votes ∈ (acceptor× ballot× value) → BOOLEAN

maxBal ∈ acceptor → ballot

5 ASSUME ∧ ∀Q ∈ quorum : Q ⊆ acceptor
∧ ∀Q1,Q2 ∈ quorum : Q1 ∩Q2 ̸= {}

6 chosenAt(b, v)
∆
= ∃Q ∈ quorum : ∀A ∈ Q : votes(A, b, v)

7 chosen(v)
∆
= ∃B ∈ ballot : chosenAt(B , v)

8 showsSafeAt(q, b, v)
∆
=

∧ ∀A ∈ q : maxBal(A) ≥ b
∧ ∃C ∈ ballot :

∧ (C < b)
∧ (C ̸= − 1) → ∃A ∈ q : votes(A,C , v)
∧ ∀D ∈ ballot :

(C < D < b) →
∀A ∈ Q : ∀V ∈ value : ¬votes(A,D ,V)

9 isSafeAt(b, v)
∆
= ∃Q ∈ quorum : showsSafeAt(Q , b, v)

10 IncreaseMaxBal(a, b)
∆
=

∧ b ̸= − 1 ∧ b > maxBal(a)
∧ maxBal ′ = [maxBal EXCEPT ! [a] = b]
∧ UNCHANGED votes

11 VoteFor(a, b, v)
∆
=

∧ b ̸= − 1 ∧ maxBal(a) ≤ b
∧ ∀V ∈ value : ¬votes(a, b,V)
∧ ∀C ∈ acceptor :

(C ̸= a) →
∀V ∈ value : votes(C , b,V) → (V = v)

∧ isSafeAt(b, v)
∧ votes ′ = [votes EXCEPT ! [a, b, v] = ⊤]
∧ maxBal ′ = [maxBal EXCEPT ! [a] = b]

12 Init
∆
=

∧ ∀A ∈ acceptor : B ∈ ballot : V ∈ value : ¬votes(A,B ,V)
∧ ∀A ∈ acceptor : maxBal(A) = −1

13 Next
∆
= ∃A ∈ acceptor,B ∈ ballot,V ∈ value :

IncreaseMaxBal(A,B) ∨VoteFor(A,B ,V)

14 Safety
∆
= ∀V1,V2 ∈ value : chosen(V1) ∧ chosen(V2) → V1 = V2

Fig. 2: Lamport’s Voting protocol in pretty-printed TLA+

Viewed as a parameterized system, the template of the Vot-
ing protocol is Voting(value, acceptor, quorum, ballot).
Its finite instance:

Voting(2, 3, 3, 4) :

value2 , {v1, v2}
acceptor3 , {a1, a2, a3}
quorum3 , {q12 :{a1, a2}, q13 :{a1, a3}, q23 :{a2, a3}}
ballot4 , [bmin, b1, b2, bmax]

has three finite symmetric sorts named value2, acceptor3
and quorum3, defined as sets of arbitrarily-named
distinct constants, while the finite totally-ordered sort
ballot4 is composed of a list of ordered constants, i.e.,
bmin < b1 < b2 < bmax, where bmin = −1 since −1 is the
“minimum” ballot number. The constants of the quorum3 sort
are subsets of the acceptor3 sort and are named to reflect

MODULE Paxos

1 CONSTANTS value, acceptor, quorum

2 ballot
∆
= Nat ∪ {−1}

3 VARIABLES msg1a,msg1b,msg2a,msg2b,maxBal
maxVBal ,maxVal

4 msg1a ∈ ballot → BOOLEAN

msg1b ∈ (acceptor× ballot× ballot× value) → BOOLEAN

msg2a ∈ (ballot× value) → BOOLEAN

msg2b ∈ (acceptor× ballot× value) → BOOLEAN

maxBal ∈ acceptor → ballot

maxVBal ∈ acceptor → ballot

maxVal ∈ acceptor → value

none ∈ value

5 ASSUME ∧ ∀Q ∈ quorum : Q ⊆ acceptor
∧ ∀Q1,Q2 ∈ quorum : Q1 ∩Q2 ̸= {}

6 chosenAt(b, v)
∆
= ∃Q ∈ quorum : ∀A ∈ Q : msg2b(A, b, v)

7 chosen(v)
∆
= ∃B ∈ ballot : chosenAt(B , v)

8 showsSafeAtPaxos(q, b, v)
∆
=

∧ ∀A ∈ q : ∃Mb ∈ ballot : ∃Mv ∈ value : msg1b(A, b,Mb ,Mv)
∧ ∨ ∀A ∈ acceptor : ∀Mb ∈ ballot : ∀Mv ∈ value :

¬(A ∈ q ∧ msg1b(A, b,Mb ,Mv) ∧ (Mb ̸= − 1))
∨ ∃Mb ∈ ballot :

∧ ∃A ∈ q : msg1b(A, b,Mb , v) ∧ (Mb ̸= − 1)
∧ ∀A ∈ q : ∀Mb2 ∈ ballot : ∀Mv2 ∈ value :

msg1b(A, b,Mb2,Mv2) ∧ (Mb2 ̸= − 1) → Mb2 ≤ Mb

9 isSafeAtPaxos(b, v)
∆
= ∃Q ∈ quorum : showsSafeAtPaxos(Q , b, v)

10 Phase1a(b)
∆
=

∧ b ̸= − 1
∧ msg1a ′ = [msg1a EXCEPT ! [b] = ⊤]
∧ UNCHANGED msg1b,msg2a,msg2b,maxBal ,maxVBal ,maxVal

11 Phase1b(a, b)
∆
=

∧ b ̸= − 1 ∧ msg1a(b) ∧ b > maxBal(a)
∧ maxBal ′ = [maxBal EXCEPT ! [a] = b]
∧ msg1b′ = [msg1b EXCEPT ! [a, b,maxVBal(a),maxVal(a)] = ⊤]
∧ UNCHANGED msg1a,msg2a,msg2b,maxVBal ,maxVal

12 Phase2a(b, v)
∆
=

∧ b ̸= − 1 ∧ v ̸= none ∧ ¬(∃V ∈ value : msg2a(b,V))
∧ isSafeAtPaxos(b, v)
∧ msg2a ′ = [msg2a EXCEPT ! [b, v] = ⊤]
∧ UNCHANGED msg1a,msg1b,msg2b,maxBal ,maxVBal ,maxVal

13 Phase2b(a, b, v)
∆
=

∧ b ̸= − 1 ∧ v ̸= none ∧ msg2a(b, v) ∧ b ≥ maxBal(a)
∧ maxBal ′ = [maxBal EXCEPT ! [a] = b]
∧ maxVBal ′ = [maxVBal EXCEPT ! [a] = b]
∧ maxVal ′ = [maxVal EXCEPT ! [a] = v]
∧ msg2b′ = [msg2b EXCEPT ! [a, b, v] = ⊤]
∧ UNCHANGED msg1a,msg1b,msg2a

14 Init
∆
= ∀A ∈ acceptor : B ∈ ballot :

∧ ¬msg1a(B)
∧ ∀Mb ∈ ballot : Mv ∈ value : ¬msg1b(A,B ,Mb ,Mv)
∧ ∀V ∈ value : ¬msg2a(B ,V) ∧ ¬msg2b(A,B ,V)
∧ maxBal(A) = −1
∧ maxVBal(A) = −1 ∧ maxVal(A) = none

15 Next
∆
= ∃A ∈ acceptor : B ∈ ballot : V ∈ value :

∨ Phase1a(B) ∨ Phase1b(A,B)
∨ Phase2a(B ,V) ∨ Phase2b(A,B ,V)

16 Safety
∆
= ∀V1,V2 ∈ value : chosen(V1) ∧ chosen(V2) → V1 = V2

Fig. 3: Lamport’s Paxos protocol in pretty-printed TLA+

115

their symmetric dependence on the acceptor3 sort. This
instance has 24 votes state variables that return a BOOLEAN
and 3 maxBal state variables that return a ballot number in
ballot4. A state of this instance corresponds to a complete
assignment to these 27 state variables.

B. Lamport’s Paxos Protocol

Figure 3 presents the TLA+ description of Lamport’s Paxos
protocol [39], which is a specification of the Paxos consen-
sus algorithm [1], [2]. Paxos implements Voting through the
refinement mapping [votes ← msg2b, maxBal ← maxBal],
where acceptors now communicate with each other through
distributed message passing. State variables msg1a , msg1b,
msg2a , and msg2b are used to model the set of different mes-
sages that can be sent in the protocol, corresponding to actions
Phase1a , Phase1b, Phase2a , and Phase2b respectively. The
pair ⟨maxVBal(a),maxVal(a)⟩ is the vote with the largest
ballot number cast by acceptor a . The ballot b leader can
send a msg1a(b) by performing the action Phase1a(b).
Phase1b(a, b) implements the IncreaseMaxBal(a, b) action
from Voting, where after receiving msg1a(b), acceptor a
sends msg1b to the ballot b leader containing the values of
maxVBal(a) and maxVal(a). In the Phase2a(b, v) action,
the ballot b leader sends msg2a asking the acceptors to
vote for a value v that is safe at ballot number b. Its
enabling condition isSafeAtPaxos(b, v) checks the enabling
condition isSafeAt(b, v) from Voting. Phase2b implements
the VoteFor action in Voting, and enables acceptor a to vote
for value v in ballot number b. We refer the reader to [40] for
a detailed explanation to understand the internals of Paxos.

Represented as a parameterized system Paxos(value,
acceptor, quorum, ballot), its finite instance
Paxos(2, 3, 3, 4) has 132 BOOLEAN state variables, 6
state variables that return a ballot number in ballot4, and 3
state variables that return a value in value2.

C. Intermediate Levels between Voting and Paxos

We introduced two intermediate levels, SimplePaxos and Im-
plicitPaxos, between Voting and Paxos. These intermediate
levels are abstractions of Paxos, inspired from the already-
existing literature [12], [41]–[44]. ImplicitPaxos is inspired
from the specification of Generalized Paxos by Lamport [41]
and uses a commonly-used encoding transformation, as uti-
lized in [12], [43], [44]. Instead of explicitly keeping a track
of maxVBal(a) and maxVal(a), ImplicitPaxos abstracts them
away and implicitly computes their respective values using the
history of all votes cast by the acceptor a , i.e., using the history
of msg2b from acceptor a , by modifying the Phase1b(a, b)
action (line 11 in Figure 3) to as shown in Figure 4.

SimplePaxos further simplifies ImplicitPaxos and eliminates
tracking of the maximum ballot (and the corresponding value)
in which an acceptor voted from msg1b completely, i.e.,
the last two arguments of msg1b are abstracted away. In-
stead, the history of all votes cast is used to describe how
new votes are cast. This is done by replacing the definition

MODULE ImplicitPaxos

11 Phase1b(a, b)
∆
=

∧ b ̸= − 1 ∧ msg1a(b) ∧ b > maxBal(a)

∧ maxBal ′ = [maxBal EXCEPT ! [a] = b]
∧ ∃Mb ∈ ballot : ∃Mv ∈ value :

∧ ∨ ∧ (Mb = −1)

∧ ∀B ∈ ballot : ∀V ∈ value : ¬msg2b(a,B ,V)
∨ ∧ (Mb ̸= −1) ∧ msg2b(a,Mb ,Mv)

∧ ∀B ∈ ballot : ∀V ∈ value :
msb2b(a,B ,V) → B ≤ Mb

∧ msg1b′ = [msg1b EXCEPT ! [a, b,Mb ,Mv] = ⊤]

∧ UNCHANGED msg1a,msg2a,msg2b

Fig. 4: Modifications in ImplicitPaxos compared to Paxos

MODULE SimplePaxos

8 showsSafeAtSimplePaxos(q, b, v)
∆
=

∧ ∀A ∈ q : msg1b(A, b)
∧ ∨ ∀A ∈ acceptor : ∀Mb ∈ ballot : ∀Mv ∈ value :

¬(A ∈ q ∧ msg1b(A, b) ∧ msg2b(A,Mb ,Mv))

∨ ∃Mb ∈ ballot :
∧ ∃A ∈ q : msg1b(A, b) ∧ msg2b(A,Mb , v)

∧ ∀A ∈ q : ∀Mb2 ∈ ballot : ∀Mv2 ∈ value :

msg1b(A, b) ∧ msg2b(A,Mb2,Mv2) → Mb2 ≤ Mb

Fig. 5: Modifications in SimplePaxos compared to ImplicitPaxos

showsSafeAtPaxos (line 8 in Figure 3) with its simplified
form, expressed using msg2b as shown in Figure 5.

VI. HIERARCHICAL VERIFICATION OF PAXOS

Using the 4-level hierarchy Paxos ≺ ImplicitPaxos ≺
SimplePaxos ≺ Voting, this section is a “log” of how IC3PO
automatically derived the required strengthening assertions
that established the safety of Paxos.

A. Proving Voting

Using instance Voting(2, 3, 3, 4), IC3PO proved the safety
of Voting by automatically deriving the inductive invariant
V !inv , V !Safety ∧V !A1 ∧V !A2 where

V !A1 = ∀A ∈ acceptor,B ∈ ballot,V ∈ value :

votes(A,B ,V) → isSafeAt(B ,V)

V !A2 = ∀A ∈ acceptor,B ∈ ballot,V1,V2 ∈ value :

chosenAt(B ,V1) ∧ votes(A,B ,V2) → (V1 = V2)

In words, these two strengthening assertions mean:

A1: If an acceptor voted for value V in ballot number
B , then V is safe at B .

A2: If value V1 is chosen at ballot B , then no acceptor
can vote for a value different than V1 in B .

B. Proving SimplePaxos

Using the refinement mapping [votes ← msg2b, maxBal ←
maxBal], IC3PO transformed V !A1 and V !A2 to the follow-

116

ing corresponding versions for SimplePaxos:

S !A1 = ∀A ∈ acceptor,B ∈ ballot,V ∈ value :

msg2b(A,B ,V) → isSafeAt(B ,V)

S !A2 = ∀A ∈ acceptor,B ∈ ballot,V1,V2 ∈ value :

chosenAt(B ,V1) ∧msg2b(A,B ,V2) → (V1 = V2)

These two assertions, passed down from the proof of Voting,
represented a strengthening of the safety property of Sim-
plePaxos that allowed IC3PO to prove it with the inductive
invariant S !inv , S !Safety ∧

⋀︁
1≤i≤6 S !Ai where

S !A3 = ∀B ∈ ballot,V ∈ value :

msg2a(B ,V) → isSafeAt(B ,V)

S !A4 = ∀B ∈ ballot,V1,V2 ∈ value :

msg2a(B ,V1) ∧msg2a(B ,V2) → (V1 = V2)

S !A5 = ∀A ∈ acceptor,B ∈ ballot,V ∈ value :

msg2b(A,B ,V) → msg2a(B ,V)

S !A6 = ∀A ∈ acceptor,B ∈ ballot :

msg1b(A,B) → maxBal(A) ≥ B

are four additional automatically-generated strengthening as-
sertions that express the following facts about SimplePaxos:

A3: If ballot B leader sends a 2a message for value V ,
then V is safe at B .

A4: A ballot leader can send 2a messages only for a
unique value.

A5: If an acceptor voted for a value in ballot number B ,
then there is a 2a message for that value at B .

A6: If an acceptor has sent a 1b message at a ballot
number B , then its maxBal is at least as high as B .

C. Proving ImplicitPaxos
All variables from SimplePaxos refine to ImplicitPaxos as is,
except for msg1b that adds explicit tracking of the maximum
vote voted by an acceptor in ImplicitPaxos. Assertions S !A1
to S !A5 map to I !A1 to I !A5 in ImplicitPaxos as is, while
S !A6 maps as:

I !A6 = ∀A ∈ acceptor,B ,Bmax ∈ ballot,Vmax ∈ value :

msg1b(A,B ,Bmax ,Vmax) → maxBal(A) ≥ B

These six assertions, passed down from the proof of Sim-
plePaxos, represented a strengthening of the safety property
of ImplicitPaxos that allowed IC3PO to prove it with the
inductive invariant I !inv , I !Safety ∧

⋀︁
1≤i≤8 I !Ai where

I !A7 = ∀A ∈ acceptor,B ,Bmax ∈ ballot,Vmax ∈ value :

[(B > −1) ∧ (Bmax > −1) ∧msg1b(A,B ,Bmax ,Vmax)]

→ msg2b(A,Bmax ,Vmax)

I !A8 = ∀A ∈ acceptor,B ,Bmid ,Bmax ∈ ballot,

V ,Vmax ∈ value :

[(B > Bmid) ∧ (Bmid > Bmax) ∧msg1b(A,B ,Bmax ,Vmax)]

→ ¬msg2b(A,Bmid ,V)

are two additional automatically-generated strengthening as-
sertions that express the following facts about ImplicitPaxos:

A7: If an acceptor issued a 1b message at ballot number
B with the maximum vote ⟨Bmax ,Vmax ⟩, and both
B and Bmax are higher than −1, then the acceptor
has voted for value Vmax in ballot Bmax .

A8: If an acceptor issued a 1b message at ballot number
B with the maximum vote ⟨Bmax ,Vmax ⟩, then the
acceptor cannot have voted in any ballot number
strictly between Bmax and B .

D. Proving Paxos
All variables from ImplicitPaxos refine to Paxos trivially, map-
ping I !A1, . . . , I !A8 to P !A1, . . . ,P !A6 in Paxos as is. These
eight assertions, passed down from the proof of ImplicitPaxos,
represented a strengthening of the safety property of Paxos
that allowed IC3PO to prove it with the inductive invariant
P !inv , P !Safety ∧

⋀︁
1≤i≤11 P !Ai where

P !A9 = ∀A ∈ acceptor : maxVBal(A) ≤ maxBal(A)

P !A10 = ∀A ∈ acceptor,B ∈ ballot,V ∈ value :

msg2b(A,B ,V) → maxVBal(A) ≥ B

P !A11 = ∀A ∈ acceptor : maxVBal(A) > −1

→ msg2b(A,maxVBal(A),maxVal(A))

are three additional automatically-generated strengthening as-
sertions that express the following facts about Paxos:

A9: maxVBal of an acceptor is less than or equal to its
maxBal .

A10: If an acceptor voted in a ballot number B , then its
maxVBal is at least as high as B .

A11: If acceptor A has its maxVBal higher
than −1, then A has already cast a vote
⟨maxVBal(A),maxVal(A)⟩.

VII. DISCUSSION

This section provides a discussion about certain key points
and features about the Paxos proof from Section VI.

A. Comparison against Human-written Invariants

Optionally, the inductive invariant P !inv can be minimized to
derive a subsumption-free and closed set of invariants, which
removes A1 and A2 that are subsumed by the conjunction
A3 ∧A4 ∧A5. After this minimization, the inductive invariant
of Paxos matches identically with the manually-written and
TLAPS-checked inductive invariant from [28], guaranteeing
its correctness. Similarly, the inductive invariant of Voting,
i.e., V !inv , matches directly with the manually-written and
TLAPS-checked inductive invariant from [45].

B. Benefits of Range Boosting

Assertions A6 to A11 express conditions defined over ordered
ranges in the infinite totally-ordered ballot domain. Inferring
such invariants automatically through IC3PO becomes possi-
ble through range boosting (Section III), that extends incre-
mental induction with the knowledge of temporal regularity
over totally-ordered domains by learning quantified clauses
over ordered ranges.

117

C. Protocol’s Formula Structure

Note that A1 to A3 use definitions isSafeAt and chosenAt ,
which implicitly enables IC3PO to incorporate learning with
complex quantifier alternations. Inspired from previous works
on the importance of using derived/ghost variables [36], [46],
[47], IC3PO utilizes the formula structure of the protocol’s
transition relation in a unique manner, by incorporating defi-
nitions in the protocol specification as auxiliary non-state vari-
ables during reachability analysis, described in detail in [27].
This provides a simple and inexpensive procedure to incorpo-
rate clause learning with complex quantifier alternations.

D. Decidability

Protocol specifications at each of the four levels include
quantifier alternation cycles that make unbounded SMT rea-
soning fall into the undecidable fragment of first-order logic.
Unsurprisingly, previous works that rely on unbounded SMT
reasoning, like SWISS [48], fol-ic3 [49], DistAI [50], I4 [51],
and UPDR [52], struggle with verifying Lamport’s Paxos.
IC3PO, on the other hand, performs incremental induction and
finite convergence over finite protocol instances using finite-
domain reasoning that is always decidable.

E. Why a Four-Level Hierarchy?

The original Paxos specification is composed of a two-level
hierarchy Paxos ≺ Voting. Given the two strengthening
assertions A1 and A2 from Voting, inferring the remaining
nine assertions for Paxos directly in one step of hierarchical
strengthening is difficult, since these two specifications are
too far apart to be proved directly. IC3PO struggled with
the large state space of Paxos and learnt too many weak
clauses involving msg1b, maxVBal and maxVal , eventually
running out of memory due to invariant inference getting
confused with several counterexamples-to-induction. Table I
compares the state-space size of protocol instances at each
of the four hierarchical levels. Even though 2147 is not huge,
especially with respect to hardware verification problems [53]–
[55], Paxos has a dense state-transition graph where state-
transitions are tightly coupled with high in- and out- degree,
making the problem difficult for automatic invariant inference
with incremental induction based model checking.

Adding ImplicitPaxos reduced the complexity in Paxos by
abstracting away maxVBal and maxVal . Still, scalability
remained a challenge due to msg1b, that contributed to 96
out of 147 state bits in Paxos(2, 3, 3, 4). Adding another level,
i.e., SimplePaxos, removed 84 out of these 96 state bits by
abstracting away explicit tracking of the maximum vote of

Finite Instance State-space Size
Voting(2, 3, 3, 4) 230

SimplePaxos(2, 3, 3, 4) 254

ImplicitPaxos(2, 3, 3, 4) 2138

Paxos(2, 3, 3, 4) 2147

TABLE I: State-space size for finite instances with 2 value, 3
acceptor, 3 quorum, and 4 ballot

an acceptor from msg1b. When compared against Paxos,
SimplePaxos is significantly simpler, with a total state-space
size to be just 254 for its finite instance SimplePaxos(2, 3, 3, 4),
which led IC3PO to successfully prove Paxos automatically
using the four-level hierarchy.

F. Extension to MultiPaxos and FlexiblePaxos

Till now, by Paxos we meant single-decree Paxos which is
the core consensus algorithm underlying the complete Paxos
state-machine replication protocol [1], [2], commonly referred
to as MultiPaxos [43]. In MultiPaxos, a sequence of instances
execute single-decree Paxos such that the value chosen in
the i th instance becomes the i th command executed by the
replicated state machine. Additionally, if the leader is relatively
stable, Phase1 becomes unnecessary and is skipped, reducing
the failure-free message delay from 4 delays to 2 delays.

Mapping each of the assertions A1, . . . ,A11 to MultiPaxos
is trivial, and simply adds the corresponding instance as an
additional universally-quantified argument, e.g., A11 maps as:

M !A11 = ∀A ∈ acceptor, I ∈ instances :

maxVBal(A, I) > −1

→ msg2b(A, I ,maxVBal(A, I),maxVal(A, I))

Unsurprisingly, the 11 strengthening assertions, passed down
from the proof of Paxos, together with the safety prop-
erty of MultiPaxos, allowed IC3PO to trivially prove it
with no additional strengthening assertions needed, meaning
M !Safety ∧

⋀︁
1≤i≤11 M !Ai is already an inductive invariant

of MultiPaxos. As described in previous works [1], [2], [6],
[10], the crux of proving the safety of MultiPaxos is based
on proving single-decree Paxos since each consensus instance
participates independently without any interference from other
instances. Our experiments validated this further.

Similarly, we also tried another Paxos variant called Flex-
iblePaxos [56], which also verifies trivially with the same
inductive invariant, i.e., with no additional strengthening as-
sertions needed.

VIII. EXPERIMENTS

IC3PO [57] currently accepts protocol descriptions in the
Ivy language [13] and uses the Ivy compiler to extract
a logical formulation of the protocol in a SMT-LIB [30]
compatible format. To get an idea on the effectiveness of
hierarchical strengthening, we also evaluated automatically
deriving inductive proofs for EPR variants of Paxos from [12]
without any hierarchical strengthening. These specifications
describe Paxos in the EPR fragment [14] of first-order logic
and also incorporate simplifications equivalent to the ones
described for SimplePaxos in Section V-C. We performed a
detailed comparison against other state-of-the-art techniques
for automatically verifying distributed protocols:

– SWISS [48] uses SMT solving to derive an inductive
invariant by performing an enumerative search in an
optimized and bounded invariant search space.

– fol-ic3 [49], implemented in mypyvy [58], extends IC3
with a separators-based technique that performs enumer-

118

Time (seconds) Inv SMT
Protocol S.A. IC3PO SWISS fol-ic3 DistAI I4 UPDR IC3PO Human IC3PO I4

E
P
R

epr-paxos ∅ 568 15950∗ timeout error memout timeout 6 11 5680 1701556
epr-flexible paxos ∅ 561 18232∗ timeout error memout failure 6 11 1509 1761504
epr-multi paxos ∅ timeout timeout timeout error memout timeout − 12 − 1902621

O
R
I
G
I
N
A
L

Voting ∅ 64 timeout timeout error memout timeout 3 3 1057 1714170
SimplePaxos A1−2 51 timeout timeout error failure timeout 5 5 618 158470
ImplicitPaxos A1−6 2008 timeout timeout error failure timeout 7 7 18329 69715
Paxos A1−8 98 timeout timeout error failure timeout 10 10 668 76030
MultiPaxos A1−11 340 timeout timeout error timeout timeout 10 10 161 −
FlexiblePaxos A1−11 1408 timeout timeout error failure timeout 10 10 161 6983

TABLE II: Comparison of IC3PO against other state-of-the-art verifiers
ORIGINAL problems employ hierarchical strengthening (as detailed in Section VI), while EPR problems do not.
Column 2 (labeled S.A.) lists strengthening assertions added through hierarchical strengthening to the safety property (∅ means none).
Columns 3-8 (labeled Time) compare the runtime in seconds. For failed SWISS runs, we include the runtime from [48] (indicated with ∗).
Columns 9-10 (labeled Inv) compare number of assertions in the inductive invariant between IC3PO (with subsumption checking and
minimization) and human-written proofs.
Columns 11-12 (labeled SMT) compare total number of SMT queries made by IC3PO versus I4 (until failure for unsuccessful runs).

ative search for a quantified separator in the space of
bounded mixed quantifier prefixes.

– DistAI [50] performs data-driven invariant learning by
enumerating over possible invariants derived from simu-
lating a protocol at different instance sizes, followed by
iteratively refining and checking candidate invariants.

– I4 [51], [59] performs finite-domain IC3 (without
accounting for regularity) using the AVR model
checker [55], [60], followed by iteratively generalizing
and checking the inductive invariant produced by AVR.

– UPDR, from the mypyvy [58] framework, implements
PDR∀/UPDR [61] for verifying distributed protocols.

All experiments were performed on an Intel (R) Xeon CPU
(X5670). For each run, we used a 5-hour timeout and a 32
GB memory limit. All tools were executed in their respective
default configurations. We used Z3 [62] version 4.8.10, Yices
2 [63] version 2.6.2, and CVC4 [64] version 1.8.

A. Results

Table II summarizes the experimental results. EPR vari-
ants were run without any hierarchical strengthening. For
ORIGINAL problems, we employed hierarchical strengthening
using each tool to verify Lamport’s original Paxos specification
(and its variants) through higher-level strengthening assertions
that were automatically generated from IC3PO (as detailed in
Section VI). Note that ORIGINAL problems include quantifier-
alternation cycles that make unbounded SMT reasoning fall
into the undecidable fragment of first-order logic.

IC3PO emerges as the only successful technique that verifies
Lamport’s Paxos and its variants, and automatically infers
the required inductive invariants efficiently. Unsurprisingly,
none of the other tools (i.e., SWISS, fol-ic3, DistAI, I4 and
UPDR) were able to solve ORIGINAL problems since each of
these tools rely on unbounded SMT reasoning and struggle
on problems that fall outside the decidable EPR fragment of
first-order logic.

B. Discussion

Effect of hierarchical strengthening: Comparing EPR ver-
sus ORIGINAL shows the advantages offered by hierarchical
strengthening. Even though IC3PO was able to automatically
verify EPR versions of single-decree Paxos and flexible Paxos
from [12], none of the tools were able to automatically verify
the EPR version of multi-decree Paxos. ORIGINAL variants,
on the other hand, employed hierarchical strengthening which
allowed IC3PO to verify Lamport’s Paxos automatically and
efficiently by using the protocol’s hierarchical structure.

Comparison against other verifiers: DistAI failed on all
problems due to unsupported constructs and parsing errors.
I4 and UPDR (as well as DistAI) are limited to generat-
ing only universally-quantified invariants over state variables,
and hence, were unable to solve any problem. While both
IC3PO and I4 use incremental induction over a finite protocol
instance, the number of SMT queries made by I4 grows
drastically, indicating the benefits offered by symmetry and
range boosting employed in IC3PO. fol-ic3 also fails on
all problems, showing limited scalability of its enumeration-
based separators technique operating directly in the unbounded
domain. For SWISS, we weren’t able to replicate results for
EPR problems as reported in [48] using our experimental setup.
Nevertheless, SWISS showed limited capabilities for solving
ORIGINAL problems.

Comparison against human-written invariants: As evident
from A1 to A11 in Section VI, IC3PO generated concise,
human-readable inductive invariants. In fact, every invariant of
Paxos written manually by Lamport et al. (as detailed in [28],
[39]) had a corresponding equivalent invariant in the induc-
tive proof automatically generated with IC3PO. In contrast,
deriving such invariants manually, even in the presence of a
hierarchical structure, is a tedious and error-prone process that
demands deep domain expertise [12], [16], [28], [29].

Overall, the evaluation confirms our main hypothesis, that it
is possible to utilize the regularity and hierarchical structure in
complex distributed protocols, like in Paxos, to scale automatic
verification beyond the current state-of-the-art.

119

IX. RELATED WORK

Introduced by Lamport, TLA+ is a widely-adopted language
for the specification and verification of distributed proto-
cols [65], [66]. The TLA+ toolbox [67] provides the TLC
model checker, which is primarily used as a debugging tool
for verifying small finite protocol instances [68], and not as
a tool for inferring inductive invariants. The TLAPS proof
assistant [7], [8] allows checking proofs manually written
in TLA+, and has been used to verify several distributed
protocols, including variants of Paxos [10], [15].

The derivation of inductive invariants for distributed proto-
cols continues to be mostly carried out through refinement
proofs using interactive theorem proving [13], [16], [17],
[19], [69]–[72], which demands significant manual effort and
profound domain expertise. The first attempts at automatically
deriving quantified invariants were reported in [32], [33], using
invisible invariants. The intuition underlying this method was
the assumption that the system is “sufficiently symmetric,”
and that its behavior can be captured by any m-subset of
its processes as a universally-quantified invariant. However,
universally-quantified invariants are not guaranteed to be in-
ductive or to imply the safety property. Spatial regularity was
further explored in [73]–[78] to reduce the verification of an
n-process system to that of a quotient system at a small cutoff
size.

Notwithstanding the undecidability result of Apt and
Kozen [79], many efforts to automatically infer quantified
inductive invariants have been reported with the pace increas-
ing in recent years [48], [50]–[52], [80]–[82]. Verification
of parameterized systems is further explored in [83]–[87].
However, unlike IC3PO, these methods generally do not
scale to complex protocols like Lamport’s Paxos, since these
methods rely heavily on unbounded reasoning and are limited
to specifications in the EPR fragment of first-order logic.

Our technique builds on these works, with the capability to
automatically infer the required quantified inductive invariant
using the latest advancements in model checking, by extending
our recent work [27] on symmetry boosting and finite conver-
gence with range boosting and hierarchical strengthening.

X. CONCLUSIONS & FUTURE WORK

We proposed range boosting, a novel technique that extends
the incremental induction algorithm to utilize the temporal
regularity in distributed protocols through quantified reasoning
over ordered ranges. We also presented hierarchical strength-
ening, a simple technique that utilizes the hierarchical structure
of protocol specifications to enable automatic verification of
complex distributed protocols with high scalability. Given the
four-level hierarchy of the Paxos specification, we showed that
these techniques, coupled with our recent work on symmetry
boosting and finite convergence, provide, to our knowledge,
the first demonstration of an automatically-inferred inductive
invariant for the original Lamport’s Paxos algorithm.

While introducing SimplePaxos and ImplicitPaxos to get the
four-level Paxos hierarchy was quite easy, these intermediate
levels were still added manually. It is appealing to explore

counterexample-guided abstraction-refinement (CEGAR) tech-
niques [88], [89] to automatically identify these intermediate
levels whenever needed to overcome complexity. Specifically,
investigating how to leverage clause learning feedback from
incomplete runs to identify bottlenecks in proof inference
and utilizing this information to automatically abstract away
irrelevant details from the low-level protocol can help in
making the complete procedure automatic end-to-end. We
leave this investigation as future work.

Exploring inference with existential quantifiers in range
boosting can also be an interesting future direction, though
intuitively, existential quantification over temporal behaviors
looks unnecessary for proving safety properties. Future work
also includes automatically inferring inductive proofs for other
distributed protocols, such as Byzantine Paxos [15], Raft [90],
etc., and exploring the verification of consensus algorithms in
blockchain applications.

DATA AVAILABILITY STATEMENT AND
ACKNOWLEDGMENTS

The software and data sets generated and analyzed during
the current study, including all experimental data, evalua-
tion scripts, and IC3PO source code are available at https:
//github.com/aman-goel/fmcad2021exp.

We thank Leslie Lamport for the TLA+ video course [91],
which shaped several ideas presented in this paper. We thank
the developers of TLA+ [92], [93], Yices [63], Z3 [62],
pySMT [94], and Ivy [13] for making their tools openly
available. We also thank the reviewers for their valuable
comments.

REFERENCES

[1] L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, p. 133–169, May 1998. [Online]. Available:
https://doi.org/10.1145/279227.279229

[2] ——, “Paxos made simple,” pp. 51–58, December 2001. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
paxos-made-simple/

[3] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in Proceedings of the 7th symposium on Operating systems
design and implementation, 2006, pp. 335–350.

[4] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live:
An engineering perspective,” in Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of Distributed Computing,
ser. PODC ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 398–407. [Online]. Available: https://doi.org/
10.1145/1281100.1281103

[5] M. Isard, “Autopilot: Automatic data center management,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 2, p. 60–67, Apr. 2007. [Online].
Available: https://doi.org/10.1145/1243418.1243426

[6] R. De Prisco, B. Lampson, and N. Lynch, “Revisiting the paxos
algorithm,” Theoretical Computer Science, vol. 243, no. 1-2, pp. 35–
91, 2000.

[7] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “The tla+ proof
system: Building a heterogeneous verification platform,” in International
Colloquium on Theoretical Aspects of Computing. Springer, 2010, pp.
44–44.

[8] D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and
H. Vanzetto, “Tla + proofs,” in FM 2012: Formal Methods, D. Gian-
nakopoulou and D. Méry, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 147–154.

[9] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof
assistant for higher-order logic. Springer Science & Business Media,
2002, vol. 2283.

120

https://github.com/aman-goel/fmcad2021exp
https://github.com/aman-goel/fmcad2021exp
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1145/1243418.1243426

[10] S. Chand, Y. A. Liu, and S. D. Stoller, “Formal verification of multi-
paxos for distributed consensus,” in International Symposium on Formal
Methods. Springer, 2016, pp. 119–136.

[11] L. Lamport, Specifying Systems. Addison-Wesley Boston, 2002, vol.
388.

[12] O. Padon, G. Losa, M. Sagiv, and S. Shoham, “Paxos made epr:
decidable reasoning about distributed protocols,” Proceedings of the
ACM on Programming Languages, vol. 1, no. OOPSLA, pp. 108:1–
108:31, 2017.

[13] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2016, pp. 614–630.

[14] R. Piskac, L. de Moura, and N. Bjørner, “Deciding effectively propo-
sitional logic using dpll and substitution sets,” Journal of Automated
Reasoning, vol. 44, no. 4, pp. 401–424, 2010.

[15] L. Lamport, “Byzantizing paxos by refinement,” in International Sym-
posium on Distributed Computing. Springer, 2011, pp. 211–224.

[16] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill, “Ironfleet: proving practical distributed
systems correct,” in Proceedings of the 25th Symposium on Operating
Systems Principles. ACM, 2015, pp. 1–17.

[17] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D.
Ernst, and T. Anderson, “Verdi: A framework for implementing
and formally verifying distributed systems,” in Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’15. New York, NY, USA: ACM,
2015, pp. 357–368. [Online]. Available: http://doi.acm.org/10.1145/
2737924.2737958

[18] S. Merz, “Formal specification and verification,” in Concurrency: the
Works of Leslie Lamport, 2019, pp. 103–129.

[19] B. Kragl, S. Qadeer, and T. A. Henzinger, “Refinement for structured
concurrent programs,” in International Conference on Computer Aided
Verification. Springer, 2020, pp. 275–298.

[20] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, 1991.

[21] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 3, pp.
872–923, 1994.

[22] ——, “Refinement in state-based formalisms,” Digital Equipment Cor-
portation, 1996.

[23] S. J. Garland and N. A. Lynch, “Using i/o automata for developing
distributed systems,” Foundations of component-based systems, vol. 13,
no. 285-312, pp. 5–2, 2000.

[24] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
Proceedings of the 12th international conference on Verification,
model checking, and abstract interpretation, ser. VMCAI’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 70–87. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1946284.1946291

[25] N. Een, A. Mishchenko, and R. Brayton, “Efficient Implementation of
Property Directed Reachability,” in Formal Methods in Computer Aided
Design (FMCAD’11), Oct. 2011, pp. 125 – 134.

[26] E. M. Clarke, E. A. Emerson, and J. Sifakis, “Model checking: algorith-
mic verification and debugging,” Communications of the ACM, vol. 52,
no. 11, pp. 74–84, 2009.

[27] A. Goel and K. Sakallah, “On symmetry and quantification: A new
approach to verify distributed protocols,” in NASA Formal Methods,
A. Dutle, M. M. Moscato, L. Titolo, C. A. Muñoz, and I. Perez, Eds.
Cham: Springer International Publishing, 2021, pp. 131–150. [Online].
Available: https://doi.org/10.1007/978-3-030-76384-8 9

[28] D. Doligez, L. Lamport, and S. Merz, “A TLA+ specification of the
Paxos consensus algorithm and a TLAPS-checked proof of its cor-
rectness,” https://github.com/tlaplus/tlapm/blob/master/examples/paxos/
Paxos.tla.

[29] M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sagiv, S. Shoham,
J. R. Wilcox, and D. Woos, “Modularity for decidability of deductive
verification with applications to distributed systems,” in Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2018, pp. 662–677.

[30] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[31] A. Goel and K. A. Sakallah, “On symmetry and quantification: A new
approach to verify distributed protocols,” CoRR, vol. abs/2103.14831,
2021. [Online]. Available: https://arxiv.org/abs/2103.14831

[32] A. Pnueli, S. Ruah, and L. Zuck, “Automatic deductive verification
with invisible invariants,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2001, pp. 82–97.

[33] T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. Zuck, “Parameterized veri-
fication with automatically computed inductive assertions,” in Computer
Aided Verification, G. Berry, H. Comon, and A. Finkel, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 221–234.

[34] L. Zuck and A. Pnueli, “Model checking and abstraction to the aid
of parameterized systems (a survey),” Computer Languages, Systems &
Structures, vol. 30, no. 3-4, pp. 139–169, 2004.

[35] I. Balaban, Y. Fang, A. Pnueli, and L. D. Zuck, “Iiv: An invisible
invariant verifier,” in International Conference on Computer Aided
Verification. Springer, 2005, pp. 408–412.

[36] K. S. Namjoshi, “Symmetry and completeness in the analysis of pa-
rameterized systems,” in International Workshop on Verification, Model
Checking, and Abstract Interpretation. Springer, 2007, pp. 299–313.

[37] L. Lamport, “How to write a proof,” The American mathematical
monthly, vol. 102, no. 7, pp. 600–608, 1995.

[38] ——, “A TLA+ specification of the Voting algorithm from Leslie
Lamport’s lectures titled: The Paxos Algorithm - or How to Win a Turing
Award.” https://github.com/tlaplus/Examples/blob/master/specifications/
PaxosHowToWinATuringAward/Voting.tla, 2019.

[39] ——, “A TLA+ specification of the Paxos Consensus algorithm from
Leslie Lamport’s lectures titled: The Paxos Algorithm - or How to
Win a Turing Award.” https://github.com/tlaplus/Examples/blob/master/
specifications/PaxosHowToWinATuringAward/Paxos.tla, 2019.

[40] ——, “The Paxos Algorithm - or How to Win a Turing Award.”
https://lamport.azurewebsites.net/tla/paxos-algorithm.html?back-link=
more-stuff.html, 2019.

[41] ——, “Generalized consensus and paxos,” Tech. Rep. MSR-TR-2005-
33, March 2005. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/generalized-consensus-and-paxos/

[42] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravindran, “Mak-
ing fast consensus generally faster,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2016, pp. 156–167.

[43] “A TLA+ specification of the MultiPaxos algorithm.” https://github.com/
tlaplus/Examples/tree/master/specifications/MultiPaxos.

[44] G. Losa, “Paxos consensus protocol in Ivy.” https://github.com/nano-o/
ivy-proofs/blob/master/paxos/paxos.ivy.

[45] L. Lamport and S. Merz, “A TLA+ specification of the Voting algorithm
and a TLAPS-checked proof of its correctness,” https://github.com/
tlaplus/tlapm/blob/master/examples/ByzPaxos/VoteProof.tla.

[46] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
transactions on software engineering, no. 2, pp. 125–143, 1977.

[47] S. Owicki and D. Gries, “Verifying properties of parallel programs: An
axiomatic approach,” Communications of the ACM, vol. 19, no. 5, pp.
279–285, 1976.

[48] T. Hance, M. Heule, R. Martins, and B. Parno, “Finding invariants
of distributed systems: It’s a small (enough) world after all,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, Apr. 2021, pp. 115–131. [Online].
Available: https://www.usenix.org/conference/nsdi21/presentation/hance

[49] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken, “First-order
quantified separators,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 703–717. [Online]. Available: https://github.com/
wilcoxjay/mypyvy/tree/pldi20-artifact

[50] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “Distai: Data-
driven automated invariant learning for distributed protocols,” in 15th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 21), 2021, pp. 405–421.

[51] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci, and K. A.
Sakallah, “I4: Incremental inference of inductive invariants for verifica-
tion of distributed protocols,” in Proceedings of the 27th Symposium on
Operating Systems Principles. ACM, 2019.

[52] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham,
“Property-directed inference of universal invariants or proving their
absence,” Journal of the ACM (JACM), vol. 64, no. 1, pp. 1–33,
2017. [Online]. Available: https://bitbucket.org/tausigplan/updr-distrib/
src/master/

121

http://doi.acm.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2737924.2737958
http://dl.acm.org/citation.cfm?id=1946284.1946291
https://doi.org/10.1007/978-3-030-76384-8_9
https://github.com/tlaplus/tlapm/blob/master/examples/paxos/Paxos.tla
https://github.com/tlaplus/tlapm/blob/master/examples/paxos/Paxos.tla
www.SMT-LIB.org
https://arxiv.org/abs/2103.14831
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Voting.tla
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Voting.tla
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Paxos.tla
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Paxos.tla
https://lamport.azurewebsites.net/tla/paxos-algorithm.html?back-link=more-stuff.html
https://lamport.azurewebsites.net/tla/paxos-algorithm.html?back-link=more-stuff.html
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos
https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos
https://github.com/nano-o/ivy-proofs/blob/master/paxos/paxos.ivy
https://github.com/nano-o/ivy-proofs/blob/master/paxos/paxos.ivy
https://github.com/tlaplus/tlapm/blob/master/examples/ByzPaxos/VoteProof.tla
https://github.com/tlaplus/tlapm/blob/master/examples/ByzPaxos/VoteProof.tla
https://www.usenix.org/conference/nsdi21/presentation/hance
https://github.com/wilcoxjay/mypyvy/tree/pldi20-artifact
https://github.com/wilcoxjay/mypyvy/tree/pldi20-artifact
https://bitbucket.org/tausigplan/updr-distrib/src/master/
https://bitbucket.org/tausigplan/updr-distrib/src/master/

[53] A. Biere, N. Froleyks, and M. Preiner, “Hardware model checking
competition (HWMCC) 2020,” http://fmv.jku.at/hwmcc20.

[54] A. Goel and K. Sakallah, “Empirical evaluation of ic3-based model
checking techniques on verilog rtl designs,” in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2019, pp. 618–
621.

[55] A. Goel and K. Sakallah, “Model checking of verilog rtl using ic3 with
syntax-guided abstraction,” in NASA Formal Methods, J. M. Badger and
K. Y. Rozier, Eds. Cham: Springer International Publishing, 2019, pp.
166–185.

[56] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible paxos: Quorum
intersection revisited,” CoRR, vol. abs/1608.06696, 2016. [Online].
Available: http://arxiv.org/abs/1608.06696

[57] A. Goel and K. A. Sakallah, “IC3PO: IC3 for Proving Protocol Proper-
ties,” https://github.com/aman-goel/ic3po.

[58] “mypyvy on GitHub,” https://github.com/wilcoxjay/mypyvy.
[59] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci, and K. A.

Sakallah, “Towards automatic inference of inductive invariants,” in
Proceedings of the Workshop on Hot Topics in Operating Systems.
ACM, 2019, pp. 30–36.

[60] A. Goel and K. Sakallah, “AVR: Abstractly Verifying Reachability,”
http://www.github.com/aman-goel/avr.

[61] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and S. Shoham,
“Property-directed inference of universal invariants or proving their
absence,” J. ACM, vol. 64, no. 1, Mar. 2017. [Online]. Available:
https://doi.org/10.1145/3022187

[62] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[63] B. Dutertre, “Yices 2.2,” in Computer Aided Verification, A. Biere and
R. Bloem, Eds. Cham: Springer International Publishing, 2014, pp.
737–744.

[64] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in Proceedings of the
23rd International Conference on Computer Aided Verification (CAV
’11), ser. Lecture Notes in Computer Science, G. Gopalakrishnan
and S. Qadeer, Eds., vol. 6806. Springer, Jul. 2011, pp. 171–
177, snowbird, Utah. [Online]. Available: http://www.cs.stanford.edu/
∼barrett/pubs/BCD+11.pdf

[65] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How amazon web services uses formal methods,”
Communications of the ACM, vol. 58, no. 4, pp. 66–73, 2015.

[66] R. Beers, “Pre-RTL formal verification: an intel experience,” in Pro-
ceedings of the 45th annual Design Automation Conference, 2008, pp.
806–811.

[67] “The TLA+ Toolbox,” https://lamport.azurewebsites.net/tla/
toolbox.html.

[68] Y. Yu, P. Manolios, and L. Lamport, “Model checking tla+ specifica-
tions,” in Advanced Research Working Conference on Correct Hardware
Design and Verification Methods. Springer, 1999, pp. 54–66.

[69] K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz, “Verifying safety
properties with the tla+ proof system,” in International Joint Conference
on Automated Reasoning. Springer, 2010, pp. 142–148.

[70] C. Drăgoi, T. A. Henzinger, and D. Zufferey, “Psync: a partially
synchronous language for fault-tolerant distributed algorithms,” ACM
SIGPLAN Notices, vol. 51, no. 1, pp. 400–415, 2016.

[71] J. Hoenicke, R. Majumdar, and A. Podelski, “Thread modularity at many
levels: a pearl in compositional verification,” ACM SIGPLAN Notices,
vol. 52, no. 1, pp. 473–485, 2017.

[72] K. v. Gleissenthall, R. G. Kıcı, A. Bakst, D. Stefan, and R. Jhala, “Pre-
tend synchrony: synchronous verification of asynchronous distributed
programs,” Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 1–30, 2019.

[73] C. N. Ip and D. L. Dill, “Better verification through symmetry,” in
Computer Hardware Description Languages and their Applications.
Elsevier, 1993, pp. 97–111.

[74] C. Norris IP and D. L. Dill, “Better verification through symmetry,”
Formal Methods in System Design, vol. 9, no. 1, pp. 41–75, Aug 1996.
[Online]. Available: https://doi.org/10.1007/BF00625968

[75] E. M. Clarke, T. Filkorn, and S. Jha, “Exploiting symmetry in temporal
logic model checking,” in International Conference on Computer Aided
Verification. Springer, 1993, pp. 450–462.

[76] E. A. Emerson and K. S. Namjoshi, “Reasoning about rings,” in Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, 1995, pp. 85–94.

[77] E. A. Emerson and A. P. Sistla, “Symmetry and model checking,” Formal
methods in system design, vol. 9, no. 1-2, pp. 105–131, 1996.

[78] A. P. Sistla, V. Gyuris, and E. A. Emerson, “Smc: a symmetry-based
model checker for verification of safety and liveness properties,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 9, no. 2, pp. 133–166, 2000.

[79] K. R. Apt and D. Kozen, “Limits for automatic verification of finite-
state concurrent systems,” Inf. Process. Lett., vol. 22, no. 6, pp. 307–309,
1986.

[80] A. Gurfinkel, S. Shoham, and Y. Vizel, “Quantifiers on demand,” in
International Symposium on Automated Technology for Verification and
Analysis. Springer, 2018, pp. 248–266.

[81] Y. M. Feldman, J. R. Wilcox, S. Shoham, and M. Sagiv, “Inferring
inductive invariants from phase structures,” in International Conference
on Computer Aided Verification. Springer, 2019, pp. 405–425.

[82] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken, “First-order
quantified separators,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI 2020. New York, NY, USA: Association for Computing
Machinery, 2020, p. 703–717. [Online]. Available: https://doi.org/
10.1145/3385412.3386018

[83] S. Ranise and S. Ghilardi, “Backward reachability of array-based
systems by smt solving: Termination and invariant synthesis,” Logical
Methods in Computer Science, vol. 6, 2010.

[84] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaı̈di, “Cubicle:
A parallel smt-based model checker for parameterized systems,” in
International Conference on Computer Aided Verification. Springer,
2012, pp. 718–724.

[85] Y. Li, J. Pang, Y. Lv, D. Fan, S. Cao, and K. Duan, “Paraverifier:
An automatic framework for proving parameterized cache coherence
protocols,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2015, pp. 207–213.

[86] P. Abdulla, F. Haziza, and L. Holı́k, “Parameterized verification through
view abstraction,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 18, no. 5, pp. 495–516, 2016.

[87] M. Dooley and F. Somenzi, “Proving parameterized systems safe by gen-
eralizing clausal proofs of small instances,” in International Conference
on Computer Aided Verification. Springer, 2016, pp. 292–309.

[88] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
Guided Abstraction Refinement,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, E. Emerson and A. Sistla,
Eds. Springer Berlin / Heidelberg, 2000, vol. 1855, pp. 154–169,
10.1007/10722167 15. [Online]. Available: http://dx.doi.org/10.1007/
10722167 15

[89] ——, “Counterexample-Guided Abstraction Refinement for Symbolic
Model Checking,” J. ACM, vol. 50, pp. 752–794, September 2003.
[Online]. Available: http://doi.acm.org.proxy.lib.umich.edu/10.1145/
876638.876643

[90] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 { USENIX } Annual Technical Conference ({
USENIX } {ATC} 14), 2014, pp. 305–319.

[91] L. Lamport, “The TLA+ Video Course,” https://
lamport.azurewebsites.net/video/videos.html.

[92] M. A. Kuppe, L. Lamport, and D. Ricketts, “The tla+ toolbox,”
Electronic Proceedings in Theoretical Computer Science, vol. 310,
p. 50–62, Dec 2019. [Online]. Available: http://dx.doi.org/10.4204/
EPTCS.310.6

[93] “TLA+ on GitHub,” https://github.com/tlaplus.
[94] M. Gario and A. Micheli, “Pysmt: a solver-agnostic library for fast

prototyping of smt-based algorithms,” in SMT workshop, vol. 2015,
2015.

122

http://fmv.jku.at/hwmcc20
http://arxiv.org/abs/1608.06696
https://github.com/aman-goel/ic3po
https://github.com/wilcoxjay/mypyvy
http://www.github.com/aman-goel/avr
https://doi.org/10.1145/3022187
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://lamport.azurewebsites.net/tla/toolbox.html
https://lamport.azurewebsites.net/tla/toolbox.html
https://doi.org/10.1007/BF00625968
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3385412.3386018
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/10722167_15
http://doi.acm.org.proxy.lib.umich.edu/10.1145/876638.876643
http://doi.acm.org.proxy.lib.umich.edu/10.1145/876638.876643
https://lamport.azurewebsites.net/video/videos.html
https://lamport.azurewebsites.net/video/videos.html
http://dx.doi.org/10.4204/EPTCS.310.6
http://dx.doi.org/10.4204/EPTCS.310.6
https://github.com/tlaplus

Formal Methods in Computer-Aided Design 2021

Refinement-Based Verification of Device-to-Device
Information Flow

Ning Dong , Roberto Guanciale , Mads Dam
KTH Royal Institute of Technology

Abstract—I/O devices are the critical components that allow a
computing system to communicate with the external environment.
From the perspective of a device, interactions can be divided
into two parts, with the processor (mainly memory operations
by the driver) and through the communication medium with
external devices. In this paper, we present an abstract model of
I/O devices and their drivers to describe the expected results
of their execution, where the communication between devices
is made explicit and the device-to-device information flow is
analyzed. In order to handle general I/O functionalities, both
half-duplex (transmission and reception) and full-duplex (sending
and receiving simultaneously) data transmissions are considered.
We propose a refinement-based approach that concretizes a
correct-by-construction abstract model into an actual hardware
device and its driver. As an example, we formalize the Serial
Peripheral Interface (SPI) with a driver. In the HOL4 interactive
theorem prover, we verified the refinement between these models
by establishing a weak bisimulation. We show how this result can
be used to establish both functional correctness and information
flow security for both single devices and when devices are
connected in an end-to-end fashion.

Index Terms—Formal verification, Refinement, Serial inter-
face, Device driver, Interactive theorem prover, Information flow

I. INTRODUCTION

I/O devices are indispensable components for interactions
with the external environment (e.g., print documents, transmit
data, and receive user’s commands). Their proper operation
is critical for trustworthiness: Poorly written device drivers
are the predominant reason for operating system crashes [1]–
[3], and devices themselves can be vulnerable to side-channel
attacks [4], [5].

Existing work [6]–[10] mostly focuses on the verification of
functional properties of device drivers, by analyzing the inter-
actions between the controlling software and the I/O device.
In this paper, we present a verification approach that includes
inter-device communication. This allows to establish end-to-
end information flow properties, for example to guarantee the
absence of side channels.

Our strategy is based on refinement. First we define a formal
“concrete” model of a specific I/O device, which formalizes
the device behavior that is observable by the controlling
software and other external devices, and a model of its device
driver. The combination of these two models provides a soft-
ware/hardware subsystem that can interact with other software

This work has been supported by the TrustFull project funded by the
Swedish Foundation for Strategic Research. Ning Dong is supported by the
China Scholarship Council for his doctoral studies.

components and external devices. We then define an abstract
model of this subsystem, which is independent of the actual
device and provides a general blueprint of the subsystem’s
desired behavior and information flows. The goal is that this
abstract model should provide a functionality that is correct
and secure by construction, similar to ideal models used in
cryptography. Our refinement establishes a weak bisimulation
between the concrete and abstract systems.

There are three main benefits of this approach:
• Bisimulation allows to transfer both functional properties

and information flow properties (e.g., progress-sensitive
noninterference [11]) of the abstract model to the concrete
one.

• The same abstract model can be refined by models for
different I/O devices.

• The compositionality of bisimulation allows to preserve
the verified properties when we compose the subsystem
with other components: e.g., we can compose the sub-
system with the other software or subsystems to show
inter-host properties.

We choose the Serial Peripheral Interface (SPI) as the
demonstrating example, and we provide the formal model of
a specific device, the Texas Instruments McSPI device used
in the AM335x family of processors [12], and its driver. The
Serial Peripheral Interface is a synchronous protocol for serial
communication that is mainly used in embedded devices. The
protocol was first introduced in the late 1970s by Motorola
and has become popular because of its simplicity and speed
[13]. SPI devices support both half-duplex and full-duplex data
transmissions, where the latter is used to improve performance
by simultaneously sending and receiving data with external
devices. Although full-duplex is effective in practice, this is to
our knowledge the first example of verification in the literature
of a full-duplex communication device, cf. [6]–[10].

Fig. 1. The architecture of a random number generator

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 21 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-0629-4439
https://orcid.org/0000-0002-8069-6495
https://orcid.org/0000-0001-5432-6442
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_21
https://creativecommons.org/licenses/by/4.0/

We use the refinement to establish several interesting proper-
ties of the system: (1) The driver never leads the device to enter
a configuration that is undocumented by the hardware specifi-
cation; (2) Two interconnected SPI subsystems correctly and
securely exchange data when they are activated by their con-
trolling software; (3) Communications (driver-to-device and
device-to-device) provide progress-sensitive noninterference at
both concrete and abstract levels. The latter is established by
a notion of contextual indistinguishability derived from the
weak bisimulation.

To demonstrate our results, we developed the demonstrator
of Figure 1. We use a BeagleBone Black running the verified
Prosper hypervisor [14] together with an Arducam Shield Mini
2MP Plus camera to capture a physical source of randomness
for, in our case, the Verificatum e-voting system [15]. The
two devices communicate using SPI. The verification allowed
us to slim down the driver by removing some unnecessary
device register operations. The driver model is a direct manual
translation of the driver binary. Formalization of this step is
left as future work. In section X, we discuss our approach to
automate this step by establishing a bisimulation between the
driver model and its binary.

All proofs and models have been formalized in the HOL4
interactive theorem prover [16], which supports specification
and proof in classical higher-order logic. For full definitions
and proofs, we refer the reader to https://github.com/kth-step/
sw-spi-cam-model/releases/tag/fmcad.

II. BACKGROUND

In this work, we model one of the devices of BeagleBone
Black. This is a widely used development board with multiple
peripherals, including SPI, I2C, UART, etc. The board has
a TI AM335x processor [12] that uses the 32-bit ARMv7
instruction set architecture.

We focus on the SPI subsystem. Figure 2 shows the
basic components involved in the SPI protocol: hardware
connection, a controller, and a peripheral. In full-duplex mode,
SPI permits to transmit and receive data simultaneously on
separate data lines, SDI (Serial Data In) and SDO (Serial Data
Out). The SPI controller uses the serial clock (SCK) line to
maintain synchronization with the peripheral device. During
each SPI clock cycle, from the controller’s perspective, one bit
is transmitted from the controller to the peripheral on the SDO
line, while the peripheral sends one bit to the controller on the
SDI line. In half-duplex SPI transmissions, only one data line
is used depending on the controller settings. In transmission-
only mode, only the SDO data line is used, and vice versa for
reception-only. The controller uses the chip select (CS) line to
choose the desired communicating peripheral when multiple
peripherals are connected. In this paper, we consider only
the single peripheral case; extension to multiple peripherals
is straightforward.

Bit transmission on the SDO/SDI lines is governed by the
controller clock signal SCK, depending on configuration (clock
polarity and edge settings). The SPI protocol can transmit
messages of normally up to 16 bits, and delegates all error

Fig. 2. Basic SPI connection: a controller and peripheral

detection, flow control, and application adaptation to higher-
layer protocols. A driver can interact with the SPI hardware
by register polling, interrupts, and Direct Memory Access
(DMA). In this work, we rely on polling only. The following
registers of the BeagleBone SPI controller are the ones used
for polling:

1) The CP (controller/peripheral) bit of the MC (module
control) register configures the SPI hardware as a con-
troller (CP = 0) or a peripheral (CP = 1).

2) The channel configuration register (CCF) maintains the
configuration of the communication channel. For in-
stance, the TRM (transmit/receive modes) 2-bits of the
CCF register controls the half and full-duplex modes:
the values 0, 1, and 2 represent full-duplex, receive-only,
and transmit-only respectively. The WL (word length) 5-
bits configures the word length of the transmitted and
received data. In our case, the driver fixes the WL bits
to 7, which means the SPI word is 8-bits long, as all
models transmit and receive bytewise data.

3) The TX0 (transmit buffer) register contains the data to
transmit. The RX0 (receive buffer) register contains the
received message bits.

4) The CST (channel 0 status) register is a read-only
register and provides information about the status of
TX0 and RX0 registers. The TXS (transmitter register
status) bit of the CST register indicates if the TX0
register is empty: its value is 1 when the TX0 register is
empty and can be written with the next word to transmit,
and is 0 when the TX0 register is full and should not
be overwritten. Analogously, the RXS (receiver register
status) bit of the same register indicates the status of the
RX0 register: its value is 1 when the RX0 register is full
when data in the RX0 register is ready to be fetched and
0 when RX0 is empty.

III. ARCHITECTURAL MODEL

We model devices and drivers as labelled transition systems
(LTS) in the style of CCS [17], modelling the interaction
between software and driver, driver and device, as well as
between devices (through signals “on the wire”) by the si-
multaneous occurrence of an action α and its dual α, where
α, α ∈ ∆wr ∪ ∆rd ∪ ∆dev ∪ ∆dr. The top components of
Figure 3 summarize the interfaces among models. Here, ∆wr

is the set of write operations by the CPU, which is represented
by the action wt a v for writing a byte v to the register with
the memory-mapped address a, and the dual action wt a v

124

https://github.com/kth-step/sw-spi-cam-model/releases/tag/fmcad
https://github.com/kth-step/sw-spi-cam-model/releases/tag/fmcad

Fig. 3. The model architecture of SPI subsystem and abstract model

that is the corresponding action of the device. Similarly, ∆rd

is the set of read operations by the CPU which is represented
by the action rd a v for reading v from the register mapped
at address a, and the dual action rd a v. Representing this
interaction as a CCS-style synchronous rendez-vous allows to
reflect the potential side effects of register accesses on the
SPI hardware. In the terminology of π-calculus [18], we use
the “early” semantics. For instance, the reading of a memory-
mapped register by the CPU non-deterministically spawns one
transition for every possible resulting value.

The device model uses four additional types of action to
model device-to-device interactions on the wire. The con-
vention needs to take controller/peripheral asymmetry into
account. For transmission-only mode the controller uses tx v
to send a byte v over the wire, and in reception-only mode
tx v to receive a byte from the wire. For synchronous
transfer of the (controller) byte v and (peripheral) byte
v′, the controller uses xfer v v′. The peripheral uses the
dual actions, i.e., tx v (tx v) for reception (transmission)
and always xfer v v′ for synchronous transfer. Let ∆dev =
{tx v, tx v, xfer v v′, xfer v v′ | bytes v, v′}. Finally, the
driver uses four additional actions to model invocations of the
driver API by application SW and one additional action for
returning control and result to SW (collected by ∆dr).

The SPI subsystem consists of the SPI hardware running
in parallel with its device driver with internal communication
channels (e.g., rd a v), made inaccessible to the external
world. In CCS parlance this is (d|s) \ (∆wt ∪ ∆rd), where
d and s are states of the driver and hardware, respectively.

IV. SPI HARDWARE MODEL

The state of the SPI hardware is represented by a tuple
s = (regs , sreg , c). Here, regs is a function mapping addresses
of memory-mapped registers to words, and sreg represents the
internal hardware-controlled shift register for data transmission
and reception. The component c captures the control state
of the device and is used to track the progress of its four
functionalities: initialization, transmission, reception, and full-
duplex synchronous transfer.

With the exception of register RX0, register reads are side-
effect free and simply communicate the current value of the

register: i.e., for every state s, s
rd a s.regs(a)−−−−−−−−−→ s. Transitions

that model register writes (i.e., s wt a v−−−−→ s′) have side effects
and are modeled by early instantiating all possible received
values. Since many register updates are not atomic and require

Fig. 4. SPI hardware initialization automaton

some time to take effect (e.g., writing into the transmission
register does not automatically transfer the byte on the wire),
transitions s

wt a v−−−−→ s′ are usually followed by a silent
transition s′

τ−→ s′′, which is the system internal transition
that applies the visible side effects.

A special error state ⊥ is entered under the following
conditions:

1) The hardware receives read or write requests that violate
the SPI specification [12] (e.g., the RX0 register is read
when its value is indeterminate);

2) The hardware attempts an operation that is not allowed
by the specification (e.g., to update the shift register
before the initialization is completed);

3) An operation is not supported by the formal model, for
instance, accessing control registers beyond the single
channel modelled here.

The behavior of transitions that have side effects can be
represented by an automaton, which is split into four sub-
automata for the four device functionalities.

1) Initialization: Figure 4 shows the hardware initialization
automaton, where the black, red, and blue annotations describe
the label, enabling conditions and side effects of transitions
respectively. Note that we have omitted all transitions that
lead to ⊥ in Figure 4, which applies to the following figures
as well. The initialization is activated when the value 1 is
written to the SRST (software reset) bit of the SC (system
configuration) register. The τ transition exiting state reset
models the hardware completion of the reset operation and
sets the SS (system status) register to 1. This register can
be used by a driver to detect when the reset process is
finished. In state setregs , the device awaits the set up of
the hardware configuration, which is achieved by writing the
SC, MC, and CCF registers. This step is necessary before
starting data transmissions because the SPI hardware needs
basic parameters, like the CP bit of the MC register and the
WL bits of the CCF register. If one of these register updates sets
a value that does not conform with the specification (e.g., the
value of WL bits should no less than 3), then the model enters
the state ⊥. Once all required registers have been written, the
model enters the ready state rdy . Now the SPI can be utilized
for data transmissions or be reinitialized.

2) Synchronous transfer: Figure 5 depicts the synchronous
transfer sub-automaton. From the ready state, the synchronous

125

Fig. 5. SPI hardware synchronous transfer automaton

transfer is activated when the TRM bits of the CCF register
are set to 0. Then, updating CCT with 1 activates the state
xfer enb and clears the TXS bit. The following silent tran-
sition makes the side effect of enabling the channel visible:
the registers TX0 and RX0 are cleared, and the TXS and RXS
bits are set to 1 and 0 respectively. From xfer rdy , once the
message v to transmit is written to TX0, the TXS bit is cleared.
The following silent transition transfers the data from the TX0
register to the shift register and the TXS bit is set internally.
The device will now synchronize with an external SPI device,
simultaneously transmitting the shift register and receiving one
byte v, which is copied into the shift register. The following
silent transition makes the communication visible to the driver,
by copying the shift register to RX0 and setting the RXS bit.
Finally, from the state data rdy , the received data can be
fetched by reading the RX0 register. This also resets the RXS
bit. The transmission process is repeated until the channel is
disabled by writing 0 to the CCT register in the state xfer rdy
and then resetting the CCF register to its original value.

As mentioned before, from the diagram in Figure 5, we
have omitted all transitions that lead to ⊥. This happens, for
instance, if TX0 is written before the TXS bit is set or when
the model is in the state data rdy , or if RX0 is read while
RXS is not set.

3) Transmission and reception: The structure of the half-
duplex automata for transmission and reception is similar to
the synchronous transfer automaton. However, there are some
notable differences:

1) The transmission and reception automatons are activated
by setting the TRM bits to 1, resp. 2 for receive-only,
resp. transmit-only mode.

2) In transmission mode, the transmission automaton will
not receive data from the external device, which means
the RXS bit remains unchanged. The EOT (end-of-
transfer status) bit of the CST register is used to indicate
the end of transmission. The EOT bit is cleared when
sreg is updated with the output data, and it is set when
the data is transmitted to the external device. In this way,
a driver can check the EOT bit rather than the RXS bit
when applying the transmit-only mode.

3) After the channel is enabled for the receive-only mode in
the reception automaton, the hardware first receives the
external data and then uploads it to the RX0 register.
Therefore, unlike the synchronous transfer automaton,

Fig. 6. Driver initialization automaton

the TX0 register should not be used. A correct driver
should wait for the hardware until the received data is
ready through reading the RXS bit. The TXS and EOT
bits are not applied in the reception automaton.

V. SPI DRIVER MODEL

The driver model is a direct manual translation of the real
SPI driver binary and interacts with the hardware model using
operations on the device registers. The model exposes all
accesses to memory-mapped registers that are performed by
the actual driver.

The driver state is a tuple d = (b1, b2, idx , last read v , c).
Here, b1 is the transmit, and b2 the receive buffer. The variable
idx points to the next byte in b1 to be transmitted. The byte
last read v is the last returned value from the hardware, used
for the driver’s internal operations. The last component c is the
driver’s control state. We define sub-automata corresponding
to each of the four device functionalities.

1) Driver initialization: Figure 6 shows the driver initial-
ization automaton. The automaton is invoked by an external
call to the driver initialization function, represented here by
the action call init . In state init , the automaton writes the SC
register to reset the hardware. Then the automaton reads the
SS register and updates the d .last read v with the returned
value. In the state check stat , the automaton checks the
fetched value to determine if the hardware finished the reset
process. If the value is 1, the automaton enters the state
setting1 , otherwise it returns to the previous state and repeats
this loop. Finally, the automaton enters the ready state by
setting several registers in order (SC, MC, and CCF), indicating
that the driver model is prepared to process function calls for
data transmissions and reinitialization.

2) Driver synchronous transfer: The driver synchronous
transfer automaton is shown in Figure 7. With the driver in
state rdy , the automaton is invoked by action call xfer with
a buffer b1 copied to the driver’s internal output buffer (d.b1).
Before starting data transmission, the automaton first prepares
the necessary settings for the hardware by writing the CCF and
CCT registers. Notice that CCF is read prior to writing in order
to maintain other channel configurations (e.g., transmission
speed). At this point, the automaton loops reading the CST
register and checking the TXS bit, as long as the value of TXS
is 0. Once the value 1 is read, the automaton enters the state
write data . The following step writes the TX0 register with
one byte data that is sent to the external device, leading to the
state read rxs . Hereafter, the automaton repeatedly reads the

126

Fig. 7. Driver synchronous transfer automaton

CST register as before but checks the RXS bit rather than the
TXS bit, which indicates the hardware transmission is finished
and the received data is available in the RX0 register. If the
RXS bit is 1, then the automaton in the state read rx0 issues
a read request to the RX0 register. Next, the automaton can
fetch the received data and check if all bytes in the output
buffer are transmitted. If there are more bytes to transmit,
the automaton returns to the state read txs and repeats the
process. Otherwise, the automaton clears the CCT register and
the CCF register to their initial values. Finally, the driver
replies the received data (d.b2) to the program that invoked
the driver by using the label reply and returns to the ready
state.

The driver’s transmission and reception automata are similar
and left out.

VI. ABSTRACT SPI SUBSYSTEM SPECIFICATION

In this section, we present an abstract specification of the
combined device and driver subsystem. The model has the
same interface as the concrete SPI subsystem (see Figure 3 (b))
and describes the visible effects of the four functionalities (i.e.,
initialization, full-duplex synchronous transfer, transmission,
and reception) while ignoring all internal states of the SPI
hardware and the memory-mapped device registers. The state
of the abstract model is a pair, a = (t, c). The component
t = (b1, b2, idx , v) is the data state, which contains the output
and input buffers b1 and b2, the index of the next byte to be
transmitted idx , and the received byte v . The component c is
the control state of the abstract model.

The abstract initialization and synchronous transfer au-
tomata in Figure 8 are largely self-explanatory. The control
structure is the obvious one with bytes in the transmit buffer
a.t.b1 being sent one by one and received bytes getting stored
in a.t.b2. Note also that once in the ready state reinitialization
must remain enabled.

VII. REFINEMENT

The refinement is established by exhibiting a weak bisimu-
lation [19]. This approach is useful to allow multiple levels of
concretizations and abstractions through transitivity and com-
positionality (under parallel) of the corresponding equivalence.

Fig. 8. Abstract initialization and synchronous transfer automata

Below we use p
τ∗(a)−−−→1 p′ to indicate an arbitrary number

of τ transitions, optionally followed by an a transition.

Definition VII.1 (Weak bisimulation). Given two transition
systems (S,−→1) and (T,−→2), a binary relation R ⊂ S × T
is a weak simulation if for every (p, q) ∈ R:

• If p a−→1 p′ then q
τ⋆a−−→2 q′ for some q′ s.t. (p′, q′) ∈ R.

• If p τ−→1 p′ then q
τ⋆

−→2 q′ for some q′ s.t. (p′, q′) ∈ R.
The relation R is a weak bisimulation if both R and R−1 are
weak simulations. In the following, we write S ∼R T when R
is a weak bisimulation, and S ∼ T if there exists R such that
S ∼R T .

Our weak bisimulation definition is slightly different from
the standard definition that allows arbitrary τ transitions after
the observation a (e.g., q τ⋆aτ⋆

−−−−→2 q′). It is easy to show that
our definition entails the standard one.

Weak bisimulation is transitive and compositional:

Theorem VII.1. If S ∼R1 T and T ∼R2 U then S ∼R1◦R2 U ,
where p (R1 ◦R2) q ⇔ ∃r. p R1 r ∧ r R2 q

Theorem VII.2. If S ∼R T then S|U ∼R′ T |U , where
p|r R′ q|r ⇔ p R q.

A. An intermediate model

In order to show a weak bisimulation between the SPI
subsystem and the abstract model A, we introduce an inter-
mediate model B. The intermediate model, still abstracting
from memory operations, has the states b = (t, sreg , c) with
the control state c as in the abstract model, and with t of the
shape (b1, b2, idx), i.e., as t, but not including the received
byte v , which is instead represented in an explicit shift register
sreg , as in the SPI hardware model. Figure 9 shows on the
top the full-duplex synchronous transfer automaton of the B
model, and on the bottom demonstrates in part the weakly
bisimilar control states in blue of the SPI subsystem under
a relation R1. For example, the control state update of the
B model is weak bisimilar with two states of the SPI sub-
system, (check rxs|update) and (read rxs|update) (driver
and hardware’s control states respectively). The control state
(check rxs|update) is reached from the (read rxs|update)
by reading the CST register, which is omitted in the B model.
The τ transitions between two control states that are weakly
bisimilar with the same abstract state are also ignored. In
our example, if the RXS bit is 0 when the SPI hardware

127

Fig. 9. Model B synchronous transfer automaton and part weak bisimulation

is in the control state update , the driver will return to the
previous state by internally checking the fetched value. This
stepwise approach makes it much easier to build the desired
bisimulation relation.

B. Weak bisimilarity of the abstract and SPI models

The following two lemmas show the weak bisimilarity of
B and SPI models, A and B models respectively.

1) Weak bisimilarity of the intermediate and SPI models:
We define a relation R1 for the B and SPI models, which
matches their control states as indicated in Figure 9 and
requires the equivalence of data buffers and records, shift
registers, etc. In addition, the relation R1 requires that if b is
not in the error state then neither are the driver and hardware
models, and vice versa.

Lemma VII.1. (d|s) \ {∆wr ∪∆rd} ∼R1 b

Proof: The two models have the same four functionalities,
and the state transitions of the two models can be divided
into the corresponding four sub-automata. We comment on
the full-duplex synchronous transfer automaton, since the
transmission and reception are similar and the initialization
is straightforward. There are four kinds of transitions in this
automaton for both models: call xfer buf , xfer v v′, τ and
reply buf ′.

• call xfer buf : The main point is to guarantee that the
driver model performs the buffer copy and clears the
internal received buffer as prescribed by the intermediate
model.

• xfer v v′: When the two models are in the control state
exchange , xfer v v′ is used to exchange single bytes v,
v′ with the external device. In order to guarantee weak
bisimilarity, the driver must guarantee to write the value
v to the TX0 register.

• τ : The major concern is to show the equivalence of
data buffers, index and shift registers of the two models.
There are three critical requirements that the driver should
adhere to, otherwise the hardware model enters the error
state and the weak bisimulation condition is violated.

1) The driver should delay writing the TX0 register
until the TXS bit is 1, because the value 0 of TXS
bit means the TX0 register is not ready to be written.

Fig. 10. Weak bisimulation example of the A and B models

This also means the driver should not immediately
write the next byte after legally writing the TX0
register.

2) The driver should wait for the RXS bit to become
1 before reading the RX0 register. Otherwise, the
RX0 register may not contain the received data.

3) To avoid error situations, the driver should read the
CCF register before writing in order to keep the
necessary channel configurations unchanged, such
as WL bits.

• reply buf ′: When replying, the driver must ensure that
the data in buf ′ is identical to the bytes read from the
device.

2) Weak bisimilarity of the abstract and intermediate mod-
els: The relation R2 is defined in a similar way for the
abstract and intermediate models. Figure 10 shows the relation
for a part of the synchronous transfer automata of the two
models, where weakly bisimilar control states are coloured
identically. This relation basically matches control states under
the requirement that buffers and records remain unchanged.
The bisimulation condition forces input and output data of the
two models to be the same.

Lemma VII.2. b ∼R2 a

Proof: Same methodology as for Lemma VII.1.
From Theorem VII.1, Lemma VII.1 and Lemma VII.2, it

directly follows that there is a relation R3 for the abstract and
SPI models:

Theorem VII.3. (d|s) \ {∆wr ∪ ∆rd} ∼R3
a where R3 =

R1 ◦R2

VIII. SYSTEM PROPERTIES

In order to demonstrate the functional properties of the
system, we verify three theorems for the abstract model. These
theorems transfer easily to the concrete models using the
bisimulation results of Section VII. Additionally, we show that
the abstract (SPI subsystem) model never enters the error state.

The functional correctness of full-duplex synchronous trans-
fer should show that buffers are exchanged correctly between
two devices. To show this property, we define the process
G(a0, a1) = (a0|(a1{xfer v v′/xfer v′ v})) \ ∆dev , which
composes the abstract model of an SPI subsystem with a
“dual” paired device: if one controller device uses xfer v v′ to
transmit and receive data, the peripheral device uses the dual

128

Fig. 11. Composition of two devices

label to synchronize. Figure 11 depicts the composition of two
devices.

Theorem VIII.1 shows the functional correctness of the full-
duplex synchronous transfer. Notice that buffers must have the
same length, otherwise the larger buffer cannot be transmitted
in its entirety.

Theorem VIII.1. If 0 < |b0| = |b1|, (t0, rdy)
call xfer b0−−−−−−−→

a0, and (t1, rdy)
call xfer b1−−−−−−−→ a1, then ∃n a′0 a′1 a′′0 a′′1 . G(a0,

a1) (
τ−→)n G(a′0, a

′
1) ∧ a′0

reply b1−−−−−→ a′′0 ∧ a′1
reply b0−−−−−→ a′′1

Proof: We show that the first byte can be exchanged
correctly and then complete the proof by induction.

An analogous theorem shows the correctness of transmis-
sion/reception. In this case, l, the number of bytes to be
received, should be greater than or equal to the length of the
data buffer b0, otherwise extra data of the buffer will be lost.

Theorem VIII.2. If 0 < |b0| ≤ l, (t0, rdy)
call tx b0−−−−−−→ a0,

and (t1, rdy)
call rx l−−−−−→ a1, then ∃n a′0 a′1 a′′1 . G(a0, a1) (

τ−→
)n G(a′0, a

′
1) ∧ a′1

reply b0−−−−−→ a′′1

Finally, we show that the abstract model can never enter an
erroneous state. The bisimulation transfers this property to the
SPI hardware and the driver:

Theorem VIII.3. If c ̸= ⊥ and (t, c) → (t′, c′), then c′ ̸= ⊥

IX. INFORMATION FLOW SECURITY

Formal device and driver verification projects have gen-
erally focused on functional correctness [6]–[10]. However,
the device driver can possibly leak sensitive information and
therefore, for critical applications, information flow analysis
is needed. One of the main benefits of establishing weak
bisimulation instead of a simulation is that the former guar-
antees that two systems have the same information flows (up
to channels that are not modeled here, like timing). We show
that weak bisimilarity is sufficient to capture progress-sensitive
noninterference (PSNI), in the sense of Hedin and Sabelfeld
[11]. Let E be the set of transition labels of the system under
consideration. In our case, we may consider a system as in
Figure 11 with E = ∆dr ∪ ∆′

dr, where ∆dr and ∆′
dr are

distinct driver interfaces that are both high, since the interfaces
are used to communicate sensitive data. We assume a context
C that is allowed to interact with the system using any label
in E. This context is additionally equipped with a public,
distinguished interface of labels P that the context can use
to receive and produce publicly observable stimuli. Then, any
observations using labels in P that can cause the abstract and

concrete models to be distinguished must be due to C being
able to bring the two systems to states that C can distinguish.
Of course, if the two systems are weakly bisimilar, this is in
fact not possible, motivating the following definition.

Definition IX.1 (Contextual indistinguishability). Two states
s1 and s2 are contextually indistinguishable, s1 ≈ s2, if for
every context C, (s1 | C)\E ∼ (s2 | C)\E.

We use the term contextual indistinguishability instead of
contextual equivalence, as the former considers only contexts
of very specific shapes. It is not the case that contextual
indistinguishability implies contextual equivalence in general,
as the latter is a congruence, specifically under CCS sum,
which is former is not. However, weak bisimulation is a
congruence under parallel composition and restriction. Thus, if
s1 and s2 are weakly bisimilar, then they are also contextually
indistinguishable. The converse implication, of course, does
not hold. It also follows directly that ≈ is transitive.

The concept of contextual indistinguishability is related to
Focardi et al.’s nondeducibility of composition (NDC) [20],
which in our setting would be the condition (s | C)\H ∼ s\H
on s , where H represents the high labels and C is restricted to
interact using only H . However, it is not clear how to adapt the
NDC condition to our refinement-based setting, and also, in
contrast to contextual indistinguishability, the NDC condition
is not able to accommodate systems such as ours that obtain
low observability only through the use of the context.

For the definition of PSNI, a run π is any sequence of
transitions starting from an initial state. Such a run is complete
if it cannot be extended, i.e., it is either unbounded or ends
in a final state. For a run π, we let O(π) be the list of public
labels in π. We can now define PSNI adapted to our setting
of reactive systems as follows:

Definition IX.2 (PSNI). Two states s1 and s2 are PSNI, if for
every complete run π1 starting from s1, there exists a complete
run π2 starting from s2 such that O(π1) = O(π2), and vice
versa.

The definition can be seen to be equivalent to the one in
[11], or in terms of termination only, with the notion of weakly
termination-sensitive noninterference of [21] 1.

Contextual indistinguishability is a sufficient condition for
PSNI, because it guarantees the existence of traces for two
transition systems with the same observable labels.

Theorem IX.1. If s ≈ t, then s and t are PSNI.

If s and t are not PSNI, then we find a complete run π1 from
s such that all complete runs π2 starting from t have different
low observations from π1. Clearly, this allows a context c using
labels in L ∪H to steer s, possibly nondeterministically, into
a state s′ that cannot be matched by t, in the sense of weak
bisimilarity. Here L represents low labels.

1In fact, at our low level of modelling, with weak bisimulation, the
adversary does not have any model-external means (such as exhausting the
memory) at its disposal to prevent progress. Hence our account is also strongly
termination-sensitive in the terminology of [21].

129

Fig. 12. Information flow security example

We can also show that PSNI transfers under ≈:

Theorem IX.2. Suppose s ≈ s′ and s′ and t are PSNI. Then
s and t are PSNI.

We cannot in general replace weak bisimulation by the
corresponding notion of simulation in the definition of contex-
tual indistinguishability. A device driver may leak a sensitive
boolean s by either terminating execution conditionally on s
or by entering a diverging loop (e.g., while (s) {}), but still
be (weakly) simulated by the abstract model. In this case, an
external attacker may discover the value of the secret boolean
by observing the impossibility of transmission of a buffer.

Also, establishing bisimulation allows to compose the sys-
tem with non-deterministic components safely. For instance,
we can introduce a faulty communication medium (MED)
between two devices that can indeterminately deliver wrong
values. Figure 12 (A) represents the abstract model where
two abstract devices (our A model) are connected through
the given medium. As a result of the medium, the final output
of the abstract model is non-deterministically v or v′. The
compositionality of the weak bisimulation guarantees that
in the system where the two concrete SPI subsystems are
interconnected by the same medium (see Figure 12 (B)), the
final output is also non-deterministically v or v′: the system
has the same information flows. On the other hand, the system
(Figure 12 (C)), where the receiving device driver decides the
value according to a secret value, leaks a secret value via the
final output. This model cannot be validated using contextual
indistinguishability, but it can be when weak bisimulation is
replaced by a corresponding notion of weak simulation.

X. APPLICATION: SECURING A RANDOM NUMBER
GENERATOR USING SPI

As a demonstrating application, we developed a secure ran-
dom number generator (RNG) that relies on the SPI hardware
for sourcing entropy. The architecture of the system is depicted

in Figure 1. The blue components are the software components
not including the SPI driver(s). The SPI driver interacts with
the SPI hardware through operations on memory-mapped
registers (∆rd and ∆wr). We use a BeagleBone Black to
connect with an Arducam Shield Mini 2MP Plus camera
through SPI. The RNG captures images of the floating material
in a lava lamp. This has been shown to be a good source of
physical randomness [22], [23].

In order to prevent vulnerabilities of other software affecting
the RNG, we develop a bare-metal application that integrates
the SPI driver and that is executed on top of the Prosper
hypervisor [14]. This is a hypervisor for ARMv7-A processors
that provides provable separation between different guests and
can be configured to grant accesses to the SPI registers to a
dedicated partition only, running our driver. This allows an
untrusted partitioned Linux guest (such as in our case, the
Verificatum e-voting application [15]) to harden the built-in
Linux RNG with physical randomness through a hypercall
interface provided by the hypervisor with strong end-to-end
security guarantees. In this scenario, the SPI subsystem plays
an important role. Additionally to failing to function, a faulty
device driver may reduce the entropy of the system by simply
returning predictable buffers or it could communicate, directly
or indirectly, internal data to the external device. Formal
verification of the driver model allows us to rule out these
problems. Moreover, it helped to identify redundant operations
of the driver. For example, the initial version (extracted from
the u-boot library) sets up the WL bits of the CCF register
whenever the transmission functions are used, however it is
enough to set them once in the initialization function.

In order to guarantee the absence of vulnerabilities at
the code level, the refinement should be pushed down to
the binary code of the device driver. We extract the driver
model by manual inspection of the driver binary. This step
has yet to be formalized. We don’t view this as a major
weakness, however, given that the memory-mapped registers
use uncached memory only. We have experimented with the
usage of the binary analysis tool HolBA [24] for verifying
weak bisimilarity of the driver’s assembly code and the driver
model. The weak bisimulation relates fragments of binary
instructions (i.e., program counter addresses) to a state of the
driver’s automaton. Each fragment has a single entry point,
and either (1) consists of one single instruction accessing a
device register or (2) does not access the device. In the former
case, the instruction directly corresponds to a transition of
the driver model. In the latter case, the fragment corresponds
to a finite sequence of silent transitions. We then translate
the relation into pre/post conditions for the fragments, which
can be analyzed via HolBA weakest precondition tool and a
Satisfiability Modulo Theories (SMT) solver.

XI. RELATED WORK

Some previous work has applied the bisimulation methodol-
ogy for verification in a theorem prover context [25], [26]. For
example, Röckl et al. [25] verified the correctness of several
communication protocols by proving weak bisimilarity. We

130

prove the equivalence of the abstract and SPI models using
the same approach.

Several projects of formal verification of low-level software
have focused on the operating system (OS), like seL4 [27]
and CertiKOS [28]. However, the functional correctness of
device drivers usually is not considered. For example, the
seL4 microkernel [27] only guarantees the isolation of device
drivers located in the user space, where the correctness of
drivers is ignored. CertiKOS [28] initially did not verify
the drivers as well. Based on CertiKOS, Chen et al. [10]
developed a verified interruptible operating system with device
drivers. They proposed a general device model with several
instantiations and a realistic formal model of device interrupts.
Although their device model has similarities with the one
presented here, there are notable differences:

1) Their device model only contains events that can be
observed by the CPU and ignores events that the external
environments can observe. Our models consider device-
to-device operations and properties (e.g., data transmis-
sions);

2) Their device model covers only half-duplex communi-
cation (e.g., sending and receiving data over the UART
port), while we also model full-duplex data transmission
in both the abstract and concrete models;

3) In their case, device drivers are implemented inside the
OS kernel and each device driver is treated as running
independently on its own logical CPU. This requires a
different isolation property of the OS kernel to guarantee
the separation between different devices and the kernel,
which is not provided by most OS kernels. Here, we
describe the device driver as a normal process that can
be embedded either inside or outside of the OS kernel.

Other previous work on verifying the functional correctness
of device drivers studied various I/O devices, like UART
[7], hard disk [8], and USB OHCI [6]. In their work, there
is no abstract I/O device model to represent the general
behaviours of different I/O devices, and it is too restrictive
to extend their work on other hardware devices. Duan et al.
[9] proposed an abstract device model that is plugged into the
formal model of ARMv4 instruction set architecture and later
extended it to support interrupts with respect to the ARMv7
architecture [29]. However, the device state is merged into
the machine state in their model, which requires to carefully
handle the interleavings between the execution of the device
and processor. Because of the complexity, it is difficult to apply
their model to verify I/O devices.

XII. CONCLUSION AND FUTURE WORK

We modeled and verified an SPI subsystem that consists of
the device hardware and its driver. The verification establishes
a weak bisimulation between this model and an abstract spec-
ification, which is used to transfer functional and information
flow properties of the abstract model to the concrete one.

Our methodology can be reused to verify other SPI sub-
systems by establishing a refinement with the abstract model

presented in this paper. There are some valuable lessons we
have learned from this project:

1) Reading the hardware technical reference manual is not
sufficient to understand the usage of real hardware. For
instance, the order of some operations is unclear. Since
the concrete hardware design is usually unavailable, lots
of experiments are needed to properly account for the
actual functionalities of different I/O registers.

2) The abstract model must capture the intended informa-
tion channels. For example, our initial driver model did
not have the reply label. It prevents the indented leakage
of the received bytes to the software invoking the driver
and makes it impossible to establish a refinement with
the actual implementation.

3) It is usually inconvenient to build an abstraction of the
device without taking the driver into account. Indeed the
very purpose of the driver is to provide a tractable and
efficient abstraction of the generally highly configurable
hardware. This turns out to be useful not only for
programming but also for verification.

In order to complete the binary verification of the device
driver, we plan to follow the strategy of Section X, which
establishes a bisimulation between the SPI driver model and
its binary code using contract-based verification of the HolBA
platform [24]. Moreover, we are planning to address two
limitations of the current models: The absence of DMA and
interrupts. While these can be encoded via explicit synchro-
nizations processor/device-memory or processor-device, we
think that explicit treatment of these features can simplify
models and proofs [30]. Currently, our models are shallowly
embedded in HOL4. This allows us to partially automate our
proof via the HOL4 standard tactics. For example, large parts
of the proof search are fully automated using METIS TAC.
Our work can give insight for deeply embedding the models
in HOL4. This can provide a general framework for modeling
multiple types of I/O devices and increase automation by
implementing decision procedures for checking bisimilarity.

Finally, our information flow analysis does not deal properly
with side channels. How to do this is an open challenge,
even for uncached memory, as here. For instance, precisely
modelling timing is infeasible for real systems since we do
not have accurate timing information of the underlying hard-
ware. A more successful strategy consists in defining abstract
leakage models in the form of observations (e.g., accessed
memory addresses affect caches that in turn affect the timing)
and preventing timing side channels by proving observational
equivalence. We are currently working on validating [31] such
models and defining methodologies to handle different side
channels at each refinement step [32].

REFERENCES

[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, 2001, pp. 73–88.

[2] A. Ganapathi, V. Ganapathi, and D. A. Patterson, “Windows XP kernel
crash analysis.” in LISA, vol. 6, 2006, pp. 49–159.

131

[3] V. Orgovan and M. Tricker, “An introduction to driver quality,” in
Microsoft Windows Hardware Engineering Conf, 2003.

[4] J.-M. Schmidt, T. Plos, M. Kirschbaum, M. Hutter, M. Medwed, and
C. Herbst, “Side-channel leakage across borders,” in International Con-
ference on Smart Card Research and Advanced Applications. Springer,
2010, pp. 36–48.

[5] M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting unprotected I/O
operations in AMD’s secure encrypted virtualization,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1257–1272.

[6] D. Monniaux, “Verification of device drivers and intelligent controllers:
a case study,” in Proceedings of the 7th ACM & IEEE international
conference on Embedded software, 2007, pp. 30–36.

[7] E. Alkassar, M. Hillebrand, S. Knapp, R. Rusev, and S. Tverdyshev,
“Formal device and programming model for a serial interface,” in Pro-
ceedings, 4th International Verification Workshop (VERIFY), Bremen,
Germany, vol. 259, 2007, pp. 4–20.

[8] E. Alkassar and M. A. Hillebrand, “Formal functional verification of
device drivers,” in Working Conference on Verified Software: Theories,
Tools, and Experiments. Springer, 2008, pp. 225–239.

[9] J. Duan and J. Regehr, “Correctness proofs for device drivers in
embedded systems.” in SSV, 2010.

[10] H. Chen, X. Wu, Z. Shao, J. Lockerman, and R. Gu, “Toward compo-
sitional verification of interruptible OS kernels and device drivers,” in
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2016, pp. 431–447.

[11] D. Hedin and A. Sabelfeld, “A perspective on information-flow control,”
in Software safety and security. IOS Press, 2012, pp. 319–347.

[12] AM335x and AMIC110 Sitara Processors Technical Reference Manual.
Texas Instruments, 2019. [Online]. Available: https://www.ti.com/lit/ug/
spruh73q/spruh73q.pdf

[13] S. Choudhury, G. Singh, and R. Mehra, “Design and verification
serial peripheral interface (SPI) protocol for low power applications,”
International Journal of Innovative Research in Science, Engineering
and Tecgnology, pp. 16 750–16 758, 2014.

[14] R. Guanciale, H. Nemati, M. Dam, and C. Baumann, “Provably secure
memory isolation for Linux on ARM,” Journal of Computer Security,
vol. 24, no. 6, pp. 793–837, 2016.

[15] “Open Verificatum project.” [Online]. Available: http://verificatum.org/
[16] K. Slind and M. Norrish, “A brief overview of HOL4,” in International

Conference on Theorem Proving in Higher Order Logics. Springer,
2008, pp. 28–32.

[17] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes
in Computer Science. Springer, 1980, vol. 92. [Online]. Available:
https://doi.org/10.1007/3-540-10235-3

[18] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes,
I,” Inf. Comput., vol. 100, no. 1, pp. 1–40, 1992. [Online]. Available:
https://doi.org/10.1016/0890-5401(92)90008-4

[19] R. Milner, Communication and concurrency, ser. PHI Series in computer
science. Prentice Hall, 1989.

[20] R. Focardi, R. Gorrieri, and F. Martinelli, “Non interference for the
analysis of cryptographic protocols,” in Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000, ser. Lecture
Notes in Computer Science, vol. 1853. Springer, 2000, pp. 354–372.

[21] V. Kashyap, B. Wiedermann, and B. Hardekopf, “Timing-and
termination-sensitive secure information flow: Exploring a new ap-
proach,” in 2011 IEEE Symposium on Security and Privacy. IEEE,
2011, pp. 413–428.

[22] L. C. Noll, R. G. Mende, and S. Sisodiya, “Method for seeding a pseudo-
random number generator with a cryptographic hash of a digitization of
a chaotic system,” Mar. 24 1998, US Patent 5,732,138.

[23] J. Liebow-Feeser, “Lavarand in production: The nitty-gritty technical
details,” Apr 2021. [Online]. Available: https://blog.cloudflare.com/
lavarand-in-production-the-nitty-gritty-technical-details/

[24] A. Lindner, R. Guanciale, and R. Metere, “Trabin: trustworthy analyses
of binaries,” Science of Computer Programming, vol. 174, pp. 72–89,
2019.

[25] C. Röckl and J. Esparza, “Proof-checking protocols using bisimulations,”
in International Conference on Concurrency Theory. Springer, 1999,
pp. 525–540.

[26] P. Manolios, K. Namjoshi, and R. Sumners, “Linking theorem proving
and model-checking with well-founded bisimulation,” in International
Conference on Computer Aided Verification. Springer, 1999, pp. 369–
379.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “seL4:
Formal verification of an OS kernel,” in Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, 2009, pp.
207–220.

[28] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng,
H. Zhang, and Y. Guo, “Deep specifications and certified abstraction
layers,” ACM SIGPLAN Notices, vol. 50, no. 1, pp. 595–608, 2015.

[29] J. Duan, Formal verification of device drivers in embedded systems. The
University of Utah, 2013.

[30] O. Schwarz and M. Dam, “Formal verification of secure user mode de-
vice execution with DMA,” in Haifa Verification Conference. Springer,
2014, pp. 236–251.

[31] H. Nemati, P. Buiras, A. Lindner, R. Guanciale, and S. Jacobs, “Val-
idation of abstract side-channel models for computer architectures,” in
International Conference on Computer Aided Verification. Springer,
2020, pp. 225–248.

[32] C. Baumann, M. Dam, R. Guanciale, and H. Nemati, “On composi-
tional information flow aware refinement,” in IEEE Computer Security
Foundations Symposium, 2021.

132

https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
http://verificatum.org/
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/lavarand-in-production-the-nitty-gritty-technical-details/

Formal Methods in Computer-Aided Design 2021

Celestial: A Smart Contracts Verification Framework
Samvid Dharanikota*

Microsoft Research India
Bangalore, India

samvid.dharani@gmail.com

Suvam Mukherjee*

Microsoft Corporation
Redmond, USA

sumukherjee@microsoft.com

Chandrika Bhardwaj#
Goldman Sachs
Bangalore, India

chandrika.bhardwaj@gs.com

Aseem Rastogi
Microsoft Research India

Bangalore, India
aseemr@microsoft.com

Akash Lal
Microsoft Research India

Bangalore, India
akashl@microsoft.com

Abstract—We present CELESTIAL, a framework for formally
verifying smart contracts written in the Solidity language for
the Ethereum blockchain. CELESTIAL allows programmers to
write expressive functional specifications for their contracts. It
translates the contracts and the specifications to F⋆ to formally
verify, against an F⋆ model of the blockchain semantics, that
the contracts meet their specifications. Once the verification
succeeds, CELESTIAL performs an erasure of the specifications to
generate Solidity code for execution on the Ethereum blockchain.
We use CELESTIAL to verify several real-world smart contracts
from different application domains. Our experience shows that
CELESTIAL is a valuable tool for writing high-assurance smart
contracts.

Index Terms—Smart contracts, Blockchain, Reliability, Testing

I. INTRODUCTION

Smart contracts are programs that enforce agreements be-
tween parties transacting over a blockchain. Till date, more
than a million smart contracts have been deployed on the
Ethereum blockchain with applications such as digital wallets,
tokens, auctions, and games, holding digital assests worth over
$200 billion [19].

The most popular language for smart contract develop-
ment is Solidity [20]. Solidity contracts are compiled to
Ethereum Virtual Machine (EVM) bytecode for execution
on the blockchain. Unfortunately, Solidity has obscure op-
erational semantics understood only partially by most pro-
grammers. This often leaves vulnerabilities in the smart con-
tracts. Repeated high-profile attacks (e.g. TheDAO [17] and
ParityWallet [18] attacks) orchestrated around these vul-
nerabilities have resulted in financial losses running into mil-
lions of dollars. Worse, smart contracts are “burned” into the
blockchain on deployment, which does not allow subsequent
patches to fix the vulnerabilities. As a result, it is necessary
to ensure correctness at the time of deployment.

Smart contracts are relatively small pieces of code with
simple data-structures [29]. All these qualities combined—
their critical nature, immutability after deployment, and small

*Equal contribution
#Work done during an internship at Microsoft Research India.

size—make smart contracts a good fit for formal verification.
The challenge, however, is to lower the formal verification
entry barrier for smart contracts developers.

Towards that goal, we present CELESTIAL§, an open-source
framework for developing formally verified smart contracts.
CELESTIAL allows programmers to annotate their Solidity
contracts with Hoare-style specifications [32] capturing func-
tional correctness properties. The contracts and the specifica-
tions are translated to F⋆ [45], which in an automated manner,
proves that the contracts meet their specifications. Once F⋆

returns a verified verdict, CELESTIAL erases the specifications
from the input contracts, and emits Solidity code that can be
deployed and executed on the Ethereum blockchain. By using
Solidity as the source language, and providing fully-automated
verification, CELESTIAL ensures a low entry barrier for smart
contract developers.

F⋆ is a proof assistant and program verifier with a fully
dependent type system. We find it suitable for smart contract
verification for several reasons. First, it provides SMT-based
automation which, as we show empirically, suffices for fully-
automated verification of real-world smart contracts. Second,
F⋆ supports user-defined effects, allowing us to work in a
custom state and exception effect [21] modeling the blockchain
semantics. Finally, F⋆ supports expressive higher-order speci-
fications, though we use its first-order subset with quantifiers
and arithmetic (adding our own libraries for arrays and maps).

We evaluate CELESTIAL by verifying several real-world
Solidity smart contracts that together currently hold millions
of dollars of financial assets. The contracts span different ap-
plication domains including tokens, wallets, and a governance
protocol for Azure Blockchain. We studied the contracts (and
in some cases, discussed with the developers) to design their
specifications and formally verified that the contracts meet
those specifications. In the process, we uncovered bugs in
some cases (e.g. missing overflow checks), manifesting as
F⋆ verification failure. Once we fixed those bugs (e.g. by
adding runtime checks), F⋆ was able to successfully verify
the contracts in all the cases. The overhead of any additional

§https://github.com/microsoft/verisol/tree/celestial/Celestial

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 22 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://github.com/microsoft/verisol/tree/celestial/Celestial
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://creativecommons.org/licenses/by/4.0/

Fig. 1: Architecture of the CELESTIAL framework.

Fig. 2: A simple blockchain based e-commerce application.

instrumentation, which was required for correctness, was at
most 20% in terms of gas consumption.

Summarizing our main contributions:
1) We present CELESTIAL, a framework for developing

verified Solidity smart contracts. CELESTIAL allows an-
notatation of Solidity contracts with specifications, and
verifies them, in an automated manner, using F⋆.

2) We evaluate CELESTIAL by verifying functional correct-
ness of several real-world, high-valued smart contracts.

II. OVERVIEW

The high-level architecture of CELESTIAL is outlined in
Figure 1. A CELESTIAL project is a set of contracts (e.g. C1,
C2, etc. in the figure) written in Solidity. These contracts may
be annotated with functional specifications encoding properties
of interest. CELESTIAL provides two kinds of translations
for these contracts. The first one translates the contracts and
their specifications to F⋆ [45], a dependently-typed functional
programming language designed for program verification. F⋆,
using a model of the blockchain semantics (Section III),
verifies that the contracts meet their specifications. A second
translation simply erases all specifications to emit vanilla
Solidity contracts. In this section, we use a simple applica-
tion (Section II-A) to describe the specification language of
CELESTIAL (Section II-B). We discuss the verification scope
and limitations of the framework later in Section II-C.

A. SIMPLEMART

Consider a simple blockchain-based e-commerce applica-
tion SIMPLEMART from Figure 2. The application contains
a SimpleMarket contract (Listing 1) which interacts with
one or more buyers and sellers that may either be smart
contracts themselves or externally-owned accounts. A seller
registers an item for sale by invoking the sell method of
SimpleMarket, with the price as argument. In response,
SimpleMarket creates an instance of the Item contract,
which holds metadata about the new item available for sale. It

1 contract SimpleMarket {
2 mapping(address => uint) sellerCredits;
3 mapping(address => Item) itemsToSell;
4 uint totalCredits;
5 event eNewItem (address , address);
6 event eItemSold (address , address);
7
8 function sell (uint price) public
9 returns (address itemId) {

10 Item item = new Item(address(this),msg.sender ,price);
11 itemId = address(item);
12 itemsToSell[address(item)] = item;
13 emit eNewItem(msg.sender , itemId);
14 }
15 function buy (address itemId) public payable
16 returns (address seller) {
17 Item item = itemsToSell[itemId];
18 if (item == null) { revert ("No such item"); }
19 if (msg.value != item.getPrice ())
20 { revert ("Incorrect price"); }
21 seller = item.getSeller ();
22 totalCredits = safe_add (totalCredits , msg.value);
23 sellerCredits[seller] =
24 sellerCredits[seller] + msg.value;
25 delete (itemsToSell[itemId]);
26 emit eItemSold(msg.sender , itemId);
27 }
28 function withdraw (uint amount) public {
29 if (sellerCredits[msg.sender] >= amount) {
30 msg.sender.transfer(amount);
31 sellerCredits[msg.sender] -= amount;
32 totalCredits -= amount;
33 } else { revert ("Insufficient balance"); }
34 }
35 }

Listing 1: The SimpleMarket Solidity contract

also emits an event (eNewItem) informing the seller about
the idenity (in this case, the address) of the new item. A
buyer may purchase an item by invoking the buy method
of SimpleMarket, passing the item address as an argument,
along with the ether amount matching the item price. If the
item has not been sold already, SimpleMarket records the
sale in its state, which involves adding the ether towards the
total sales proceeds for the respective seller and marking the
item as being sold. The seller may then withdraw the ether
from SimpleMarket via the withdraw method.

Functional correctness of the buy method requires that if a
buyer initiates buy with a valid item and price, then the item is
sold and the seller sales proceeds are credited, leaving all other
sellers’ proceeds unchanged. In addition, we would also like
to verify that the call does not result in arithmetic overflow of
the seller’s proceeds because this can result in honest sellers
losing their credits.

B. Specification Language

Listing 2 shows excerpts of the CELESTIAL versions of
Item and SimpleMarket contracts. The general form of a
CELESTIAL contract is shown in Listing 3. These annota-
tions are Hoare-style specifications, similar to languages like
Dafny [36]. The specifications are written over the contract
fields, function arguments, as well as implicit variables such
as balance (the contract balance), value (ether value in a
payable method), and log (the transaction event log, formally
modeled as a list of events). Our specifications cover the full
power of first-order reasoning with quantifiers, along with

134

1 contract Item {
2 address seller; uint price; address market;
3 function getSeller () returns (address s)
4 modifies []
5 post (s == seller)
6 { return seller; }
7 // other methods
8 }
9 contract SimpleMarketplace {

10 // contract fields
11 ...
12 invariant balanceAndSellerCredits {
13 balance == totalCredits &&
14 totalCredits >= sum_mapping (sellerCredits)
15 }
16 function buy (address itemId) public
17 returns (address seller)
18 modifies [sellerCredits , totalCredits , itemsToSell ,

log]
19 tx_reverts !(itemId in itemsToSell)
20 || msg.value != itemsToSell[itemId].price
21 || msg.value + totalCredits > uint_max
22 post (!(itemId in itemsToSell)
23 && sellerCredits == old(sellerCredits)[
24 seller => old(sellerCredits)[seller] + msg.

value]
25 && log == (eItemSold , msg.sender , itemId)::old(

log))
26 { // implementation of the buy function }
27 }

Listing 2: Item and SimpleMarket CELESTIAL contracts

1 contract A {
2 uint x, y; // fields , as usual
3
4 invariant { ϕ1 } // contract -level invariant
5
6 function foo () public
7 modifies [x] // fields that are modified
8 tx_reverts ϕ2 // revert condition (under -specified)
9 pre ϕ3 // precondition

10 post ϕ4 // postcondition
11 { s } // Solidity implementation
12 }

Listing 3: A representative CELESTIAL contract

theories for arithmetic (both modular and non-modular), arrays
and maps. We provide programmers the ability to write pure
functions that can be invoked only from specifications, not
Solidity methods, to enable code reuse. We now explain the
individual elements of CELESTIAL specifications.

a) Contract invariant: Contract invariant is a predicate
on the state of the contract (i.e. its field values) that is expected
to be valid at the boundaries of its public methods. When
verifying a contract, the invariant is added to the pre- and
postconditions of every public method. All contract fields in a
CELESTIAL contract are necessarily private (see Section II-C).
Additionally, CELESTIAL ensures that all its contracts are
external callback free (Section IV) to disallow re-entrancy
based attacks from external contracts. Hence, it is safe to
assume the invariant at the beginning of public methods.
Constructors are special; they only guarantee invariant in
their postcondition but don’t assume it as a precondition. For
example, the invariant on line 12 in Listing 2 specifies that the
contract’s balance equals or exceeds the total proceeds from
sales which has not been already claimed by the respective
sellers (sum mapping is a library function for summing values

in an int-valued map).
b) Field updates: The modifies clause specifies con-

tract fields that a method can update. The getSeller method
in Item has an empty modifies clause (line 4 in Listing 2),
which specifies that the function may read the state of the
contract, but cannot make any updates.

c) Pre- and postconditions: Preconditions (pre) are
properties that hold at the beginning of a method execution.
Public methods must have a trivial precondition true because
they can be invoked by the untrusted external world. Post-
conditions (post) are properties that hold when the method
terminates successfully (without reverting). The postconditions
may refer to field values at the beginning of the method using
the old keyword. For example, the condition in line 23 in
Listing 2 specifies that the final sellerCredits is the original
sellerCredits map with only the seller key updated.

d) Revert conditions: tx reverts under-specifies the
conditions under which a method reverts, i.e. if tx reverts

holds at the beginning of a method, the method will definitely
revert. For example, the buy function definitely reverts if the
buyer invokes it with an item which is not available for sale,
or the buyer provides ether which does not match the item
price, or the totalCredits overflows. This is captured in
the specification in line 19. Not specifying tx reverts is
equivalent to tx reverts(false).

e) Safe Arithmetic: In Solidity, arithmetic operations
may silently over- or underflow, whereas division by 0 results
in reverts. CELESTIAL, when translating to F⋆, adds assertions
before every arithmetic operation which check for no over-
and underflows, and division by 0. The programmer must
add specifications or runtime checks to allow the verifier to
prove the safety of the arithmetic operations. CELESTIAL also
provides a safe arithmetic library with built-in runtime checks
(safe add operation in line 22 of Listing 1).

To summarize, we have expressed the following properties
of the buy method. The revert condition specifies that the
method reverts when the item is not present or the ether sent
by the buyer does not match the item price. The method also
reverts when totalCredits overflows. Since an invariant of
the contract is that totalCredits is greater than the sum
of pending credits of all the sellers, when totalCredits

does not overflow, individual seller credits also don’t overflow.
Finally, line 23 in Listing 2 specifies that only the item seller’s
credits are incremented by price of the item, while credits for
all other sellers remain same.

C. Verification Scope and Limitations

a) Threat model: All contracts and user accounts that
are not part of a CELESTIAL project P are treated as the
external world for P. The external world is free to initiate
arbitrary transactions by calling public methods of P with
arbitrary arguments. The external world, however, cannot
directly access the private fields and methods of P.

b) Trusted Computing Base: The TCB of CELESTIAL
includes the CELESTIAL compiler consisting of the two syntax
translations, the F⋆ model of the blockchain (Section III), the

135

F⋆ toolchain itself, and the Solidity compiler (these compo-
nents are colored blue in Figure 1). With these components in
our TCB, formal verification of smart contracts in CELESTIAL
guarantees that when the compiled Solidity contracts are run
on the blockchain, they behave as per their specifications. We
leave it as future work to minimize trust on our F⋆ blockchain
semantics (say, by testing it against a Solidity test suite).

c) Solidity Language Restrictions: CELESTIAL does not
support delegatecall which is used to call functions from
other contracts in a way that the callee may directly change
the state of the calling address, thereby breaking the function
call abstraction. Since this is insecure (for example, the
ParityWallet [18] attack exploited it), the secure develop-
ment recommendations suggest against its use [3]. CELESTIAL
also does not support embedding EVM assembly. To check
the prevalence of these features in real-world contracts, we
performed an empirical study. In summary, we found that not
more than 45% of highly used and highly valued contracts use
these features, and even then in controlled manner where their
usage is restricted to a small set of libraries.

d) Modeling Limitations: Our F⋆ semantics does not
model gas consumption. As a result, CELESTIAL contracts
may revert due to out-of-gas exceptions. The model also does
not cover low-level failures such callstack depth overflow.
However, these failures can only cause the transaction to revert
and therefore do not compromise the verification guarantees.
Since we do not model all runtime exceptions, this is one of
the reasons that the tx reverts condition for a function is
an under-specification for when the function may revert. We
also do not precisely model block-level parameters such as
timestamp.

III. VERIFYING CELESTIAL CONTRACTS IN F⋆

CELESTIAL compiles the contracts and their specifications
to F⋆, which are then verified against a trusted F⋆ library
modeling the blockchain semantics. The library consists of
the definition of the blockchain state datatype and a custom
F⋆ effect that encapsulates this state behind the abstraction of
an effect layer. We have carefully designed this abstraction to
ensure that the verification is scalable and fully automated.
The contracts call the stateful API exported by the library and
specify precise changes to the blockchain state in their pre-
and postconditions, that are verified by F⋆.

A. Blockchain state

We model the blockchain state as consisting of 3 main
elements: (a) state of all the contracts (i.e. values of the
contract fields), (b) contract balances, and (c) an event log.
Since in CELESTIAL all contract fields are private, a contract
can directly read or write only its own fields, while interacting
with the other contracts through method calls. The event
log models the per-transaction event log of the Ethereum
blockchain; contracts can use the Solidity emit API to output
events to this log.

a) Contracts state: We model the state of all the con-
tracts in the blockchain as a heterogeneous map from addresses
to records, where the record corresponding to a contract
instance contains the values of all its fields. For the Item

contract from Listing 2, the record type would be:
type item t = { market : address; seller : address; price : uint }

Below is the API provided by the contract map (# parame-
ters are implicit parameters inferred by F⋆ at the call sites):
type address = uint (* 256 bit unsigned integers *)
val contract (a:Type) : Type (* a is the record of contract fields *)
val cmap : Type (* the heterogeneous contracts map *)

val live (#a:Type) (c:contract a) (m:cmap) : prop
val sel (#a:Type) (c:contract a) (m:cmap{live c m}) : a
val create (#a:Type) (m:cmap) (x:a) : contract a & cmap
val upd (#a:Type) (c:contract a) (m:cmap{live c m}) (x:a) : cmap
val addr of (#a:Type) (c:contract a) : address

The API defines the type address as 256 bit unsigned
integers. The contract type is parametric over the record type
a that contains all the contract fields; for the Item contract,
type a will be instantiated with item t. Type cmap is the
heterogeneous contracts map type.

The sel function returns the a-typed record value mapped
to a contract instance in the map. The API requires that
the contract be live in the map (type m:cmap{live c m} is a
refinement type that requires that the m argument at the
call sites satisfies live c m). The liveness requirement basically
says that the contract must be present in the contracts map,
preventing sel to be called with arbitrary addresses. The create
function returns the freshly created contract and the new
cmap that includes a mapping for the new contract, internally
assigning a fresh address to the new contract. The API is fully
implemented in F⋆, we elide the implementation details for
space reasons; all of our development is available online at
https://github.com/microsoft/verisol/tree/celestial/Celestial.

b) Contracts balance: We model the contracts balance
using a map from addresses to uint (the type of 256-bits
unsigned integers). An alternative would have been to add
balance as another one of the contract fields (thus maintaining
them as part of the contracts map), but a separate map allows
us to specify the balances for external accounts, that do not
have an entry in the contracts map.

c) Event log: The event log is a list of events, where each
event records the destination address, a string for event type,
and a payload (a:Type & a is a dependent tuple that packages
a Type and a value of that type):
type event = { to : address; ev typ : string; payload : (a:Type & a) }
type log = list event

With these components, the blockchain state is the following
record type:
type bstate = { cmap : cmap; balances : Map.t address uint; log : log }

B. Libraries for arrays and maps

We have implemented F⋆ libraries for modeling Solidity
arrays and maps—the uses of arrays and maps in CELES-
TIAL contracts are translated to uses of these F⋆ libraries.

136

https://github.com/microsoft/verisol/tree/celestial/Celestial

Our current implementation only supports dynamically-sized
arrays for now, support for compile time fixed-sized arrays
is future work. The libraries export operations that match the
corresponding Solidity API, and several lemmas that enable
the contracts to reason about their properties. For example,
following is a snippet of our array library:
val array (a:Type) : Type (* an array with element type a *)
val push (#a:Type) (s:array a{length s < uint max}) (x:a) : array a
val push length (#a:Type) (s:array a{length s < uint max}) (x:a)

: Lemma (requires ⊤) (ensures (length (push s x) == length s + 1))

C. An F⋆ effect for contracts

Having set up the model for the blockchain state, we now
add a layer on top so that the contracts may manipulate the
state and precisely specify the modifications in pre- and post-
conditions, while making sure that the verification complexity
does not get out-of-hands. We leverage the type-and-effect
system of F⋆ for this purpose.

F⋆ distinguishes value types such as uint from computation
types. Computation types specify the effect of a computation,
its result type, and optionally some specifications (e.g. pre-
and postconditions) for the computation. For example, Tot uint
classifies pure, terminating computations that return a uint
value. Similarly uint →Tot uint is the type of pure, terminating
functions that take a uint argument and return a uint result.
uint → uint is a shorthand for uint →Tot uint; all the blockchain
state functions that we have seen so far have an implicit Tot
effect.

Following Ahman et al. [21], a state and exception effect
for computations that operate on mutable state and may throw
exceptions is as follows (st is the type of mutable state):
type result (a:Type) = (* the return type of the computations *)
| Success : x:a → result a
| Error : e:string → result a

effect STEXN a st (pre:st → prop) (post:st → result a → st →
prop) = ...

The semantics of the computations in the STEXN effect
may be understood as follows: a computation e of type
STEXN a st pre post when run in an initial state (s0:st) satisfying
pre s0, terminates either by throwing an exception (modeled as
returning an Error-valued result) or by returning a value of type
a (modeled as returning Success-valued result). In either case,
the final state (s1:st) is such that post s0 r s1 holds, where r is
the return value of the computation. F⋆ also supports divergent
effects, in which case the computations are also allowed to
diverge. The STEXN effect in F⋆ comes with a program logic
for verifying such computations.

a) Customizing STEXN for contracts: Contract compu-
tations naturally fall into the state and exception effect; they
read from and write to the mutable blockchain state, and they
may throw an exception by calling revert.

However, the revert operation in Ethereum is slightly dif-
ferent from exceptions in, say, OCaml in that it also reverts
the underlying state to what it was at the beginning of the
transaction, while in OCaml, the state changes are retained. To
accommodate this, we instantiate the state st in STEXN with

type st = { tx begin : bstate; current : bstate }

where the field tx begin snapshots the state at the beginning
of a transaction. Contracts modify the current state, unless they
revert, in which case the current state is reset to tx begin. Thus,
we define the ETH effect for smart contracts as follows:
(* state + exception with st as the state *)
effect ETH (a:Type) (pre:st → prop) (post:st → result a → prop) =

STEXN a st pre post

Using ETH effect, we implement the APIs for
begin transaction, revert, and commit transaction as follows:
let begin transaction () : ETH unit (requires λ →⊤)
(ensures λs0 r s1 → is success r ∧ s0 == s1) = () (* no op *)

let revert () : ETH unit (requires λ →⊤)
(ensures λs0 r s1 → is err r ∧ s1=={s0 with current=s0.tx begin}) = ...

let commit transaction () : ETH unit (requires λ →⊤)
(ensures λs0 r s1 → is succ r ∧ s1=={s0 with tx begin=s0.current}) = ...

The function begin transaction is a no-op, its precondition is
trivial (⊤), while its postcondition states that it does not revert
(is success r) and it leaves the state unchanged (s0 == s1). revert,
on the other hand, returns an error value, and its output state
s1 is same as its input state s0 with current component replaced
with the snapshot s0.tx begin, i.e. the state at the beginning of
the transaction. commit transaction is opposite, it replaces the
tx begin component with s0.current to commit the current state.

The function to get the current state for a contract is as
follows, note that the contract is selected from the current
component of the state:
let get contract (#a:Type) (c:contract a) : ETH a

(requires λs → live c s.current.cmap)
(ensures λs0 x s1 → x == Success (sel c s.current.cmap) ∧

s0 == s1) = ...

Similarly, the library provides functions send to transfer
balance to a contract and emit to emit an event to the event
log.

To make our specifications easier to read and write, we
define the following effect abbreviation:
effect Eth (a:Type) (pre:bstate → prop) (revert:bstate → prop)

(post:bstate → a → bstate → prop)
= ETH a (requires λs → pre s.current)

(ensures λs0 r s1 →
(revert s0.current =⇒ Error? r) ∧
(Success? r =⇒ post s0.current (Success?.x r) s1.current))

The pre- and postconditions in the Eth effect are written
over the current blockchain state (bstate), as opposed to over
the st record. Further, the postcondition is a predicate on
a value of type a–it only specifies what happens when the
contract function terminates successfully. The revert predicate
is a predicate on the input state, which if valid means that the
function reverts. We find this abbreviation well-suited for our
examples, providing the full-flexibility of the ETH effect to the
programmers is of course possible.

CELESTIAL translates each contract to an F⋆ module, where
the contract methods are translated to F⋆ functions in the Eth
effect. Every function gets explicit parameters for self, sender,
value in the case of payable functions, and (underspecified)

137

block-level parameters such as timestamp; after these the
function specific parameters follow.

The F⋆ precondition of each function gets to assume the
liveness of the contract and the contract invariant. Since
these functions can be called by arbitrary, non-verified code,
we cannot expect the callers to satisfy more sophisticated
preconditions. The postcondition of each function includes
the liveness, the contract invariant, and other function-specific
postconditions.

The translation of a function body uses the private, per-
field getters and setters, also emitted by the translation. Calls
to public functions of other contracts are translated to calls
to corresponding functions in other F⋆ modules (contracts).
Library calls to arrays, maps, etc. translate to corresponding
libraries calls in F⋆.

We make a final comment regarding the correctness of the
various translations. Since the CELESTIAL source language is
just Solidity with specifications, the CELESTIAL to Solidity
translation is only spec erasure. The translation to F⋆ is again
quite systematic, and therefore, amenable to auditing. Formally
proving that the CELESTIAL to F⋆ translation is semantics
preserving is an interesting and challenging future work.

IV. IMPLEMENTING CELESTIAL

The translators to F⋆, for specifications as well as imple-
mentation, are combined 2300 lines of Python code. The spec-
erasing translator to Solidity is about 750 lines of Python code.
The blockchain model is around 1200 lines of F⋆ code. We
target the 0.6.8 version of the Solidity compiler for generating
EVM bytecode. To aid developer experience, we have written
a plugin for Visual Studio Code [16] that supports full syntax
highlighting for CELESTIAL. If developers require access to
the CELESTIAL specifications in the generated Solidity, we can
easily tweak the CELESTIAL to Solidity translation to preserve
the specifications as comments.

Limitations: We focused our implementation efforts on
Solidity constructs used in our case studies. We currently do
not support syntactic features such as inheritance, abstract
contracts and tuple types. These mostly only provide syntactic
sugar that should be easy to support in future versions of CE-
LESTIAL. Our implementation currently also does not support
passing arrays and structs as arguments to functions. While
our implementation allows loops in contract functions, we
currently do not support writing loop invariants. We also only
provide weak specifications for block level constructs (such
as timestamp, number and gaslimit), transaction level
constructs (such as origin and gasprice), and functions for
obtaining hashes (such as keccak256 and sha256).

Contract Local Reasoning: Calling external contracts
can lead to reentrant behavior where the external contract
calls back into the caller, which is often difficult to reason
about. CELESTIAL disallows such behaviors by checking for
external callback freedom (ECF) [28], [42] which states that
every contract execution that contains a reentrant callback is
equivalent to some behavior with no reentrancy. When this
property holds, it is sufficient to reason about non-reentrant

1 contract A {
2 bool lock;
3 function foo () public
4 tx_reverts lock
5 { if(lock) { revert; } ... }
6
7 function bar (address x) {
8 lock = true;
9 // external call

10 x.call (...);
11 lock = false;
12 ...
13 } }

Listing 4: Ensuring External Callback Freedom

behaviors only: any specification over those set of behaviors
will hold for all behaviors as well. Thus, ECF allows for
contract-local reasoning.

CELESTIAL has two ways of checking for ECF; one of these
must hold for each external call. The first is a lightweight
syntactic check from VERX [42]. An external call is deemed
ECF compliant if it is guaranteed to only be called at the end
of a transaction. In other words, for any public method that
may transitively invoke an external call, it must ensure that it
does not read or write to the blockchain state after the call.
External calls that do not fall in this category must satisfy
CELESTIAL’s second check that asserts that any callbacks
made by an external call are guaranteed to revert. We explain
this check using the CELESTIAL contract shown in Listing 4.
There is an external call in method bar on line 10. To
prevent reentrancy, the programmer uses a contract field called
lock and follows the protocol that the lock will be assigned
true when making an external call. Furthermore, each public
method of the contract (such as foo) will revert if lock is set
to true. It is easy to see that if the external contracts tries to
call back a method of A, the transaction will abort.

CELESTIAL’s translation to F⋆ adds a sequence of assertions
preceding each external call (that does not satisfy CELES-
TIAL’s first check). For each public method of the contract,
it takes the tx reverts condition on the method, say ϕ, and
inserts assert ϕ before the external call. This will ensure that
a call back to a public method is guaranteed to revert.

V. EVALUATION

We evaluate the development experience with CELESTIAL
by writing verified versions of 8 Solidity smart contracts, in-
cluding real-world contracts spanning crypto-currency tokens,
wallets, marketplace, auctions and governance. Some of these
contracts are “high-valued”, holding millions of dollars of
financial assets or having processed millions of transactions.

For each contract, we added detailed functional specifica-
tions. If the verification failed, we minimally modified the
code in order to discharge the verification conditions. For
contracts which required such modifications, we additionally
measured the gas consumption overhead, using Truffle [13].
We performed our experiments using an Intel Core i7-7600U
dual-core CPU, with 16GB RAM, and running Windows 10.
Table I summarizes the various case studies that we performed.

138

Fig. 3: The AssetTransfer state machine. The dashed arrow indicates
a buggy state transition.

Due to lack of space, we discuss details of 3 of the case studies
here. We refer interested readers to our Technical Report [25]
for a detailed discussion of all the case studies. The sources
for all the case studies are available at
https://github.com/microsoft/verisol/tree/celestial/Celestial.

CELESTIAL

Benchmark #C #Sol #Spec #Impl V-Time (sec)

AssetTransfer* 1 130 70 187 4.26
OpenZeppelin ERC20 4 171 97 200 8.82
BinanceCoin* 2 133 25 136 29.98
WrappedEther* 1 62 62 114 20.00
EtherDelta* 1 281 57 351 63.97
Consensys MultiSig* 2 378 163 289 77.80
SimpleAuction* 1 66 61 101 22.45
Governance Contract 1 417 121 149 86.86

TABLE I: CELESTIAL case studies. We report the number of con-
tracts in the application (#C), LOC of the original Solidity imple-
mentation (#Sol), LOC of the CELESTIAL version, divided between
specification (#Spec) and implementation (#Impl), and finally the F⋆

verification time (averaged over 3 runs). Benchmarks marked with *
used a safe arithmetic library, which is added towards #Impl.

A. AssetTransfer

Application: AssetTransfer [10] is a microbenchmark that
provides a smart contract based solution for transferring assets
between a buyer and a seller. The contract encodes asset
transfer as a finite state machine (FSM) (Figure 3), a common
design pattern [11], [39], with the different states denoting the
varying stages of approval for the transfer. The contract has
notions of roles, such as Buyer and Seller, and state transitions
are guarded by appropriate roles (for example, the contract
can transition from Active to OfferPlaced when the Seller
invokes the MakeOffer method).
Specifications. Figure 3 is also the specification for this
contract, that is, we must ensure that each of the contract
methods respect the transitions mentioned in the FSM diagram.
For example, the following is the spec for MakeOffer:
function MakeOffer (uint _price)

modifies [sellingPrice , state , log]
tx_revert (old(state) != Active && msg.sender != Seller)
post (state == OfferPlaced && sellingPrice == _price)

{ // implementation }

The spec ensures that the method makes the correct state
transition (Active → OfferPlaced), and this transition
can only be caused by the Seller. Interestingly, this spec
failed to verify, which led us to discover two bugs in the
implementation. These bugs could potentially leave the whole

transfer in a frozen state. For instance, one of the bugs led to
the erroneous state transition shown in Figure 3. It caused the
contract to mistakenly transition to the SellerAccept state,
even after both the Seller and Buyer had accepted the transfer,
which makes the final state (Accept) to become unreachable.
Fixing these bugs allowed verification to go through. Previous
work [47] has noted similar bugs in a different version of the
contract. The original contract also had overflow/underflow
vulnerabilities, which we eliminated using runtime checks.
Performance. We ran both contracts (CELESTIAL-generated
Solidity and original Solidity) through a typical asset-transfer
workflow. On an average, the CELESTIAL version consumed
1.12× more gas compared to the original. We account for both
the contract as well as any associated library, for instance for
safe arithmetic, when measuring the deployment cost.

B. ERC20 Tokens

Application. ERC20 is a standard [4] for Ethereum cryptocur-
rencies (or tokens). Till date, over 400K ERC20 tokens have
been deployed on Ethereum, handling financial assets worth
billions of dollars. We formally verified the OpenZeppelin
ERC20 contract [8], which is a popular reference implementa-
tion of some of the key ERC20 functions, such as transferring
tokens from one account to another and approving third parties
to spend tokens on a user’s behalf. We also verified the
ERC20-based BinanceCoin (BNB) [2] token.
Specifications. We based some of our specifications on earlier
efforts to formally verify the OpenZeppelin ERC20 token [6],
[47]. The following shows an excerpt. The implementation
maintains the balance (number of issued tokens) for each
contract address using a balances map. CELESTIAL allows
us to easily express the important invariant (line 4) that the
sum over the balances for each user equals the total number
of tokens issued.
1 contract ERC20 {
2 mapping (address => uint) _balances;
3 uint _totalSupply; // total issued tokens
4 invariant _balanceAndSellerCredits {
5 _totalSupply = sum_mapping(_balances)
6 }}

The remaining specifications capture the business logic of
key ERC20 functions. The example below shows the postcon-
dition for the transfer method that is used for atomically
debiting a source account, and crediting the amount in a
destination account. The postcondition ensures that the correct
debit and credit operations occur in the source and destination
accounts, and all other accounts remain unchanged.
1 function _transfer (address from , address to, uint amt)
2 private tx_reverts ..., modifies [...]
3 pre _balances[from] >= amt &&
4 _balances[to] + amt <= uint_max
5 post ite(from == to, _balances == old(_balances),
6 _balances == old(_balances)[
7 from => old(_balances)[from] - amt ,
8 to => old(_balances)[to] + amt]))
9 { // implementation }

The ERC20 token makes copious use of arithmetic op-
erations. OpenZeppelin designed a SafeMath Library [9] to
perform runtime checks for overflows and underflows, which

139

https://github.com/microsoft/verisol/tree/celestial/Celestial

the original ERC20 token leverages to ensure runtime safety
for arithmetic operations. In contrast, we used the CELESTIAL
safe arithmetic operations in public functions, and eliminated
runtime checks altogether in private functions when the arith-
metic was provably safe.

C. Governance Contract

Application. We study a contract from Microsoft that manages
a consortium of mutually-trusted members interacting on a
private Ethereum blockchain. The contract comprises a set of
rules governing operations such as inviting fresh members to
join the consortium and adding or removing existing members.
The contract is complex, since it maintains many correlated
data structures, loops and access control policies, with each
logical operation involving intricate changes to multiple data
structures. Due to the proprietary nature of the contract, we
abstain from showing code or specifications for it explicitly.
We did not include several functions in the original contract,
whose operations were orthogonal to the governance logic.
Specifications. We briefly describe some of the important
properties that we proved.
1) Among members in the consortium, some are designated

as being “administrators”. An important invariant is that
the number of administrators cannot be zero (otherwise the
consortium freezes with no further transaction processing).

2) In the contract, logical units of information are maintained
in aggregate by several data structures. For example, the
contract maintains an array of existing members. However,
members can either be referenced by a string identifier,
or an address. Thus, the contract maintains a couple of
additional mappings that maintain, respectively, associ-
ations between string identifiers and addresses, to the
correct indices in the array. We specify several invariants
to ensure that these data structures are always consistent.
For example, we specify that there are no duplicates in the
array, no two string identifiers map to the same array index,
and the value of each string identifier must not exceed the
length of the array of members.

3) We precisely captured the postconditions for operations
such as member additions, where we ensure that the
operation only updates the necessary keys and indices,
while leaving the remaining entries untouched.

We note that some of these properties are similar to those
proved by Lahiri et al [35] for a variation of an open-source
governance contract [14].

VI. RELATED WORK

The literature on ensuring correctness of smart contracts can
be classified into the following broad categories.
Surveys and Best Practices. There is a wealth of available
material that highlights known vulnerabilities and exploits
in smart contracts [22], [24], [41], [46]. These efforts have
resulted in literature suggesting best coding practices for
Solidity [5], [12]. CELESTIAL is inspired by these practices,
for instance, by ruling out low-level instructions as well as
uncontrolled reentrancy, however, the restrictions are not just

for avoiding programming pitfalls, but rather to aid semantic
verification.
Testing. Frameworks like Truffle [13] allow users to write unit
and integration tests for smart contracts in JavaScript. The
transactions are typically executed in an in-memory mock of
the EVM, such as Ganache [7]. In addition to testing functional
behaviors and finding bugs, such tests reveal useful diagnostic
information such as gas consumption.
Contract Analysis. A large number of tools have been devel-
oped that statically analyze smart contracts (Solidity source
code or EVM bytecode) to reveal various vulnerabilities.
Examples include MadMax [27] (targeting vulnerabilities due
to gas exceptions) and Slither [26] (for identifying security
vulnerabilities). Oyente [38] leverages symbolic execution to
rule out several classes of vulnerabilities. ContractFuzzer [33]
offers a fuzzing based solution for identifying security bugs.

Solythesis [37] is a source-to-source Solidity compiler that
instruments the Solidity code with runtime checks to enforce
invariants, but specifications particular to each function can’t
be specified in this framework and it has a significantly high
gas overhead because of the runtime checks. VeriSmart [44]
offers a highly precise verifier for ensuring arithmetic safety of
Ethereum smart contracts, which discovers transaction invari-
ants, but is unable to capture quantified transaction invariants.
Tools like teEther [34] leverage symbolic execution to find
vulnerable executions and automatically generate exploits.

Each of these tools target a known set of vulnerabilities and
offer specialized solutions for them. In contrast, CELESTIAL
verifies custom specifications of contracts, relying on verifica-
tion to rule out all vulnerabilities against that specification.
Formal Verification. VeriSol [35], [47] checks conformance
between a state-machine-based workflow and the smart con-
tract implementation, for contracts of Azure Blockchain Work-
bench [1]. VeriSol does not check for reentrancy; it simply
assumes its absence, as opposed to CELESTIAL that enforces
it as part of the contract verification. Further, VeriSol does
not model arithmetic over/underflow, or check for unsafe type
casts, which were an important aspect of our case studies.

VerX [15], [42] is another formal verification tool. VerX
uses a syntactic check to ensure ECF (which we use in
CELESTIAL as well), however it cannot verify that the program
in Listing 4 satisfies ECF. VerX aims for automation of
verification by inferring predicates in an abstraction-refinement
loop. Such techniques tend to be limited in their ability to
reason with quantifiers; VerX uses special built-in predicates
like sum for quantified reasoning over maps. CELESTIAL,
on the other hand, allows for the full power of first-order
reasoning with quantifiers. VerX implements its own custom
symbolic execution, whereas CELESTIAL uses a simple syntax
translation to F⋆ and delegates all analysis to the mature F⋆

verifier. Unfortunately, the VerX tool is not openly available
for further comparisons.

Some verification tools work at the level of EVM bytecode
[30], [31], [40], [43], instead of Solidity source level. This
is more precise and removes the Solidity compiler from the
TCB, however, it is also more time consuming and hard to

140

scale to the larger, complex contracts that we have evaluated
in Section V. Bhargavan et al. [23] provide an approach to
translate a subset of Solidity to F⋆ for verification, as well
as a method to decompile EVM bytecode to F⋆ to check low-
level properties such as establishing worst-case gas bounds for
a transaction. Their work is presented as a proof-of-concept
only, with limited evaluation and restricted to a small subset
of the language.

VII. CONCLUSION

We presented CELESTIAL, a framework for developing
formally verified smart contracts. CELESTIAL provides fully
automated verification, using F⋆, of Solidity contracts an-
notated with functional correctness specifications. With the
help of several real-world case studies, we conclude that
formal verification can be made accessible to smart contract
developers for programming high-assurance contracts. Our
next steps include enriching our F⋆ model of blockchain with
more features and validating it using the Solidity testsuite as
well as exploring proofs of cross-transaction properties.

REFERENCES

[1] Azure blockchain workbench. https://azure.microsoft.com/en-us/
solutions/blockchain/.

[2] Binance coin. https://www.binance.com/en.
[3] Consensys secure development recommendations. https://consensys.

github.io/smart-contract-best-practices/recommendations/.
[4] Eip 20: Erc-20 token standard. https://eips.ethereum.org/EIPS/eip-20.
[5] Ethereum smart contract security best practices. https://consensys.github.

io/smart-contract-best-practices/.
[6] Formal verification of erc20 implementations

with verisol. https://forum.openzeppelin.com/t/
formal-verification-of-erc20-implementations-with-verisol/1824.

[7] Ganache. https://github.com/trufflesuite/ganache.
[8] Openzeppelin erc20. https://github.com/OpenZeppelin/

openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol.
[9] Openzeppelin safemath. https://github.com/OpenZeppelin/

openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol.
[10] Remix ethereum ide. https://github.com/Azure-Samples/blockchain/tree/

master/blockchain-workbench/application-and-smart-contract-samples/
asset-transfer.

[11] Solidity docs: State machines. https://solidity.readthedocs.io/en/v0.6.8/
common-patterns.html#state-machine.

[12] Solidity security considerations. https://solidity.readthedocs.io/en/v0.6.
8/security-considerations.html.

[13] Truffle suite. https://www.trufflesuite.com/.
[14] Validator set contracts. https://github.com/Azure-Samples/blockchain/

tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/
validation-set.

[15] Verx. https://verx.ch/.
[16] Visual studio code. https://code.visualstudio.com/.
[17] Understanding the dao attack. https://www.coindesk.com/

understanding-dao-hack-journalists, 2016.
[18] The parity wallet hack explained. https://blog.openzeppelin.com/

on-the-parity-wallet-multisig-hack-405a8c12e8f7/, 2017.
[19] Etherscan: Contract accounts. https://etherscan.io/accounts/c, 2020.
[20] Solidity v0.7.2. https://solidity.readthedocs.io/en/v0.7.2/, 2020.
[21] Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martı́nez, Gor-

don D. Plotkin, Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy.
Dijkstra monads for free. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 515–529. ACM, 2017.

[22] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on ethereum smart contracts. IACR Cryptology ePrint Archive,
2016:1007, 2016.

[23] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kula-
tova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and San-
tiago Zanella Béguelin. Formal verification of smart contracts: Short
paper. In Toby C. Murray and Deian Stefan, editors, Proceedings of
the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS@CCS 2016, Vienna, Austria, October 24, 2016, pages
91–96. ACM, 2016.

[24] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu.
A survey on ethereum systems security: Vulnerabilities, attacks and
defenses. CoRR, abs/1908.04507, 2019.

[25] Samvid Dharanikota, Suvam Mukherjee, Chandrika Bhardwaj, Aseem
Rastogi, and Akash Lal. Celestial: A smart contracts verification
framework. Technical Report MSR-TR-2020-43, Microsoft, December
2020.

[26] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis
framework for smart contracts. In Proceedings of the 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain,
WETSEB@ICSE 2019, Montreal, QC, Canada, May 27, 2019, pages
8–15. IEEE / ACM, 2019.

[27] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: surviving out-of-gas con-
ditions in ethereum smart contracts. Proc. ACM Program. Lang.,
2(OOPSLA):116:1–116:27, 2018.

[28] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky,
Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of
effectively callback free objects with applications to smart contracts.
Proc. ACM Program. Lang., 2(POPL), December 2017.

[29] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, and
Martin T. Vechev. Learning to fuzz from symbolic execution with
application to smart contracts. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, pages 531–548. ACM,
2019.

[30] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,
Philip Daian, Dwight Guth, Brandon M. Moore, Daejun Park, Yi Zhang,
Andrei Stefanescu, and Grigore Rosu. KEVM: A complete formal
semantics of the ethereum virtual machine. In 31st IEEE Computer
Security Foundations Symposium, CSF 2018, Oxford, United Kingdom,
July 9-12, 2018, pages 204–217. IEEE Computer Society, 2018.

[31] Yoichi Hirai. Defining the ethereum virtual machine for interactive
theorem provers. In Michael Brenner, Kurt Rohloff, Joseph Bonneau,
Andrew Miller, Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali,
Massimiliano Sala, Federico Pintore, and Markus Jakobsson, editors,
Financial Cryptography and Data Security - FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta,
April 7, 2017, Revised Selected Papers, volume 10323 of Lecture Notes
in Computer Science, pages 520–535. Springer, 2017.

[32] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[33] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: fuzzing smart
contracts for vulnerability detection. In Marianne Huchard, Christian
Kästner, and Gordon Fraser, editors, Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, pages 259–269. ACM,
2018.

[34] Johannes Krupp and Christian Rossow. teether: Gnawing at ethereum
to automatically exploit smart contracts. In William Enck and Adri-
enne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1317–
1333. USENIX Association, 2018.

[35] Shuvendu K. Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig. Formal
specification and verification of smart contracts for azure blockchain.
CoRR, abs/1812.08829, 2018.

[36] K. Rustan M. Leino. Dafny: An automatic program verifier for
functional correctness. In Edmund M. Clarke and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning
- 16th International Conference, LPAR-16, Dakar, Senegal, April 25-
May 1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes
in Computer Science, pages 348–370. Springer, 2010.

[37] Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with
runtime validation. In Alastair F. Donaldson and Emina Torlak, editors,
Proceedings of the 41st ACM SIGPLAN International Conference on

141

https://azure.microsoft.com/en-us/solutions/blockchain/
https://azure.microsoft.com/en-us/solutions/blockchain/
https://www.binance.com/en
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://consensys.github.io/smart-contract-best-practices/recommendations/
https://eips.ethereum.org/EIPS/eip-20
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://forum.openzeppelin.com/t/formal-verification-of-erc20-implementations-with-verisol/1824
https://forum.openzeppelin.com/t/formal-verification-of-erc20-implementations-with-verisol/1824
https://github.com/trufflesuite/ganache
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeMath.sol
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://solidity.readthedocs.io/en/v0.6.8/common-patterns.html#state-machine
https://solidity.readthedocs.io/en/v0.6.8/common-patterns.html#state-machine
https://solidity.readthedocs.io/en/v0.6.8/security-considerations.html
https://solidity.readthedocs.io/en/v0.6.8/security-considerations.html
https://www.trufflesuite.com/
https://github.com/Azure-Samples/blockchain/tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/validation-set
https://github.com/Azure-Samples/blockchain/tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/validation-set
https://github.com/Azure-Samples/blockchain/tree/master/ledger/template/ethereum-on-azure/permissioning-contracts/validation-set
https://verx.ch/
https://code.visualstudio.com/
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://etherscan.io/accounts/c
https://solidity.readthedocs.io/en/v0.7.2/

Programming Language Design and Implementation, PLDI 2020, Lon-
don, UK, June 15-20, 2020, pages 438–453. ACM, 2020.

[38] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 254–269. ACM, 2016.

[39] Anastasia Mavridou and Aron Laszka. Designing secure ethereum smart
contracts: A finite state machine based approach. In Sarah Meiklejohn
and Kazue Sako, editors, Financial Cryptography and Data Security -
22nd International Conference, FC 2018, Nieuwpoort, Curaçao, Febru-
ary 26 - March 2, 2018, Revised Selected Papers, volume 10957 of
Lecture Notes in Computer Science, pages 523–540. Springer, 2018.

[40] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and
Peter Sewell. Lem: reusable engineering of real-world semantics. In
Johan Jeuring and Manuel M. T. Chakravarty, editors, Proceedings
of the 19th ACM SIGPLAN international conference on Functional
programming, Gothenburg, Sweden, September 1-3, 2014, pages 175–
188. ACM, 2014.

[41] Daniel Pérez and Benjamin Livshits. Smart contract vulnerabilities:
Does anyone care? CoRR, abs/1902.06710, 2019.

[42] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.
In 2020 IEEE Symposium on Security and Privacy, SP, pages 18–20,
2020.

[43] Grigore Rosu and Traian-Florin Serbanuta. An overview of the K

semantic framework. J. Log. Algebraic Methods Program., 79(6):397–
434, 2010.

[44] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh.
VERISMART: A highly precise safety verifier for ethereum smart
contracts. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, pages 1678–1694. IEEE,
2020.

[45] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and
Santiago Zanella Béguelin. Dependent types and multi-monadic effects
in F. In Rastislav Bodı́k and Rupak Majumdar, editors, Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, pages 256–270. ACM, 2016.

[46] Antonio Lopez Vivar, Alberto Turégano Castedo, Ana Lucila Sandoval
Orozco, and Luis Javier Garcı́a-Villalba. An analysis of smart contracts
security threats alongside existing solutions. Entropy, 22(2):203, 2020.

[47] Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong Pan, Isil Dillig,
Cody Born, Immad Naseer, and Kostas Ferles. Formal verification of
workflow policies for smart contracts in azure blockchain. In Supratik
Chakraborty and Jorge A. Navas, editors, Verified Software. Theories,
Tools, and Experiments - 11th International Conference, VSTTE 2019,
New York City, NY, USA, July 13-14, 2019, Revised Selected Papers,
volume 12031 of Lecture Notes in Computer Science, pages 87–106.
Springer, 2019.

142

Formal Methods in Computer-Aided Design 2021

The Civl Verifier
Bernhard Kragl

Amazon Web Services and IST Austria
Shaz Qadeer

Facebook

Abstract—Civl is a static verifier for concurrent programs
designed around the conceptual framework of layered refinement,
which views the task of verifying a program as a sequence of
program simplification steps each justified by its own invariant.
Civl verifies a layered concurrent program that compactly
expresses all the programs in this sequence and the supporting
invariants. This paper presents the design and implementation
of the Civl verifier.

I. INTRODUCTION

Correctness of critical specifications of concurrent systems
rests upon invariants about the global system state. The
classical approach to static verification is to represent the en-
tire organizational structure—processes, threads, procedures,
looping, branching, sequencing—of a concurrent system as a
flat transition relation that encodes its operational semantics.
Further reasoning is performed on this transition relation.
This approach leads to massively complex invariants that are
hard to specify for the programmer and difficult to verify via
automated tools.

a: x := n

b:
c:
d:
e:

acquire(l)
t1 := x
x := t1 + 1
release(l)

acquire(l)
t2 := x
x := t2 + 1
release(l)

f : assert x = n+ 2

Fig. 1. Parallel increment (version 0).

We motivate our work using the program in Figure 1. This
program starts with a single thread that initializes a global
variable x to a constant n, creates two threads that run in
parallel each incrementing x by 1 while holding the lock l,
waits for the two threads to finish, and then asserts that x =
n + 2. The goal of verification is to prove this assertion for
all values of n and all executions of the program.

The classical approach to verification of concurrent pro-
grams models the verification problem in Figure 1 as a transi-
tion system shown in Figure 2, comprising an initial predicate
Init , a transition predicate Next , and a safety predicate Safe .
To prove that all reachable states of the transition system
satisfy the predicate Safe , an inductive invariant Inv must
be invented such that Init ⇒ Inv , Inv ∧ Next ⇒ Inv ′, and
Inv ⇒ Safe .

This research was performed while Bernhard Kragl was at IST Austria,
supported in part by the Austrian Science Fund (FWF) under grant Z211-N23
(Wittgenstein Award).

Init : pc = pc1 = pc2 = a

Next :
pc = a ∧ pc′ = pc1 = pc2 = b ∧ x′ = n ∧ eq(l, t1, t2)

∨ pc1 = b ∧ pc′1 = c ∧ l = # ∧ l′ = ① ∧ eq(pc, pc2, x, t1, t2)
∨ pc1 = c ∧ pc′1 = d ∧ t′1 = x ∧ eq(pc, pc2, l, x, t2)
∨ pc1 = d ∧ pc′1 = e ∧ x′ = t1 + 1 ∧ eq(pc, pc2, l, t1, t2)
∨ pc1 = e ∧ pc′1 = f ∧ l′ = # ∧ eq(pc, pc2, x, t1, t2)
∨ pc2 = b ∧ pc′2 = c ∧ l = # ∧ l′ = ② ∧ eq(pc, pc1, x, t1, t2)
∨ pc2 = c ∧ pc′2 = d ∧ t′2 = x ∧ eq(pc, pc1, l, x, t1)
∨ pc2 = d ∧ pc′2 = e ∧ x′ = t2 + 1 ∧ eq(pc, pc1, l, t1, t2)
∨ pc2 = e ∧ pc′2 = f ∧ l′ = # ∧ eq(pc, pc1, x, t1, t2)
∨ pc1 = pc2 = f ∧ pc′ = f ∧ eq(pc1, pc2, l, x, t1, t2)

Safe: (pc = f ⇒ x = n+ 2) ∧
(pc1 ∈ {c, d, e} ⇒ l = ①) ∧ (pc2 ∈ {c, d, e} ⇒ l = ②)

Fig. 2. Transition relation of the program in Figure 1. The lock l can be either
available (value #), or held by the first or second thread (values ① and ②).
The predicate eq denotes unmodified variables, e.g., eq(l) means l′ = l.

This approach is clearly problematic for several reasons.
First, the encoding as a transition system flattens and elim-
inates the syntactic structure of the program. Forcing the
programmer to think about the inductive invariant at the level
of this encoding significantly reduces productivity. Second,
the inductive invariant is likely to have as much case anal-
ysis as the encoded transition relation, making it even more
tedious and unproductive for the programmer to specify it. For
example, the inductive invariant for our example program is
larger than its transition relation. This trivial parallel increment
program is just the tip of the iceberg; the task of specification
and verification explodes in complexity if we turn our attention
to realistic implementations of large concurrent systems.

There are two broad approaches to the problem of inductive
invariants for concurrent systems. One approach is automatic
generation of inductive invariants [1], [2], [3] eliminating the
need to specify them manually. Another approach is to specify
them via annotations on the structured program itself [4], [5]
reducing the cognitive burden on the programmer. Civl falls
into this latter class of techniques; its contribution is to allow
more proofs to be expressed on the structured program.

Civl proposes an alternative proof strategy which encour-
ages the programmer to think in terms of a sequence of pro-
gram versions that increasingly simplify the original program.
Denoting the program in Figure 1 as version 0, we show three
progressively simpler versions in Figure 3.

The simplification from version 0 to version 1 is based on
mover types [6], [7]. Acquiring of lock l is a right mover,
release of lock l is a left mover, and accesses to the shared
variable x protected by the lock l are left and right movers.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 23 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-7745-9117
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_23
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_23
https://creativecommons.org/licenses/by/4.0/

version 1
x := n

atomic {
acquire(l)
t1 := x
x := t1+1
release(l)

}

atomic {
acquire(l)
t2 := x
x := t2+1
release(l)

}

assert x = n+ 2

version 2
x := n

x := x+1 ∥ x := x+1

assert x = n+ 2

version 3
x := n
x := x+ 1
x := x+ 1
assert x = n+ 2

Fig. 3. Simplifying parallel increment.

Consequently, the code fragment executed by each child thread
can be treated as an atomic block which executes in one step.

The simplification from version 1 to version 2 summarizes
each atomic block with an atomic increment of x, while
hiding global variable l and local variables t1 and t2. This
summarization is possible because each atomic block leaves
the value of l unchanged.

Finally, the simplification from version 2 to version 3
applies mover types again. Since each atomic increment is
both a left and right mover, the two parallel increments can be
converted into a sequence of two increments. Version 3 can
be verified trivially by constructing a sequential verification
condition and using an SMT solver to discharge it.

There are several advantages of the Civl approach. First,
the transition relation of the program is never exposed to the
programmer who specifies program versions using the familiar
syntax of structured concurrent programs. Second, although an
invariant may be needed to justify a program transformation in
general, each invariant is simpler because it justifies only one
transformation. Finally, invariants, even when they are needed,
are supplied by annotating the structured program itself.

Section II presents a high-level overview of layered re-
finement, the collection of techniques underlying the Civl
approach. Taken together, these techniques increase proof pro-
ductivity by allowing the correctness argument to be expressed
as a single layered concurrent program [8]. This section is
targeted to an expert in the theory of concurrency verification
and may be skipped on a first reading of the paper. Section III
presents the modeling and specification features available to a
Civl user through concrete examples.

Since the first published description of Civl [9], we have
reimplemented the verifier completely. Section IV describes
the current architecture of the Civl implementation as a
conservative extension of the Boogie verifier.

The main contribution of Civl is a methodology supported
by automated reasoning for implementing verified concurrent
systems. We present two arguments that Civl improves the
state of the art in constructing verified programs. First, Civl
clearly allows new proofs of concurrent systems to be ex-
pressed. Second, these proofs have been accomplished on
many programs by many researchers including several who
were not involved in the design and implementation of Civl.
Section V presents this accumulated experience.

II. LAYERED REFINEMENT

Civl advocates layered refinement over structured concur-
rent programs. Instead of proving the safety of a program in
one shot, the new approach allows the programmer to specify
a chain of increasingly simpler programs starting from the
original program. Each link of the chain, from program P
to program Q, represents a single simplification that may be
viewed as an abstraction from P to Q or a refinement from Q
to P. The correctness of the program is established piecemeal
by focusing on the simpler invariant required for each refine-
ment step separately. Most importantly, all the layers and the
supporting invariants are specified as a structured and layered
concurrent program [8], thus hiding the low-level transition
relation from the programmer.

Layered concurrent programs introduce a succinct presenta-
tion for multi-layer refinement proofs, which offer two major
advantages for interactive proof construction. First, through a
syntax for expressing “data layering” (i.e., which variables live
on which layers) and “control layering” (i.e., which operations
live on which layers), it is easy for the user to write, refine,
and maintain a proof outline. Second, a layered concurrent
program expresses only the changes in the program from one
layer to the next. Thus, layered concurrent programs can result
in much smaller proofs, especially for large programs.

While traditional approaches view refinement as a mecha-
nism to specify behavior of concurrent programs, Civl views
refinement as a tactic to simplify verification of safety prop-
erties. Consequently, the simulation relation justifying the
refinement step in Civl is computed but never revealed to the
programmer who focuses only on the program layers and the
connecting invariants. The viability of the layered refinement
approach depends on the existence of program simplification
tactics that are easy to use by the programmer and whose
justification can be checked automatically. Civl incorporates a
number of such tactics described below.
Creating atomic blocks. The Civl programming model com-
prises concurrently-executing and dynamically-created tasks
operating over global memory, each access to which must be
encapsulated inside an indivisible atomic action. Global vari-
ables model either shared memory or communication channels.
Civl uses a theory of commutative atomic actions [6], [7] to
create sequential code blocks that appear to execute atomically,
despite accesses to global state by multiple atomic actions in
the code block.
Creating atomic actions. An atomic code block might be
internally complex, due to sequencing, branching, looping,
and recursion. Civl summarizes such a code block with an
atomic action that hides all the internal details in favor of a
declarative specification. Thus, atomic actions in Civl are used
to model both low-level execution primitives and high-level
summary specifications. To support such diverse usage, an
atomic action in Civl generalizes a guarded command [10] to
include a specification of failure [11] (in addition to blocking
or successful execution) and the creation of asynchronous
activity in the form of pending asyncs [12].

144

Synchronizing asynchrony. Civl supports elimination of pend-
ing asyncs from the atomic actions in a program via a tactic
known as inductive sequentialization [13]. Introduction and
elimination of pending asyncs in atomic actions together
enable a program simplification that provides the appearance
of executing in one step a collection of atomic computations
executing asynchronously. This tactic amplifies the use of
commutative atomic actions to allow summarization of both
synchronous and asynchronous computation.

Civl allows introduction and hiding of global and local
variables to change the state representation of the program.
This change often results in a program whose atomic actions
become commutative and thus the other tactics mentioned
above become applicable. Variable introduction is performed
as part of the tactic that creates atomic blocks; calls to special
atomic actions assign meaning to the introduced variables.
Variable hiding is performed as part of the tactic that creates
atomic actions from atomic blocks; the created atomic action
does not refer to the hidden variables.

Variable introduction and hiding in Civl has two other
benefits. First, variable introduction naturally allows the user
to introduce an arbitrary safety specification for the program.
Second, it becomes unnecessary to support the notion of ghost
state present in most provers for concurrent programs. Chang-
ing the state representation of the program often addresses the
need for ghost state. Also, a variable may be introduced and
hidden at the same layer for those special cases when ghost
state is needed purely for invariant specification.

The tactic that creates atomic actions often needs constraints
on the reachable states of the program. These constraints are
supplied via yield invariants [14] which are named and param-
eterized invariants that can be reused and suitably instantiated
across multiple program locations where interference may
happen. Yield invariants combine the precision and flexibility
of location invariants [4] with the compactness and modu-
larity of rely-guarantee specifications [5]. Civl supports local
reasoning with permissions that are redistributed by atomic
actions and otherwise passed around the program without
duplication [14]. Permissions are useful in proving locally
both that yield invariants are interference-free and that atomic
actions satisfy desired commutativity properties.

Civl supports the verification of arbitrary safety properties.
Civl’s notion of correctness is that the lowest-layer program
is free of assertion failures. Arbitrary safety properties are
expressible as assertions because auxiliary state (e.g., history
variables) can be introduced into the program in addition to
program state.

The client of a system constructed with layered refinement
only needs to check that the established high-level specifi-
cation captures the desired property. The details of a layered
proof are not trusted since they are checked by Civl. However,
the introduction of auxiliary state into the system at the lowest
layer, sometimes needed to express a specification, is trusted.

III. PROGRAMMING AND PROVING IN CIVL

In this section we illustrate the input language and the
verification features of Civl. The presentation is necessarily
brief and selective. Detailed documentation is available at our
website civl-verifier.github.io.
Syntax. Civl is built on top of Boogie [15], a language and
verifier for sequential programs. Boogie provides standard
features for imperative programming such as assignments,
sequencing, branching, looping, and procedures. Additionally,
it provides specification features such as assert and assume
statements, loop invariants, preconditions, postconditions, and
axioms. The expression language of Boogie is first-order
logic with built-in theories such as uninterpreted functions,
integers, bitvectors, datatypes, and arrays. Civl adds the key-
words async (asynchronous procedure call), par (parallel
procedure call), and yield (yield point) to express concurrent
behaviors. All other syntactic extensions are implemented
using generic attributes which attach to abstract syntax tree
nodes of a Boogie program. Attributes are of the form
{:attr e1, e2, ...}, where attr is the attribute name
and e1, e2, ... are parameter expressions of the attribute.
Atomic actions. Every access to a global variable has to
be encapsulated into an atomic action. An atomic action
consists of a gate, a one-state predicate that specifies the
condition under which the action can execute or otherwise fail,
and a transition relation, a two-state predicate that specifies
the possible state updates of the action. Atomic actions are
capable of specifying uniformly both low-level operations (like
writing to a memory location or sending a message on a
channel) and high-level operations (like acquiring a lock or
reaching consensus in a distributed system). For example,
the left column in Figure 4 shows atomic actions which
acquire and release a lock, modeled by the global variable
l. The Boogie procedures are identified as atomic actions
by the :right/:left annotations which also declare their
mover types; actions that are non-movers are annotated with
:atomic. The action AcquireSpec blocks until l equals
None() (denoting the availability of the lock) and then updates
l to Some(tid) (denoting that the lock is held by the current
thread with thread id tid). Conversely, ReleaseSpec asserts
that the current thread holds the lock (the assert statement
specifies the gate) and updates l to None().
Program layers. In a Civl proof, the user explicitly organizes
the program into layers using layer annotations. Variables and
atomic actions have a layer range. In Figure 4, variable l

is introduced at layer 1 and hidden at layer 2, and action
AcquireSpec only exists at layer 2.

Concurrent computations are expressed by yielding proce-
dures. The yielding procedure Acquire in Figure 4 acquires a
lock by repeatedly invoking the compare-and-swap operation
CAS_b to atomically set the global Boolean variable b from
false to true. A yielding procedure is subject to interference
from other concurrent threads at any point during its execution.
However, Acquire is declared to refine the atomic action
AcquireSpec at layer 1. This means that Civl checks that

145

https://civl-verifier.github.io

var {:layer 1,2} l: Option Tid;

procedure {:right} {:layer 2,2}
AcquireSpec({:linear "tid"} tid: Tid)
modifies l;
{
assume l == None();
l := Some(tid);

}

procedure {:left} {:layer 2,2}
ReleaseSpec({:linear "tid"} tid: Tid)
modifies l;
{
assert l == Some(tid);
l := None();

}

var {:layer 0,1} b: bool;

procedure {:yields} {:layer 1}
{:refines "AcquireSpec"}
{:yield_preserves "LockInv"}

Acquire({:layer 1}{:linear "tid"} tid: Tid)
{

var t: bool;

while (true)
invariant {:layer 1}{:yields}
{:yield_loop "LockInv"} true;

{
call t := CAS_b(false, true);
if (t) {

call set_l(Some(tid));
break;

}
}

}

procedure {:intro} {:layer 1}
set_l(v: Option Tid)
modifies l;
{ l := v; }

procedure {:yields} {:layer 2}
{:refines "ClientSpec"}
{:yield_preserves "LockInv"}

Client({:layer 1,2} {:hide}
{:linear "tid"} tid: Tid)

{
call Acquire(tid);
...
call Release(tid);

}

procedure {:atomic} {:layer 3,3}
ClientSpec()
{ ... }

Fig. 4. A layered program, showing a lock implementation and its client. Left: Atomic actions for acquiring and releasing a lock. Middle: A spinlock
implementation that refines the atomic action specification. Right: Introduction action for proving the lock refinement and a client of the lock.

Acquire “behaves like” AcquireSpec, and thus clients of
the former can ignore the details of its implementation and
instead reason with the atomic behavior of the latter. Acquire
uses the global Boolean variable b, while AcquireSpec uses
the global lock variable l. The connection between these
two different representations is established by the introduction
action set_l, which sets l from None() to Some(tid) when
b is set from false to true. Finally, the yielding procedure
Client protects a critical section with calls to Acquire and
Release and declares that it refines the action ClientSpec

at layer 2.
The layer annotation of a yielding procedure denotes its

disappearing layer. The procedure exists (with changing bod-
ies) on all layers below and up to its disappearing layer. For
example, Acquire exists on layer 0 and 1, and Client exists
on layer 0, 1, and 2. Intuitively, a procedure is replaced with
its refined atomic action above its disappearing layer.

Figure 4 encodes four program layers. Layer 0 is the most
concrete program. It contains procedure Client which calls
procedure Acquire, and Acquire implements a spinlock
using calls to CAS_b; b is the only global variable, and Client
and Acquire have no input parameters. Layer 1 introduces the
global variable l and the local input parameters tid, along
with the introduction action set_l (the call to set_l does
not exist at layer 0). At layer 2, Acquire is gone and the
body of Client is rewritten to make calls to the actions
AcquireSpec and ReleaseSpec; b is hidden and l is the
only global variable. At layer 3, Client is also gone, and any
potential calls to Client are replaced by its atomic summary
ClientSpec; global variable l and the parameter tid do not
exist anymore.

Layering provides a form of modularity. At layer 2 we do
not care about how the lock is implemented, and at layer 3
we do not care that a lock was used at all. The applied
proof tactics (variable introduction, variable hiding, and atomic
blocks) simplify the necessary invariants on every layer.
Yield sufficiency. Civl partitions the bodies of yielding
procedures into yield-to-yield fragments. The following code
locations are yield points: procedure entry and exit, loop head-

ers annotated with {:yields}, and explicit yield statements.
Context switches are only considered at yield points, and the
code between two yield points is a yield-to-yield fragment. At
layer 1, in Acquire every loop iteration (i.e., call to CAS_b) is
a yield-to-yield fragment, and in Client there is a yield before
and after every call. At layer 2, something interesting happens.
The body of Client does not call any procedures anymore
(the calls are to atomic actions now), and thus Client

has only a single yield-to-yield fragment. Civl justifies this
simplification using reduction [6], [7]. Concretely, using the
fact that AcquireSpec is a right mover and ReleaseSpec

is a left mover. In general, every yield-to-yield fragment is
checked to be a sequence of right movers, followed by at
most one non-mover, followed by a sequence of left movers.
Refinement. To justify the summarization of a yielding pro-
cedure at layer n by an atomic action, Civl checks that in
every execution of the procedure, the effect of the refined
action happens in exactly one yield-to-yield fragment and
that other yield-to-yield fragments leave the layer-(n + 1)
state unchanged. In Acquire, every loop iteration where
CAS_b fails leaves l unchanged, while the (final) iteration
where CAS_b succeeds also updates l to Some(tid) and thus
produces the effect of AcquireSpec.
Invariants. Civl performs refinement checking modularly,
by considering every yield-to-yield fragment in isolation.
This usually requires certain properties to hold at yield
points, notwithstanding any interference from other concurrent
threads. Civl supports location invariants [4] and yield invari-
ants [14], which are checked to be interference-free across
all yield-to-yield fragments in the program. Yield invariants
are named and parameterized invariants that can be reused
and suitably instantiated across multiple yield points. The
following code shows the yield invariant LockInv.
procedure {:yield_invariant} {:layer 1} LockInv();
requires b <==> (l != None());

In Acquire (Figure 4), LockInv is attached to the procedure
entry and exit using the :yield_preserves annotation, and
to the loop header using the :yield_loop annotation. We
give examples of parameterized yield invariants below.

146

Permissions. Certain invariants, like those connecting local
variables from different scopes, can be tedious to express
and propagate. Civl addresses this problem using linear per-
missions. Program variables can be declared as linear, from
which Civl calculates the available variables at every control
location, assigns every available variable a set of permissions,
and ensures that there is no duplication across these permission
sets. Civl allows the user to customize the type of permissions
and the assignment of permissions to variables.

The lock specification in Figure 4 uses linearity to express
unique thread identifiers. The type declaration
type {:linear "tid"} Tid;

specifies the permissions for the linear domain tid to be of
type Tid, the type of thread identifiers. This means that every
variable that is linear under domain tid gets assigned a set
of Tid values. The assignment is specified using collector
functions. Civl uses the following default collector in the
absence of a user-specified collector.
function {:linear "tid"} TidCol(x: Tid) : [Tid]bool
{ MapConst(false)[x := true] }

We use a map from Tid to bool to model a set. The
polymorphic map constructor MapConst applied to false

returns a map set to false everywhere representing an empty
set. TidCol assigns linear variables of type Tid (like the
input parameter tid of AcquireSpec and ReleaseSpec)
the single value the variable contains as its permission.
Consider an instance of AcquireSpec and an instance of
ReleaseSpec with parameters tid1 and tid2, respec-
tively. By linearity, Civl gets to assume that the multiset
TidCol(tid1) ⊎ TidCol(tid2) = {tid1, tid2} does not contain
any duplicates, which implies tid1 ̸= tid2. This assumption
is used to show that the AcquireSpec instance commutes to
the right of the ReleaseSpec instance, an important part of
the proof that AcquireSpec and ReleaseSpec satisfy their
mover types.

Figure 5 presents an example inspired by barrier syn-
chronization to demonstrate how permissions are useful in
proving invariants. The program has two global variables,
barrier and count, to represent the set of identifiers
inside the barrier and the number of threads outside the
barrier, respectively. The atomic actions EnterBarrier and
ExitBarrier encode entering and exiting the barrier by
a thread, respectively. The yield invariant ThreadInv is
parameterized by a thread identifier j and indicates that j

is in the barrier. Typically, a thread with identifier i would
enter the barrier by calling EnterBarrier(i), yield to other
threads by calling ThreadInv(i), and then exit the barrier
by calling ExitBarrier(i). The linearity of parameter j of
ThreadInv and parameter i of ExitBarrier allows us to
assume that j and i are distinct, and therefore ThreadInv is
preserved by ExitBarrier. Preservation by EnterBarrier

is trivial since this action only adds elements to barrier.
Permission redistribution. Now consider the following yield
invariant BarrierInv that indicates that the sum of the size of
barrier and count is equal to N, the total number of threads.

var {:layer 0,1} barrier: [Tid]bool;
var {:layer 0,1} count: int;

procedure {:atomic} {:layer 1} EnterBarrier(
{:linear "tid"} i: Tid)

modifies barrier;
{

barrier[i] := true;
count := count - 1;

}

procedure {:atomic} {:layer 1} ExitBarrier(
{:linear "tid"} i: Tid)

modifies barrier;
{

assert barrier[i];
barrier[i] := false;
count := count + 1;

}

procedure {:yield_invariant} {:layer 1} ThreadInv(
{:linear "tid"} j: Tid);

requires barrier[j];

Fig. 5. Using permissions to prove invariants.

procedure {:yield_invariant} {:layer 1} BarrierInv();
requires Size(barrier) + count == N;

This invariant cannot be proved on the code in Figure 5.
The action EnterBarrier does not preserve BarrierInv

whenever barrier[i] already holds upon entry. This condi-
tion, of course, cannot happen in the program, since a thread
only calls EnterBarrier when it is outside the barrier. But
this constraint is not encoded in the current specification. An
attempt to encode this constraint would be to make the global
variable barrier linear. However, this strategy would force us
to drop the linear annotation on parameter i of ExitBarrier
which would then make ThreadInv unprovable.

To solve this programming problem, we present a more
sophisticated use of permissions that depends on custom
collectors and new linearity annotations on local variables. The
datatype declaration
type {:linear "perm"} {:datatype} Perm;
function {:constructor} Left(i: Tid): Perm;
function {:constructor} Right(i: Tid): Perm;

specifies the permissions for a new linear domain perm. The
datatype Perm has two constructors Left and Right; each
constructor wraps a thread identifier to create a Perm value.
The collectors for perm are shown below.
function {:linear "perm"} TidCol(x: Tid) : [Perm]bool
{ MapConst(false)[Left(x) := true][Right(x) := true] }

function {:linear "perm"} TidSetCol(xs: [Tid]bool)
: [Perm]bool
{ (lambda p: Perm :: is#Left(p) && xs[i#Left(p)]) }

The collector TidCol defines the permissions stored in a
single thread identifier x as the set comprising Left(x) and
Right(x). The collector TidSetCol collects the permissions
in a set of thread identifiers xs by collecting Left(x) for each
element x in xs. Additionally, there is the following default
collector for type Perm.
function {:linear "perm"} PermCol(x: Perm) : [Perm]bool
{ MapConst(false)[x := true] }

Figure 6 shows the revised code for our example which
now uses the linear domain perm throughout. The global

147

var {:layer 0,1} {:linear "perm"} barrier: [Tid]bool;
var {:layer 0,1} count: int;

procedure {:atomic} {:layer 1} EnterBarrier(
{:linear_in "perm"} i: Tid)

returns ({:linear "perm"} p: Perm)
modifies barrier;
{

barrier[i] := true;
count := count - 1;
p := Right(i);

}

procedure {:atomic} {:layer 1} ExitBarrier(
{:linear_in "perm"} p: Perm, {:linear_out "perm"} i: Tid)

modifies barrier;
{

assert p == Right(i) && barrier[i];
barrier[i] := false;
count := count + 1;

}

procedure {:yield_invariant} {:layer 1} ThreadInv(
{:linear "perm"} p: Perm, j: Tid);

requires p == Right(j) && barrier[j];

Fig. 6. Permission redistribution in atomic actions.

variable barrier is linear and consequently a store of permis-
sions. The signatures and implementation of EnterBarrier,
ExitBarrier, and ThreadInv have also changed.

We now present the intuition behind the revised
implementation. EnterBarrier splits the permissions
{Left(i), Right(i)} contained in its input parameter i

into Left(i) which is put into barrier and Right(i)

which is returned via the output parameter p. The linear_in
annotation on i indicates that the permissions in i are
consumed by the call and are therefore unavailable afterwards.
The permission p and the unavailable thread identifier i are
used to call ThreadInv. Finally, when ExitBarrier is called
with p and i and i is removed from barrier, the permission
Left(i) is also removed from barrier. This permission
becomes available to be joined with Right(i) contained
in p so that the full permission set {Left(i), Right(i)}

is put into i which becomes available after the call. This
protocol is indicated by the linear_in annotation on p and
the linear_out annotation on i.

This example shows that permissions can be redistributed
without duplication by an atomic action among global vari-
ables and its parameters. This ability to soundly redistribute
permissions allows us to compactly express and prove coordi-
nation protocols.
Asynchrony. Asynchronous invocations—calls that create a
new concurrent thread of computation without the caller wait-
ing for the operation to complete—are challenging to specify
and verify. Civl provides the inductive sequentialization [13]
proof rule to sidestep the arduous task of inventing complex
inductive invariants that capture all possible interleavings of
an asynchronous program.

Consider the action ASYNC_SUM in Figure 7. It uses an out-
put variable PAs that represents pending asyncs, asynchronous
operations that are spawned by ASYNC_SUM but executed
asynchronously at some later time. Concretely, ASYNC_SUM
creates the multiset of pending asyncs set_of_ADD(1, n) =
{ADD(1), ADD(2), . . . , ADD(n)}, which could be refined to a

procedure {:atomic}{:layer 1}{:IS "SUM","INV"}{:elim "ADD"}
ASYNC_SUM (n: int)
returns ({:pending_async "ADD"} PAs:[PA]int)
modifies x;
{
assert n >= 0;
PAs := set_of_ADD(1, n);

}

procedure {:atomic}{:layer 2} SUM (n: int)
modifies x;
{
assert n >= 0;
x := x + (n * (n+1)) div 2;

}

procedure {:left}{:layer 1} ADD (i: int)
modifies x;
{ x := x + i; }

procedure {:IS_invariant}{:layer 1} INV (n: int)
returns ({:pending_async "ADD"} PAs:[PA]int,

{:choice} choice:PA)
modifies x;
{
var i: int;
assert n >= 0;
assume 0 <= i && i <= n;
x := x + (i * (i+1)) div 2;
PAs := set_of_ADD(i+1, n);
choice := ADD(i+1);

}

Fig. 7. Sequentialization of the asynchronously computed sum from 1 to n.
We are omitting annotations that support automated reasoning with quantifiers.

procedure that asynchronously invokes ADD in a while loop.
The annotations on ASYNC_SUM tell Civl instead to convert

it into SUM, by eliminating from it the pending asyncs to
ADD using the invariant action INV. SUM adds to x the value
n(n+1)

2
, which is the cumulative effect of the asynchronous

ADD operations. The key is that INV only talks about a single
interleaving of the ADD operations: ADD(1); ADD(2); . . . ;
ADD(n). It represents any prefix of this single interleaving
as follows. It (1) nondeterministically picks i between 0 and
n denoting the number of finished ADD’s, (2) increases x by
i(i+1)

2
to capture the effect of executing ADD(1) to ADD(i),

(3) creates pending asyncs for ADD(i+1) to ADD(n), and
(4) specifies that the next pending async we wish to execute in
our sequential order is ADD(i+1). INV represents ASYNC_SUM
with i = 0, SUM with i = n, and the induction order from i

to i+1 is specified by the user through the output variable
choice. The justification for this sequential reduction is that
ADD is a left mover, and thus can always be commuted to the
desired location in the sequentialization.

IV. IMPLEMENTATION

Civl is implemented as a conservative extension of the
Boogie verifier. The extensions to the syntax (Section III) and
the verification engine do not affect ordinary Boogie programs.
The Boogie verifier itself is implemented as a pipeline with
a sequence of phases—parsing, type checking, verification
condition generation, solver invocation, and error reporting.
For every procedure, a verification condition in SMT-LIB
format is passed to an SMT solver running in a separate
process. If an error is discovered, a diagnostic error trace is
calculated by examining the model returned by the solver.

148

The implementation of Civl adds two more phases into the
pipeline of the Boogie verifier. Initially, the Civl attributes
are parsed together with the rest of the Boogie program and
the standard Boogie type checker is run. Then, the Civl type
checker validates the Civl attributes and converts them into
internal data structures. Next, the Civl processor compiles all
proof obligations related to concurrency down to sequential
Boogie procedures. Finally, the existing Boogie pipeline for
converting procedures into verification conditions takes over.
Civl type checker. The type checker has three main parts.

First, a layer analysis [8] checks that the layer annotations
are consistent. This analysis ensures that all program layers en-
coded by the input layered program are well-formed, e.g., that
variables accessed and procedures/actions called on some layer
actually exist on that layer. It also ensures the soundness of our
refinement check. For example, in Figure 4 we could not refine
Client at layer 1, because its callee Acquire first needs
to be converted to the action AcquireSpec, which happens
from layer 1 to layer 2. For sound variable introduction, only
introduction actions and invariants are allowed to access global
variables at their introduction layer. For example, at layer 1
only set_l and LockInv refer to l, whereas AcquireSpec

only refers to it at layer 2.
Second, a yield sufficiency analysis [7] checks, for each

layer separately, that it is safe to consider context switches
only at yield points. This check is implemented by computing
a simulation relation [16] between a labeled control-flow graph
and a specification automaton that encodes all sequences of
mover types allowed by Lipton’s reduction theorem [6]. The
specification automaton is shown in panel ① of Figure 8.
Panel ② shows the labeled graph for procedure Acqurie at
layer 1. Node n0 represents the loop head. Since the loop
is yielding, the edge to the loop condition n1 is labeled Y.
At n1 we either exit the loop and thus the entire procedure on
the private edge to n3, or we execute the non-mover CAS_b
on the edge to n2 labeled N. At n2, corresponding to the
if condition, we either execute the introduction action set_l

and break from the loop, or we loop back to the loop head n0,
both of which are private edges. Panels ③ and ④ show that
the calls to the yielding procedures Acquire and Release

are labeled with Y at layer 1 but with the mover type of their
respective refined atomic action at layer 2. For simplicity, Civl
does not allow a yield-to-yield fragment that starts within a
loop to wrap around the loop head, and thus checks that every
loop that contains a Y edge is a yielding loop.

Third, a linear flow analysis [14] computes the available
linear variables at each control location of a procedure, and
ensures that calls to procedures, atomic actions, and yield
invariants satisfy their linear interfaces. The following code
snippet refers to Figure 6.
// i available, p unavailable
call p := EnterBarrier(i);
// i unavailable, p available
call ThreadInv(p, i);
// i unavailable, p available
call ExitBarrier(p, i);
// i available, p unavailable

N: non-mover R: right mover L: left mover
B: both mover Y: yield P: private

RM

LM

① R, B, Y, P

N,
R, L, B,

Y, P

L, B, Y, P

Y

n0

n1 n2

n3

②

Y

N

PP

P

m0

...

m1

③

Y

Y

m0

...

m1

④

R

L

Fig. 8. Labeled control-flow graphs for yield sufficiency analysis of Figure 4.
① Specification automation. ② Acquire at layer 1. ③ Client at layer 1.
④ Client at layer 2.

EnterBarrier requires i to be available and consumes it,
making p available in return. The unavailable i can be used
in places where it is not required to be linear, in particular the
calls to ThreadInv and ExitBarrier. After ExitBarrier
which consumes p, variable i is available again.
Civl processor. To target Boogie’s verification-condition gen-
erator, Civl eliminates layers, concurrency, and linearity from
the input layered concurrent program by creating a collection
of sequential checker procedures. There are two advantages
to this approach. First, modular decomposition into checker
procedures improves scalability by creating small verification
problems. Second, verification failures in checker procedures
are processed to create targeted error messages. In the follow-
ing we explain the categories of checker procedures Civl gen-
erates. We do not have the space to present detailed encodings;
we suggest that interested readers use the command-line flag
-civlDesugaredFile to inspect the plain Boogie program
generated by the Civl processor.

A common functionality required by multiple checker pro-
cedures is the computation of a logical transition relation from
the code representation of an atomic action. For each code
path, Civl computes a path constraint from its static single
assignment form, and then iteratively eliminates intermediate
copies of variables by finding and inlining definitions. Vari-
ables that cannot be eliminated are existentially quantified. The
transition relation is the disjunction over all path formulas.

Permission redistribution among linear variables occurs
through assignment, parameter passing, and mutation in
atomic actions. The first two sources of redistribution are
tracked by the syntactic flow analysis in the Civl type checker.
For the third source, a checker procedure for each atomic
action ensures that no permission duplication occurs due
to its execution. This semantic check involves user-supplied
collector functions. For example, the checker procedure for
ExitBarrier from Figure 6 validates the postcondition

TidSetCol(barrier) ⊎ TidCol(i) ⊆
TidSetCol(old(barrier)) ⊎ PermCol(old(p)),

stating that the permissions flowing into the action through
barrier and p must be a subset of the permissions flowing
out through barrier and i. The resulting non-duplication
guarantee among linear variables is injected into all the
following checks as a free assumption.

149

procedure CommutativityChecker(tid_1: Tid, tid_2: Tid)
requires tid_1 != tid_2; // derived from linearity
requires l == Some(tid_2); // gate of ReleaseSpec
modifies b, l;
{
call AcquireSpec(tid_1); // inlined
call ReleaseSpec(tid_2); // inlined
// trans. rel. of ReleaseSpec(tid_2); AcquireSpec(tid_1)
assert l == Some(tid_1);

}

Fig. 9. Commutativity checker for AcquireSpec and ReleaseSpec.

The mover type of each atomic action is verified by pair-
wise checks against every atomic action with an overlapping
layer range. Each such check is encoded by multiple checker
procedures to account for commutativity of both failing and
successful behaviors. For example, the commutativity check
between AcquireSpec and ReleaseSpec is shown in Fig-
ure 9. Recall that this check succeeds because the first call
blocks due to the constraint we get from linearity. In addition,
each left mover and introduction action is separately checked
to have a failing or successful behavior from each initial state.

Invariants are verified separately for each layer n, resulting
in a checker procedure for each yielding procedure with
disappearing layer at least n. Civl constructs the checker
procedure from the code of the yielding procedure as follows.
First, calls to invariants and introduction actions at layers
other than n are dropped and calls to yielding procedures with
disappearing layers lower than n are rewritten to calls of their
respective refined actions. Next, asynchronous and parallel
calls (of which ordinary calls are a special case) are translated.
An asynchronous call to a yielding procedure is translated
into an assertion of the precondition of the procedure. An
asynchronous call to an action is either synchronized or
converted into a pending async [12]. A parallel call may
contain arms that are actions, yield invariants, or yielding
procedures. Each such call is rewritten into a sequence
comprising calls to actions and parallel calls whose arms are
either yield invariants or yielding procedures. For example,
par A | P | I | B | C | Q | D with actions A, B, C and
D, procedures P and Q, and invariant I , is rewritten to
call A; par P | I; call B; call C; par Q; call D.
All calls to atomic actions are inlined. Any parallel call
remaining at this point is a yield where interference is
possible. Next, each yield is instrumented to record a
snapshot of the global variables immediately after the
yield. This snapshot is used to assert the preservation of
all invariants in the program at the end of a yield-to-yield
fragment. Finally, each parallel call (with arms that are
yielding procedures or yield invariants) comprising a yield
is itself desugared as follows: (1) assert preconditions of
yielding procedures and yield invariants, (2) havoc all global
variables, (3) assume postconditions of yielding procedures
and yield invariants. The soundness of this translation of
concurrent code to sequential code is ensured by the yield
sufficiency analysis of the Civl type checker. A side condition
for asynchronous calls forbids global state updates between an
asynchronous call to a yielding procedure and the next yield

point. Additionally, there are restrictions on the sequence of
arms in a parallel call. For example, any left mover must
occur before any right mover, and there cannot be both a
yielding procedure and a non-mover in the sequence.

At the disappearing layer n of every yielding procedure, a
checker procedure verifies refinement of the specified atomic
action by tracking two local Boolean variables, pc and ok,
each initialized to false. The variable pc is set to true as
soon as a yield-to-yield fragment modifies any layer-(n + 1)
state; before any such modification it is asserted that pc is
false. The variable ok is set to true as soon as a yield-to-
yield fragment modifies the layer-(n+1) state according to a
transition admitted by the refined action; ok is asserted to be
true when the procedure returns. Overall, we check that layer-
(n+1) state is modified at most once, and that a behavior of
the refined action occurs at least once.

Each invocation of the inductive sequentialization [13] rule
results in a collection of checker procedures, one each for
the base and conclusion case and one for the inductive step
corresponding to each eliminated pending async.

V. EXPERIENCE

Civl has been used in many efforts to develop verified
concurrent systems, both by the authors of Civl and by other
researchers. These efforts include a concurrent garbage col-
lector [9], a Paxos implementation [13], and implementations
of concurrent data structures: the FastTrack data-race detec-
tor [17], Chase-Lev deque [18], and Java weakly-consistent
objects [19]. Civl has also been used to prototype techniques
for verification under TSO semantics [20]. Civl is fast enough
to be used for interactive development. Even on our large
benchmarks, verification time is a few seconds.

Our experience suggests that Civl’s specification
mechanisms—layering, commutativity, yield invariants—
are natural for users. These features aid discovery of provable
implementations by encouraging the user to think about
different layers of abstraction, the primitives for each layer,
and suitable organization of the reasoning technique at each
layer. In addition, layers enable partitioning of work among
multiple developers each working on the proof of a particular
layer with agreed-upon interfaces between layers.

We present more details about two major case studies to
provide anecdotal evidence for the improvements in develop-
ing verified concurrent systems enabled by Civl.
Concurrent Garbage Collector. An author of this paper
together with other researchers used Civl to develop a verified
concurrent garbage collector and object allocator that improves
upon the mark-and-sweep garbage collector by Dijkstra el
al. [21] in two ways. First, the new collector supports more
than one mutator running in parallel with the collector. Second,
it requires a write-barrier only on updates of heap pointers but
not on root modifications. The Civl implementation is realistic,
given in terms of individual CPU operations. The refined
specification comprises high-level atomic actions for object
allocation and access, that provide the illusion of unbounded
memory in which individual objects are not reused.

150

The proof is done via a sequence of 6 program transfor-
mations connecting 7 program layers. Layer 0 is described
in terms of individual atomic CPU operations. Layer 0 → 1
introduces locks and atomic actions for read/write accesses.
Layer 1 → 2 uses the locks and protected accesses to construct
higher-level atomic operations that are used in the barrier
synchronization algorithm for root scanning and in the mark-
sweep algorithm. The collector operates in three phases—
idle, mark, and sweep. Layer 2 → 3 reasons about the
coordination between the collector and the mutators to make
phase changes safely. The mark algorithm performs a depth-
first search of the heap starting from the roots. The stack in
this search comprises “gray” objects. Layer 3 → 4 changes the
representation of the gray objects to a set. Layer 4 → 5 reasons
about the root scanning algorithm that internally uses barrier
synchronization to create an atomic action that scans all roots
in one step. Reasoning about the write barrier also happens
during this transformation. Layer 5 → 6 reasons about the
mark-sweep algorithm using the atomic actions for scanning
roots, maintaining the set of gray objects, and changing object
colors. The garbage collector is hidden entirely, leaving the
client with atomic actions for allocating objects, reading and
writing object fields, and checking object equality.

This proof was constructed and reported in 2015 [9]. Since
then, Civl has been rewritten but the proof has been maintained
and improved. The current artifact is 2031 LOC and verifies
in 25s on a standard Mac. The biggest improvement happened
with the introduction of yield invariants [14] which reduced
the verification time by a factor of 10.

Paxos. The Paxos protocol [22] establishes consensus among
a set of unreliable nodes in an asynchronous network without
a central coordinator. This protocol lies at the core of any
system with replicated state. It is difficult to both understand
and implement. The authors of this paper together with other
researchers constructed a verified implementation [13] of
single-decree Paxos, which establishes consensus on a single
value. The verified implementation only uses primitive atomic
actions, like reading or writing a single memory address, and
sending or receiving a single message.

The proof is constructed via a sequence of 2 program
transformations done over 3 layers. Layer 0 implements event
handlers using primitive atomic actions for sending and re-
ceiving network messages, and for updates to the local state
and decision variable at each Paxos node. The transformation
from layer 0 to layer 1 converts event handlers to atomic
actions at the granularity typically used to describe protocols
in papers. At the same time, this transformation changes the
state representation to make it easier to apply the next trans-
formation. The invariant justifying this transformation simply
connects the two state representations. The transformation
from layer 1 to layer 2 uses inductive sequentialization [13]
to create a single atomic action where consensus is reached
in one step by nondeterministically setting decisions at each
node consistently. The invariant justifying this transformation
captures the intuition of the protocol. It has 4 conjuncts and

is considerably simpler than the invariants in other published
proofs of the Paxos protocol. For example, the proof [23] using
Ivy has 5 other supporting invariants in addition to the 4 used
in the Civl proof. The current artifact for the Civl proof is
1116 LOC and verifies in 7s on a standard Mac.

VI. RELATED WORK

In this section we compare Civl to other reusable tools that
have support for concurrency.

TLA+ [24] and Event-B [25] are two classic tools for
refinement reasoning over transition systems. Ivy [26] verifies
transition systems using a restricted modeling and specification
language (notably without functions and arbitrary quantifica-
tion) that makes verification conditions decidable. While Ivy
requires manual effort to encode distributed systems concepts
in this restricted language, Civl requires manual effort to
automate quantifier reasoning. Ivy also has a synchronous, re-
active programming language from which it can extract asyn-
chronous, distributed implementations [27]. This programming
model, which cannot express fine-grained concurrency, can
be encoded in Civl by threading a linear parameter through
atomic actions and procedures. Ivy provides liveness reasoning
and information hiding via modules.

Iris [28] is a Coq-based formalization of a program logic
suitable for reasoning about fine-grained concurrent programs
with higher-order ghost state. The focus in Iris is to clarify and
simplify concurrent separation logics around a few primitive
concepts in order to provide a suitable foundation for develop-
ing reasoning mechanisms for concurrent programs. Compared
to Iris, Civl is less flexible but provides more automation
on a programming notation that supports standard models of
concurrent programming. ReLoC [29] is a logic built on top of
Iris for interactively proving contextual refinement judgments.

Chalice [30] verifies monitor invariants, in addition to ab-
sence of data races and deadlocks, on a small Java-like concur-
rent programming language. VeriFast [31] supports separation
logic specifications, resource invariants, and higher-order ghost
state on concurrent C and Java programs. Prusti [32] uses the
guarantees of the Rust type system to simplify the manual
annotation effort. VerCors [33] builds on separation logic
specifications and provides verification features for several
concurrent programming idioms, e.g., based on histories and
process algebra. VCC [34] is a verifier for concurrent C
programs. VCC allows the programmer to construct a cus-
tom verification methodology via extensive support for the
introduction of ghost types and values. Noninterference is
accomplished via a network of type-level global invariants
which together must satisfy certain stability and admissibility
conditions. Similar to Civl, these tools use SMT solvers as the
reasoning engine, exploit programmer interaction, and support
modular reasoning. Civl provides features not present in these
tools such as layered refinement and yield invariants.

Anchor [35], a successor to Calvin-R [36], is a lightweight
verifier for a small Java-like programming language. An-
chor allows the programmer to compactly specify conditional
mover types for read and write accesses of shared object fields.

151

It is less modular than Civl and other tools discussed here;
inlining is used extensively to deal with procedure calls.

Armada [37] is a language and verifier that implements
layers, mover types, and explicit noninterference reasoning.
Armada is inspired by Civl but also supports weak memory
and extensibility via new simplification tactics. While Civl
represents all program layers in a single layered concurrent
program, Armada connects explicitly written programs using
proof scripts that invoke mechanized theorems.

VII. CONCLUSION

The Civl static verifier aids the development of verified
concurrent systems through language-integrated proof struc-
turing mechanisms, an array of program-simplifying proof
tactics, and modular and automatable verification conditions.
The modeling features provided in Civl are general; they
can be specialized to many different domains by building
custom linguistic support and automation. For example, it is
possible to use Civl as the verification backend for domain-
specific languages suitable for developing implementations
of distributed protocols, concurrent data structures, or even
system-level hardware implementations. Overall, Civl opens
many new opportunities in development of programming tools
for concurrent systems.

Civl’s capabilities to generate verification conditions for
checking commutativity, refinement, and noninterference can
be leveraged individually by a verifier. It is also conceivable
to design a programming language that supports layering
and atomic actions natively, and uses Civl as a backend for
verification. This language would generate executable code
from the lowest-layer program which invokes atomic actions
whose implementation is provided by the language runtime.

Our experience suggests that progress on the following im-
portant challenges should increase the applicability and usabil-
ity of Civl. First, Civl’s verification conditions have quantifiers
which can results in unpredictable verification times. Domain-
specific techniques for automatic quantifier instantiation or
language mechanisms for conveniently specifying instances
would help. Second, Civl supports linear maps [38] for rea-
soning about disjoint but flat memory. Extension to support
reasoning about nested linear maps would make it easier to
encode standard heap programming models. Third, layered
programs in Civl are challenging to comprehend, edit, and
refactor; tools to help with these tasks would be helpful. A
module system for factoring out libraries and their layered
proofs would aid the development of large verified systems.

REFERENCES

[1] A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction and
refinement for verifying multi-threaded programs,” in POPL, 2011.

[2] A. Farzan, Z. Kincaid, and A. Podelski, “Proof spaces for unbounded
parallelism,” in POPL, 2015.

[3] A. Farzan and A. Vandikas, “Reductions for safety proofs,” Proc. ACM
Program. Lang., vol. 4, no. POPL, 2020.

[4] S. S. Owicki and D. Gries, “Verifying properties of parallel programs:
An axiomatic approach,” Commun. ACM, vol. 19, no. 5, 1976.

[5] C. B. Jones, “Tentative steps toward a development method for interfer-
ing programs,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4, 1983.

[6] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Commun. ACM, vol. 18, no. 12, 1975.

[7] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,” in
PLDI, 2003.

[8] B. Kragl and S. Qadeer, “Layered concurrent programs,” in CAV, 2018.
[9] C. Hawblitzel, E. Petrank, S. Qadeer, and S. Tasiran, “Automated and

modular refinement reasoning for concurrent programs,” in CAV, 2015.
[10] E. W. Dijkstra, “Guarded commands, nondeterminacy and formal deriva-

tion of programs,” Commun. ACM, vol. 18, no. 8, 1975.
[11] T. Elmas, S. Qadeer, and S. Tasiran, “A calculus of atomic actions,” in

POPL, 2009.
[12] B. Kragl, S. Qadeer, and T. A. Henzinger, “Synchronizing the asyn-

chronous,” in CONCUR, 2018.
[13] B. Kragl, C. Enea, T. A. Henzinger, S. O. Mutluergil, and S. Qadeer,

“Inductive sequentialization of asynchronous programs,” in PLDI, 2020.
[14] B. Kragl, S. Qadeer, and T. A. Henzinger, “Refinement for structured

concurrent programs,” in CAV, 2020.
[15] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,

“Boogie: A modular reusable verifier for object-oriented programs,” in
FMCO, 2005.

[16] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing
simulations on finite and infinite graphs,” in FOCS, 1995.

[17] J. R. Wilcox, C. Flanagan, and S. N. Freund, “VerifiedFT: a verified,
high-performance precise dynamic race detector,” in PPoPP, 2018.

[18] S. O. Mutluergil and S. Tasiran, “A mechanized refinement proof of the
Chase-Lev deque using a proof system,” Computing, vol. 101, no. 1,
2019.

[19] S. Krishna, M. Emmi, C. Enea, and D. Jovanovic, “Verifying visibility-
based weak consistency,” in ESOP, 2020.

[20] A. Bouajjani, C. Enea, S. O. Mutluergil, and S. Tasiran, “Reasoning
about TSO programs using reduction and abstraction,” in CAV, 2018.

[21] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens, “On-the-fly garbage collection: An exercise in cooperation,”
Commun. ACM, vol. 21, no. 11, 1978.

[22] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, 1998.

[23] O. Padon, G. Losa, M. Sagiv, and S. Shoham, “Paxos made EPR:
decidable reasoning about distributed protocols,” Proc. ACM Program.
Lang., vol. 1, no. OOPSLA, 2017.

[24] L. Lamport, Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers, 2002.

[25] J. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in Event-
B,” Int. J. Softw. Tools Technol. Transf., vol. 12, no. 6, 2010.

[26] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in PLDI, 2016.

[27] K. L. McMillan and O. Padon, “Ivy: A multi-modal verification tool for
distributed algorithms,” in CAV, 2020.

[28] R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer,
“Iris from the ground up: A modular foundation for higher-order
concurrent separation logic,” J. Funct. Program., vol. 28, 2018.

[29] D. Frumin, R. Krebbers, and L. Birkedal, “ReLoC: A mechanised
relational logic for fine-grained concurrency,” in LICS, 2018.

[30] K. R. M. Leino and P. Müller, “A basis for verifying multi-threaded
programs,” in ESOP, 2009.

[31] B. Jacobs and F. Piessens, “Expressive modular fine-grained concurrency
specification,” in POPL, 2011.

[32] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leveraging Rust
types for modular specification and verification,” Proc. ACM Program.
Lang., vol. 3, no. OOPSLA, 2019.

[33] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn, “The VerCors tool
set: Verification of parallel and concurrent software,” in IFM, 2017.

[34] E. Cohen, M. Moskal, W. Schulte, and S. Tobies, “Local verification of
global invariants in concurrent programs,” in CAV, 2010.

[35] C. Flanagan and S. N. Freund, “The Anchor verifier for blocking and
non-blocking concurrent software,” Proc. ACM Program. Lang., vol. 4,
no. OOPSLA, 2020.

[36] S. N. Freund and S. Qadeer, “Checking concise specifications for
multithreaded software,” J. Object Technol., vol. 3, no. 6, 2004.

[37] J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer, U. Sharma,
J. R. Wilcox, and X. Zhao, “Armada: low-effort verification of high-
performance concurrent programs,” in PLDI, 2020.

[38] S. K. Lahiri, S. Qadeer, and D. Walker, “Linear maps,” in PLPV, 2011.

152

Formal Methods in Computer-Aided Design 2021

Synthesizing Pareto-Optimal Interpretations
for Black-Box Models

Hazem Torfah1 , Shetal Shah2 , Supratik Chakraborty2 , S. Akshay2 , Sanjit A. Seshia1
1University of California at Berkeley
{torfah, sseshia}@berkeley.edu

2Indian Institute of Technology Bombay
{shetals, supratik, akshayss}@cse.iitb.ac.in

Abstract—We present a new multi-objective optimization ap-
proach for synthesizing interpretations that “explain” the be-
havior of black-box machine learning models. Constructing
human-understandable interpretations for black-box models often
requires balancing conflicting objectives. A simple interpretation
may be easier to understand for humans while being less precise
in its predictions vis-a-vis a complex interpretation. Existing
methods for synthesizing interpretations use a single objective
function and are often optimized for a single class of interpreta-
tions. In contrast, we provide a more general and multi-objective
synthesis framework that allows users to choose (1) the class of
syntactic templates from which an interpretation should be syn-
thesized, and (2) quantitative measures on both the correctness
and explainability of an interpretation. For a given black-box,
our approach yields a set of Pareto-optimal interpretations with
respect to the correctness and explainability measures. We show
that the underlying multi-objective optimization problem can be
solved via a reduction to quantitative constraint solving, such as
weighted maximum satisfiability. To demonstrate the benefits of
our approach, we have applied it to synthesize interpretations
for black-box neural-network classifiers. Our experiments show
that there often exists a rich and varied set of choices for
interpretations that are missed by existing approaches.

I. INTRODUCTION

Machine learning (ML) components, especially deep neu-
ral networks (DNNs), are increasingly being deployed in
domains where trustworthiness and accountability are major
concerns. Such domains include health care [5], automotive
systems [28], finance [21], loans and mortgages [25], [33], and
cyber-security [10] among others. For a system to be consid-
ered accountable and trustworthy, it is necessary to provide un-
derstandable explanations to (possibly expert) humans of why
the system took specific actions/decisions in response to inputs
of concern. This requires the availability of models that are
human-understandable, and that also predict the outcome of
different components of the system with reasonable accuracy.
Laws and regulations, such as the General Data Protection
Regulation (GDPR) in Europe [1], are already emerging with
requirements on explainability of ML components in such
systems. Unfortunately, the working of ML components like
DNNs can be extremely complex to comprehend, and more
so when the components are used as black boxes. Therefore,
there is an urgent need for automated techniques that generate
“easy-to-understand” and “targeted” interpretations of black-
box ML components, with formal guarantees about tradeoffs
between correctness and explainability.

Synthesizing a “good” interpretation of a black-box ML
component often requires striking the right balance between
correctness or accuracy of the interpretation (measured in
terms of fidelity, misclassification rate of predictions etc.) and
explainability or understandability (approximated by the size
of the ML model – e.g., depth of decision tree/list/diagram,
number and nature of predicates used, etc.). In most cases, the
correctness and explainability measures are in direct conflict
with each other. Thus, a simple interpretation that is easily
understood by humans may disagree in its predictions with the
output of a black-box ML component for many input instances,
whereas an interpretation that correctly predicts the output for
most input instances may be too large and unwieldy for human
comprehension. This is not surprising since components like
DNNs are often used to learn highly non-trivial functions for
which simple models are not available. Therefore, synthesis
of interpretations for black-box ML components is inherently
a multi-objective optimization problem with conflicting objec-
tives, and Pareto optimality is the best we can hope for when
synthesizing such interpretations.

The literature contains a rich collection of techniques for
synthesis of interpretations for black-box ML components
(see, for example, recent surveys by [2] and [13]). Most of
these approaches optimize a single correctness measure (e.g.
misclassification rate on a set of samples) while systemati-
cally constraining some explainability measure (e.g. number
of nodes or depth of a decision tree). Examples of such
techniques include [19] wherein sparse logical formulae are
synthesized, and also recent approaches to learning optimal
decision trees using constraint programming [35]–[37], item-
set/rulelist mining [3] and SAT-based techniques [6], [18],
[27], among others. These approaches often allow efficient
generation of a single interpretation with high correctness mea-
sure and satisfying user-provided explainability constraints.
However, no formal guarantees of Pareto-optimality (w.r.t.
correctness and explainability) are provided. Furthermore,
these techniques do not compute the set of all Pareto-optimal
interpretations, thereby constraining the choice of which in-
terpretation to use for a given application.

In this paper, we present a novel multi-objective opti-
mization approach for synthesizing Pareto-optimal interpre-
tations of black-box ML components, using an off-the-shelf
quantitative constraint solver (weighted MaxSAT solver in

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 24 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-9628-1200
https://orcid.org/0000-0002-7897-4900
https://orcid.org/0000-0002-7527-7675
https://orcid.org/0000-0002-2471-5997
https://orcid.org/0000-0001-6190-8707
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_24
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_24
https://creativecommons.org/licenses/by/4.0/

our case). For each problem instance, our approach yields
a set of interpretations that correspond to all Pareto-optimal
combinations of correctness and explainability measures. This
contrasts sharply with earlier approaches such as [3], [6],
[18], [19], [27], [35]–[37] that always yield a single inter-
pretation, leaving the user with no choice of exploring the
trade-off between correctness and explainability of alternative
interpretations. Similar to existing work, we use syntactic
constraints to restrict the class of interpretations over which
to search. Unlike earlier approaches, however, we do not
combine quantitative correctness and explainability measures
into a single optimization objective. Any such mapping of
an inherently multi-dimensional optimization problem to the
uni-dimensional case results in exclusion of some Pareto-
optimal solutions in general. Given that quantitative explain-
ability measures are often just approximations of subjective
preferences of the end-user, we believe it is important to
present the entire set of Pareto-optimal interpretations, and
leave the choice of the “best” interpretation to the user. As our
experiments show, there is significant diversity among Pareto-
optimal interpretations, and a user aware of this diversity can
make an informed choice for a specific application.

The syntactic constraints considered in this paper restrict the
space of interpretations to decision diagrams (a generalization
of decision trees) with specified bounds on the number of
nodes, predicates and branching factors. For simplicity, we let
the set of predicates be pre-determined but potentially large,
and with possibly different relative preferences for different
predicates. We focus on the setting where the black-box ML
model can only be treated as an input-output oracle, i.e., given
an input, we can observe its output and nothing else. Addi-
tionally, we do not have access to training or test data used
to create the black-box component. Our correctness measure
is therefore based on querying the black-box component with
random samples chosen from its input space, where the sample
set size is carefully chosen to provide statistical guarantees of
near-optimality. Our explainability measure takes into account
user preferences of predicates and also size of the interpre-
tation, prefering smaller interpretations over larger ones. The
overall framework is, however, general enough to admit other
syntactic classes (beyond decision diagrams), and also other
correctness and explainability measures.

We have implemented our approach in a prototype tool and
applied it to synthesize Pareto-optimal interpretations for some
black-box neural network classifiers. Our results exhibit the
richness of choices available to the end-user in each case,
none of which would be exposed by existing methods that
generate only a single optimal interpretation. Indeed, we find
that significant improvements in explainability can sometimes
be achieved by only a marginal reduction of accuracy.

Our primary contributions can be summarized as follows:

1) We formulate the Pareto-optimal interpretation synthesis
problem for black-box ML components.

2) We show that finding a single Pareto-optimal inter-
pretation can be formulated as a weighted MaxSAT

problem, for some meaningful choices of correctness
and explainability scores.

3) We present a divide-and-conquer algorithm for synthe-
sizing interpretations for all Pareto-optimal combina-
tions of correctness and explainability scores.

4) We provide formal guarantees of soundness, complete-
ness and universality of our algorithm, and also statisti-
cal guarantees of near-optimality when only a subset of
behaviors of a black-box component is sampled.

5) We build a prototype tool and apply it to a collection of
black-box neural network classifiers: our results show
that significant diversity exists among Pareto-optimal
interpretations which earlier tools fail to discover.

II. MOTIVATING EXAMPLE

We start with an example, adapted from [11], that illustrates
the diversity that exists among Pareto-optimal interpretations
of black-box ML models. Consider a scenario where an
airplane uses a neural network to autonomously taxi along
a runway, relying on a camera sensor. Suppose the plane is
expected to follow the runway centerline within a tolerance
of 2.5 meters. The airplane is equipped with monitoring mod-
ules that decide under what circumstances certain learning-
enabled components can be trusted to behave correctly. One
of these monitoring modules decides under what conditions the
camera-based perception module, that determines the distance
to the centerline, can be trusted to deliver the right values.
For example, the monitoring module may use the weather
condition, time of day, and initial positioning of the airplane
to decide whether the perception module’s output is reliable.
We wish to reason about this black-box monitoring module,
and hence need an understandable interpretation for it.

Given a set of user-defined predicates (viz. clouds, time
of day, and initial position of the plane), the user may favor
certain predicates over others, and also favor concise inter-
pretations. By giving favorability weights to each predicate,
we can define an explainability score that is related to the
number of nodes in the interpretation and also to the predicates
used (this is detailed later). The prediction accuracy of an
interpretation is measured w.r.t a set of examples sampled from
the black box, and is represented by a correctness score. Our
approach explores the space of interpretations, searching for
concise interpretations that use more favored predicates and
also have high accuracy. Clearly, to find a “good” interpreta-
tion that meets these conflicting goals, one must explore all
Pareto-optimal interpretations w.r.t. the criteria above.

Figure 1 shows three of the many Pareto-optimal interpreta-
tions our approach synthesized for the monitoring black-box.
Each of these has its own pros and cons, and is incomparable
with the others. The user can now choose the interpretation
that best suits the user’s purpose. For example, if interpretation
size is not of concern but accuracy is, then Figure 1(b) is
the best choice. However, if the user wants concise models
with favored predicates (related to time of day and initial
position), then Figure 1(a) is the best choice. The user may
also choose the interpretation in Figure 1(c), which is only

154

booboo time

alert
no alert

[12pm,8am)
[8am,12pm)

(a) Pareto-optimal interpretation with correctness
measure c = 0.61 and explainability measure
e = 0.95

booboo clouds

time

time

pos

pos

alert
no alert

0,2,3

54

1

[8am,12pm)

[12pm,8am)

≥ 2.5m

< 2.5m
[12pm,8am) [8am,12pm)

[0.5,3.5m)

≥ 3.5m
< 0.5m

(b) Pareto-optimal interpretation with correctness mea-
sure c = 0.94, explainability measure e = 0.71

booboo pos

time
no alert

alert

≥ 2.5m< 0.5m

[0.5,2.5m)

[8am,12pm]

[12pm,8am)

(c) Pareto-optimal interpretation with correct-
ness measure c = 0.90 and explainability
measure e = 0.89

Fig. 1. Pareto-optimal decision diagram interpretations for the black-box monitoring component that decides based on time of day, cloud types, and initial
position of an airplane whether to trust a perception module to help the plane track the centerline of a runway. The correctness score is given by the prediction
accuracy w.r.t. to the used sample set. The explainability score is the normalized sum of weights of used predicates and unused nodes.

slightly less accurate than that in Figure 1(b), but has a higher
explainability score. In fact, Figure 1(c) represents a healthy
balance between accuracy and explainability. According to it,
the perception module can be trusted only during morning
hours if the plane starts no more than 2.5m from the centerline,
or at any time if the plane starts within 0.5m of the centerline.

Tools that use a single-objective function to synthesize
interpretations can only find one of these Pareto-optimal inter-
pretations, depending on the relative weights given to accuracy
and explainability. The rich diversity among Pareto-optimal
interpretations is completely missed by such tools, effectively
restricting the user’s choice of a “good” interpretation.

III. PARETO-OPTIMAL INTERPRETATION SYNTHESIS

In this section, we formalize the Pareto-optimal interpre-
tation synthesis problem and present a solution (for specific
choices of correctness and explainability scores) using a quan-
titative constraint satisfaction engine. In our case, this engine
is an off-the-shelf weighted maximum satisfiability solver. The
key idea is that the user sets syntactic restrictions on the class
of considered interpretations as well as quantitative objectives
for evaluating the interpretations. The quantitative objectives
are defined using two inherently incomparable measures –
the explainability measure and the correctness measure. The
explainability measure relates to “ease” of understanding of
the interpretation by an end-user, while the correctness mea-
sure relates to how precisely the interpretation explains the
behavior of the black-box model on a given set of sam-
ples. Examples of quantitative correctness measures include
accuracy, recall, precision, F1-score [34], while examples of
explainability measures include those that reward usage of
concise interpretations and less complex predicates.

Since our access to the black-box model is only via in-
put/output samples, the correctness measure referred to above
is defined with respect to a set of samples, and not with respect
to the black-box model in its entirety. While this may appear
ad-hoc at first sight, we show in Section IV that rigorous
statistical guarantees can indeed be provided with sufficiently
many samples.

A. Formal problem definition

We now give a formal definition of the Pareto-optimal
interpretation synthesis problem. An interpretation is simply a
syntactic structure, viz. decision tree, decision diagram, linear
model, etc. We will fix a class of interpretations E over an
input domain I and output domain O. For an interpretation
E ∈ E , we define fE ∈ (I → O) to be the semantic function
that is computed by E. Note that different interpretations may
compute the same semantic function.

Every interpretation E ∈ E is associated with a pair of real-
valued measures (c, e), where c is the correctness measure and
e is the explainability measure of E. We define a partial order
� on such pairs as: (c, e) � (c′, e′) iff c ≤ c′ and e ≤ e′.
Given a set X of (c, e) pairs, we define max� X to be the
set of �-maximal pairs in X . An interpretation E with the
pair of measures (c, e) is said to be Pareto-optimal if (c, e) is
maximal over pairs of measures of all interpretations.

Definition 1 (Pareto-optimal interpretation synthesis): Let
E be a syntactic class of interpretations over inputs I and
outputs O. Further, let S ⊆ I × O be a set of samples,
∆C : (I → O)×2(I×O) → R≥0 be a correctness measure, and
∆E : E → R≥0 an explainability measure. The Pareto-optimal
interpretation synthesis problem 〈E ,S,∆C ,∆E〉 is the multi-
objective problem of finding a Pareto-optimal interpretation
E ∈ arg max�E′∈ E (∆C(fE′ ,S),∆E(E

′)).
We interpret ∆C(fE ,S) as a measure of closeness between

the semantic function fE of interpretation E and the semantic
constraints defined by a set S of samples. An optimally correct
interpretation is one with maximal closeness. An example of
such a measure is the prediction accuracy |{(i,o)∈S|fE(i)=o}|

|S| .
The problem can also be defined in terms of the “distance”
between an interpretation and the semantic constraints defined
by S , in which case, the optimization problem is one of
minimization. An example of such a measure is the misclas-
sification rate, which is one minus the prediction accuracy.
Similarly, for ∆E(·), we choose to define it as a reward
function that we want to maximize, but it can also be dually
defined as a cost function we want to minimize.

155

For each �-maximal pair of measures, there can be multiple
corresponding interpretations realizing the measures. We don’t
distinguish between them for purposes of this paper. The
following definition is therefore relevant.

Definition 2 (Minimal representative set): A set Γ
of Pareto-optimal interpretations is a minimal represen-
tative set for 〈E ,S,∆C ,∆E〉 if for every (c, e) ∈
max�E∈E(∆C(fE ,S),∆E(E)), there is exactly one interpre-
tation E′ ∈ Γ such that (∆C(fE′ ,S),∆E(E

′)) = (c, e).
Our goal can therefore be stated as one of finding a minimal
representative set of interpretations for a black-box model.

B. Synthesis via weighted maximum satisfiability

We now discuss how to synthesize one (of possibly many)
Pareto-optimal interpretation for specific choices of E , ∆C and
∆E , by encoding the synthesis problem as a weighted maxi-
mum satisfiability problem (weighted MAXSAT). For purposes
of our discussion, we choose E to be the class of bounded
multi-valued decision diagrams, i.e., decision diagrams with
multiple branching at each node, where the branching is gov-
erned by decision predicates, and with a bound on the number
of decision nodes (see, e.g., diamond nodes in Figure 1). We
use prediction accuracy as the correctness measure, and define
the explainability measure with weights (denoting preferences)
on the predicates and on the number of used nodes. The
encoding for several other classes of interpretations, such as
decision trees, decision rules, etc. and for other explainability
and correctness measures can be done similarly.

We start by recalling the weighted MAXSAT problem. A
Boolean formula ϕ over variables in a set X is said to be in
conjunctive normal form (CNF) if ϕ is of the form C1 ∧C2 ∧
· · ·Cm, where each Ci is a disjunction of literals (i.e. variables
or negations of variables). An assignment σ : X → {0, 1} is an
assignment of truth values to variables. If a clause Ci evaluates
to 1 under σ, we say σ satisfies Ci, denoted by σ |= Ci.

Definition 3 (Weighted Maximum Satisfiability): Given a
Boolean formula ϕ =

∧m
i=1 Ci in CNF and a weight function

w : {C1, . . . Cm} → R≥0 that assigns a non-negative real
weight to each clause, the weighted MAXSAT problem is to
find an assignment σ which maximizes

∑
{Ci| σ|=Ci} w(Ci).

In a variant of the above definition, the clauses in ϕ are
partitioned into hard and soft clauses. The problem now is
to find an assignment σ that satisfies all hard clauses and
maximizes the sum of weights of satisfied soft clauses. We
use this variant for encoding our problem.

At a high level, for an instance 〈E ,S,∆C ,∆E〉 of the
Pareto-optimal interpretation synthesis problem, we define
its encoding as a conjunction of four formulae. Specifically,
φ〈E,S,∆C,∆E〉 = φE∧φS∧φ∆C∧φ∆E where, (i) φE encodes the
syntactic restrictions, i.e., bounded multi-valued decision dia-
grams with the permitted predicates (features and branchings)
and labels; (ii) φS encodes the semantic constraints, i.e., the
relation between the samples in S and an interpretation satisfy-
ing φE ; (iii) φ∆C encodes the correctness measure, e.g., in case
of prediction accuracy it encodes whether an interpretation
agrees on a sample; and finally (iv) φ∆E defines constraints

that encode certain structural aspects of an interpretation, e.g.,
what predicates were chosen and whether a node was used.
We discuss some details of these formulas below, leaving the
full encoding to the long version of this paper at [31].

a) Encoding of the interpretation class (φE): We start by
discussing the encoding for our interpretation class of bounded
multi-valued decision diagrams over inputs I and outputs
O. These diagrams are restricted by a finite set of decision
predicates, denoted by P . For example, in Figure 1(a), the
initial node uses the “time of day” predicate with branchings:
{[8am-12pm], [12pm-8am]}. Let L be a set of output labels,
e.g., in Figure 1, we have two labels, “alert” and “no alert”. An
interpretation E ∈ E is a multi-valued decision diagram over
a finite set of nodes N , where each internal node corresponds
to a decision predicate p ∈ P and each leaf to an output label
` ∈ L. Outgoing transitions of a node are labelled according to
the branchings of the predicate corresponding to the node. We
remark that features are distinct from inputs to the black-box.
For example, in the decision diagrams in Figure 1 the feature
“pos” uses the latitude and longitude inputs to compute the
initial position of the plane. Furthermore, the same predicate
may appear on different nodes in the decision diagram, but not
more than once along a path. For a given P , L, and a bound
n on the number of nodes N in the decision diagram, the
formula φE encodes an acyclic decision diagram of at most
n-nodes over a set P of predicates, with leaves labeled by
elements of L.

b) Encoding of the samples: The formula φS encodes
the relation between the samples and the interpretation φE . It
uses an auxiliary variable m(i,o) for each sample (i, o) in the
set S . Logically, m(i,o) is set to true iff the interpretation given
by a satisfying assignment of φE produces the output label o
when fed the input i. For decision diagrams, this is encoded
by symbolically matching the input i to a decision path in the
diagram, and by comparing the value of o with that of the
label reached at the end of the decision path. Note that the
number of these auxiliary variables grows linearly with the
size of the sample set.

c) Encoding the correctness measure (φ∆C): To encode
∆C , we add a unit soft clause (i.e., a clause with only one
literal) m(i,o) for each sample (i, o). By assigning appropriate
weights to these unit clauses and by maximizing the sum of
weights of satisfied clauses (see Definition 3), we obtain an
interpretation that maximizes ∆C with respect to the sample
set S . E.g., if ∆C represents the prediction accuracy, then
assigning a weight of 1 to each unit clause m(i,o) gives us
an interpretation that agrees on a maximal number of samples
in S . If the user is interested in interpretations that agree on
certain types of samples, then higher weights should be given
to these samples. More precisely, to define such measures ∆C ,
the user can provide a function w : I × O → R, that defines
these weights. For example, in the case of prediction accuracy,
w is the constant function 1.

d) Encoding the explainability measure (φ∆E): To en-
code ∆E , we add a unit clause uγ for each syntactic structure γ
of an interpretation in E and give it a weight according to how

156

important γ is. For example, in the case of decision diagrams,
using some predicates may be more favorable than others. To
encode this, we add unit clauses u(i,p) that are set to true iff
predicate p is used in node i, and assign higher weights for
clauses representing favorable predicates. Moreover, predicates
with fewer branches can be favored by using soft clauses
with appropriate weights. To further reward the synthesis of
decision diagrams with fewer nodes, we can also add unit soft
clauses ui for each node i that is set to true iff node i is not
reachable from the root node in an interpretation satisfying φE ,
and give them positive weights. In this case, by maximizing
the satisfaction of these clauses, we reward the synthesis of
small decision diagrams.

In our weighted MAXSAT formulation, we require that all
clauses resulting from a Tseitin encoding (i.e., a transformation
into CNF) of the formula φ〈E,S,∆C,∆E〉, except the unit soft
clauses mentioned above, be hard clauses. On feeding the
above formula to a MAXSAT solver, it returns a satisfying
assignment giving a concrete instantiation of the decision
diagram template that maximizes the sum of weights of m(i,o)

and uγ clauses.
The encoding described above is specific to a particular

choice of E , ∆C and ∆E . However, similar encoding can
be done for a much wider class of interpretations, and ex-
plainability and correctness measures. In fact, most types
of interpretation classes used in the literature, viz. decision
trees, decision diagrams, decision lists and sets of bounded
depth/size admit encoding as Boolean formulas. In addition,
if the computation of explainability and correctness measures
can be encoded using arithmetic circuits of bounded bit-
width, the Pareto-optimal intepretation synthesis problem can
be reduced to weighted MAXSAT by assigning appropriate
weights to bits in the bit-vector representing the measures.
The following theorem applies to our encoding, and to all
other similar encodings referred to above.

Theorem 1 (Pareto-optimality): Every solution of the
weighted MAXSAT problem φ〈E,S,∆C,∆E〉 gives a solu-
tion for the Pareto-optimal interpretation synthesis problem
〈E ,S,∆C ,∆E〉.

C. Exploring the set of Pareto-optimal interpretations

We now present an algorithm for computing a minimal
representative set of Pareto-optimal interpretations. The algo-
rithm is based on the key observation that every Pareto-optimal
measure (c, e) splits the space of measures into four regions,
depicted in Figure 2(a), (1) a region Rc,e1 of measures for
which there exists no solution, namely, all measures (c′, e′) 6=
(c, e) with c′ ≥ c and e′ ≥ e, otherwise (c, e) would not
be Pareto-optimal, (2) a region Rc,e2 of measures that are not
Pareto-optimal, namely, all points (c′, e′) 6= (c, e) with c′ ≤ c
and e′ ≤ e, (3) a region Rc,e3 with measures of potential Pareto-
optimal interpretations with better correctness measures, i.e.,
those with measures (c′, e′) with c′ > c and e′ < e, and lastly
(4) a region Rc,e4 with measures of potential Pareto-optimal
interpretations with better explainability measures, i.e., points
(c′, e′) with c′ < c and e′ > e. By synthesizing a first Pareto-

optimal interpretation using the procedure from last section,
and then dividing the search space into corresponding regions
(1)-(4), our algorithm proceeds by searching for further Pareto-
optimal interpretations with better correctness in region (3) and
better explainability in region (4). This process is repeated for
every Pareto-optimal interpretation found by our algorithm,
thus, directing the search into smaller and smaller regions until
no new Pareto-optimal interpretation can be found.

This is detailed in Algorithm 1 and the exploration process
it implements is illustrated in Figure 2. For E ,S,∆C , and
∆E , Algorithm 1 returns a minimal representative set Γ of
interpretations for all Pareto-optimal measures. To synthesize
a Pareto-optimal interpretation within a given region of mea-
sures, Algorithm 1 relies on the procedure QUINTSYNT which
given E ,S,∆C , and ∆E , in addition to a lower-bound δlE
and upper-bound δuE on the explainability measure, returns a
Pareto-optimal interpretation E with explainability measure
e such that δlE ≤ e ≤ δuE . QUINTSYNT effectively solves an
extension of the weighted MaxSAT instance defined in the last
section, in which we additionally require the explainability
measure to satisfy the constraints given by the lower-bound
δlE and upper-bound δuE . This can be done by extending the
formula φ in the last section with a fifth conjunct φδlE ,δuE .
This conjunct is satisfied if the sum of weights of the used
syntactic structures (e.g. in the case of decision diagrams, this
will be sum of weights of the satisfied clauses u(i,p) and
ui) lies within the given bounds. We leave details of this
encoding to [31], but intuitively, we encode a binary adder
that sums up the weights of satisfied u(i,p) and ui clauses and
compare the results to binary encodings of the bounds. To
fix the number of bits to encode both the adder and bounds,
we normalize the weights to values between 0 and 1 up to a
certain floating-point precision k. Now let us go further into
Algorithm 1 while elaborating on why it suffices to only bound
the explainability measure when exploring regions (3) and (4)
depicted in Figure 2(a).

Initially, Algorithm 1 explores the entire set of Pareto-
optimal solution space. To this end, the exploration set W
is initialized with the point (0, 1, 0) (line 2) defining a lower
bound on the explainability measure, an upper-bound on the
explainability measure, and a lower-bound on the correctness
measure, respectively. For every point (δlE , δ

u
E , δC) in W ,

QUINTSYNT synthesizes a Pareto-optimal region within the
explainability measure bounds defined by δlE and δuE (line 5).
If an interpretation E is found with measures c and e, i.e.,
E 6= ⊥ (line 6), the algorithm further divides the search space
based on the following case distinction:
• if c > δC , then a new Pareto-optimal interpretation with

measures (c, e) is found and the regions Rc,e3 and Rc,e4

defined by the points (δlE , ↓e, c) and (↑e, δuE , δC), respec-
tively, are added to W (lines 9 and 10). The operators ↓
and ↑define the predecessor and successor value of the
value e (we assume that the values are discrete and hence
the predecessor and successor exist). For example, if the
interpretation synthesized by QUINTSYNT is one with
measures c′, e′ as depicted in Figure 2(b), then the region

157

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c, e)

Rc,e1

Rc,e2

Rc,e3

Rc,e4

∆E

∆
C

(a) First iteration: Exploring region defined by bounds (0, 1, 0).
Expand W with new regions Rc,e

3 and Rc,e
4 by adding the points

(0, ↓e0, c0) and (↑e0, 1, 0). No Pareto-optimal points exist in the
red region.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c, e)

Rc,e4

(c′, e′)

Rc
′,e′

4

Rc
′,e′

3 Rc
′,e′

1

∆E

∆
C

(b) Exploring the region Rc,e
3 . A new Pareto-optimal interpretation

is found with measures (c′, e′). Add the points (0, ↓e′, c′) and
(↑e′, ↓e, c) to W .

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c, e)

(c′, e′)

Rc
′,e′

3 Rc
′,e′

1

(c′′, e′′)

(c, e′′)

Rc,e
′′

1Rc,e
′′

3

(c′′′, e′′′)

Rc′′′,e′′′

3

∆E

∆
C

(c) Exploring region Rc′,e′

4 . Optimal interpretation had correctness
measure c′′ < c. Exclude region Rc,e′′

1 and add new region
defined by (↑e′, ↓e′′, c) to W . For another Pareto-optimal point
(c′′′, e′′′), no solution found when exploring its region Rc′′′,e′′′

3 .

Fig. 2. An illustration of Algorithm 1.

Algorithm 1 EXPLOREPOI
Input: E , S , ∆C , ∆E
Output: Minimal representative set Γ for 〈E , S , ∆C , ∆E〉

1: Γ := ∅
2: W := {(0, 1, 0)}
3: while W 6= ∅ do
4: (δlE , δ

u
E , δC) := pop(W)

5: (E, (c, e)) = QUINTSYNT(E ,S,∆C ,∆E , δlE , δuE)
6: if E 6= ⊥ then
7: if c > δC then
8: Γ := Γ ∪ {(E, (c, e)}
9: push(W, (δlE , ↓e, c))

10: push(W, (↑e, δuE , δC))
11: else
12: push(W, (δlE , ↓e, δC))
13: end if
14: end if
15: end while
16: return Γ

Rc
′,e′

4 is be captured by the point (↑ (e′), ↓ (e), c). The
region Rc

′,e′

3 is captured by (0, ↓(e′), c′). Notice that we
do not need to include an upper bound on the correctness
measure as it is already implicitly defined by the Rc,e1

region of any Pareto-optimal point (c, e). For example,
in Figure 2(b) the upper bound on the correctness for
region Rc

′,e′

4 is already captured through the fact that no
Pareto-optimal solutions exist in Rc

′,e′

1 .
• if c ≤ δC , then (c, e) cannot be Pareto-optimal, be-

cause we already know that there is a Pareto-optimal
interpretation with measures (δC , ↑δuE). In this case, we
can exclude the search in the region RδC,e1 , because if
there was any Pareto-optimal interpretation with measures
(ĉ, ê) in RδC,e1 , then QUINTSYNT would have found
this interpretation. Thus, Algorithm 1 further prunes the
search region to a smaller region defined by (δlE , ↓e, δC)
(line 12). For example, if Algorithm 1 used QUINTSYNT

to synthesize an interpretation from Rc
′,e′

4 , and returned a
solution with measures (c′′, e′′) as depicted in Figure 2(c),
then we can exclude the search in region Rc,e

′′

1 and add
the region Rc,e

′′

3 to W .
Lastly, if QUINTSYNT returns no interpretation, then we

can immediately exclude the searched region from further
exploration and thus no new points are added to W in this
case. For example, as shown in Figure 2(c), if QUINTSYNT

found no Pareto-optimal interpretations in Rc
′′′,e′′′

3 , then this
region is excluded from the search and Algorithm 1 continues
with the next available point in W .

Next we show some important properties of Algorithm 1.
Lemma 1 (Soundness): For an instance 〈E ,S,∆C ,∆E〉

of the Pareto-optimal interpretation synthesis problem, if
(E, (c, e)) ∈ EXPLOREPOI(E ,S,∆C ,∆E), then (c, e) ∈
max
E′∈E

�(∆C(fE′ ,S),∆E(E
′)).

In the rest of this section, we assume that each of the
explainability measures has finitely many discrete values, as
they are defined as floating points up to a certain precision.
Thus, we obtain that the range of ∆E is finite, which allows
us to obtain the following results.

Lemma 2 (Completeness): For an instance 〈E ,S,∆C ,∆E〉
of the Pareto-optimal interpretation synthesis problem, if
(c, e) ∈ max

E′∈E
�(∆C(fE′ ,S),∆E(E

′)), then there is an in-

terpretation E with measures (c, e) such that (E, (c, e)) ∈
EXPLOREPOI(E ,S,∆C ,∆E).

We summarize the correctness result next which follows
immediately from Lemmas 1 and 2.

Theorem 2 (Correctness of Algorithm 1): For a class of
interpretations E , a finite set of samples S , and measures ∆C
and ∆E , the algorithm EXPLOREPOI terminates and returns
a minimal representative set for (E ,S,∆C ,∆E).

Algorithm EXPLOREPOI solves the interpretation synthesis
problem as a multi-objective optimization problem. If we were
to solve the same problem using single-objective optimization,
it would be necessary to combine the accuracy and explainabil-
ity measures for every interpretation to yield a single hybrid
measure. Let λ : R×R→ R be a function that yields such a

158

measure. Since higher values of c and e always increase the
desirability of an interpretation, we require λ to be strictly
increasing, i.e., (c, e) ≺ (c′, e′) =⇒ λ(c, e) < λ(c′, e′).
For example, λ(c, e) = w1 · c+ w2 · e is a strictly increasing
function for every w1, w2 > 0. Then, for any (c, e) pair that
is maximal wrt such a function λ, our algorithm can find an
interpretation with this measure pair. Formally,

Theorem 3 (Universality): For every strictly increasing
function λ : R × R → R and every 〈E ,S,∆C ,∆E〉 if E ∈
arg max

E′∈E
(λ(∆C(fE′ ,S),∆E(E

′))), then there exists an inter-

pretation E? ∈ E such that (i) ∆C(fE ,S) = ∆C(fE? ,S), (ii)
∆E(E) = ∆E(E

?), and (iii) (E?, (∆C(fE? ,S),∆E(E
?))) ∈

EXPLOREPOI(E ,S,∆C ,∆E).
We conclude the section with some remarks on Algorithm 1.
Remark 1: Algorithm 1 can also be applied interactively

as a conversation between synthesizer and user. Given a
Pareto-optimal interpretation, the user may guide the search to
interpretations that are more explainable or to those with more
accuracy, until the user has found an optimal interpretation.

Remark 2: Note that there might be multiple interpretations
with the same pair (c, e). In this case, Algorithm 1 will add
only one of them as a representative interpretation, since the
others are indistinguishable wrt correctness and explainability.

Finally, we can also search for Pareto-optimal solutions
based on regions solely bounded on the correctness measure.
We choose to use bounds on the explainability measure,
because the sample sets tend to be large and will result in
much larger encodings.

IV. STATISTICAL GUARANTEES FOR BLACK-BOX MODELS

In Section III, the correctness of an interpretation E, defined
using a measure ∆C , was determined with respect to a set
of samples S obtained from the black-box model B. Our ap-
proach guarantees that E is optimal for S and the measure ∆C .
Our ultimate goal, however, is to synthesize an interpretation
E that is optimal with respect to the entire black-box model B,
i.e., w.r.t. the set SB = {(i, o) | fB(i) = o, i ∈ I}. Obtaining
an exhaustive set of samples from a black-box model is often
not practical. The question that we, therefore, raise in this
section is: how large must S be such that it is not misleading,
i.e., optimal interpretations synthesized by our approach for S
do not overfit the set, and thus the guarantees obtained over
S can be adopted for SB?

The answer to the above question lies in the theory of
Probably Approximately Correct (PAC) Learnability [32]. The
notion of a loss function, `, that must be minimized to obtain
an optimal interpretation, is central to this discussion. For
our purposes, the loss function may be viewed as 1 − ∆C ,
where the range of the (normalized) correctness measure ∆C
is assumed to be [0, 1]. Thus for every (i, o) ∈ I × O, and
f ∈ I → O, we define `(f, (i, o)) = 1 − ∆C(f, {(i, o)}).
For technical reasons, we also assume that for every set S
of (i, o) samples, we have ∆C(f,S) =

∑
(i,o)∈S ∆C(f,{(i,o)})

|S| .
This is true, for example, if ∆C is the prediction accuracy (the
loss function being the misprediction rate in this case). Note

that in this case, the loss function for the sample set S is given
by

∑
(i,o)∈S `(f,(i,o))

|S| = 1−∆C(f,S).
A class of interpretations (or hypotheses) E over inputs I

and outputs O is said to be PAC-learnable with respect to the
set Z = I ×O and a loss function ` : (I → O)×Z → [0, 1],
if there exists a function mE : (0, 1)2 → N and a learning
algorithm with the following property: For every ε, δ ∈ (0, 1)
and for every distribution D over Z, when running the learning
algorithm on m ≥ mE(ε, δ) i.i.d. samples generated by D, the
algorithm returns a hypothesis E such that, with probability
(confidence) of at least 1− δ, LD(fE)− min

E′∈ E
LD(fE′) ≤ ε,

where LD(fE) = Ez∼D[`(fE , z)]. Furthermore, choosing an
interpretation E ∈ E that minimizes

∑
z∈S `(fE ,z)

|S| suffices for
the learning algorithm in the above definition [32].

It is known that every finite class of interpretations is PAC-
learnable due to the uniform convergence property [32]. In
fact, the sample complexity, i.e., the function mE , can be
determined in such cases in terms of |E|, δ and ε. Under
the standard realizability assumption, i.e assuming E includes
an interpretation E such that fE implements the semantic
function fB of the black-box, mE is bounded above by
d log (|E|/δ)

ε e. This bound increases to d 2 log (2|E|/δ)
ε2 e if we do

not make the realizability assumption [32].
From the results above, if we use the mE bound for the

sample size, we get interpretations that are very close to the
optimal interpretation within the class E with high probability.
Of course, sans the realizability assumption, this does not
necessarily mean the obtained interpretation is very close
to the black-box model. The latter depends highly on the
class of interpretations. Note also that the price for the PAC
guarantee is that we may have to work with an increased size
of the sample set S , as given by mE . In general, this affects
the scalability of our synthesis procedure, since size of the
weighted MAXSAT formula increases linearly with |S|. This
can limit how small δ and ε can be in practice. Nevertheless,
as we show in Section V, we are able to use fairly small values
of δ and ε in our experiments.

V. EVALUATION

a) Benchmarks: We apply our approach to three black-
box models: a decision module for predicting the performance
of a perception module in an airplane (AP), a bank loan
predictor (BL), and a solvability predictor (TP).

The decision module predicts, based on the time of day, the
cloud types, and initial positioning of an airplane on a runway,
whether a perception module used by the plane can be trusted
to behave correctly. The decision module is an implementation
of a decision tree that was trained on data collected from 200
simulations, using the XPlane (x-plane.org) simulator.

The bank loan predictor is a deep neural network that was
trained on synthetic data that we created. The training set
included 100000 entries chosen such that majority of people
with age between 18 to 29 years, and those with age between
30 and 49 years but with income less than $6000, were denied
the loan. The network has five dense fully connected hidden

159

x-plane.org

layers with 200 ReLU’s each, in addition to a softmax layer
and the output layer comprised of two nodes.

The solvability predictor is a neural network built to predict
the solvability of first-order formulas by a theorem prover
with respect to percentage of unit clauses and average clause
length in a formula. The network had three hidden dense fully
connected layers each with 200 ReLU’s. The data used to train
the neural network can be found on the UCI machine learning
repository [8]. We used the data for heuristic H1 from [8],
thus predicting solvability for H1.

b) Experiments and setup: We conducted two types
of experiments: (1) application of our exploration algorithm
on the three benchmarks (2) performance evaluation of
QUINTSYNT. The MaxSAT engine used an implementation
of RC2 in PySAT [16], [17]. All experiments were conducted
on a 2.4GHz Quad-core machine with 8GB of RAM. For ad-
ditional details of the experiments and results, please see [31].

c) Exploring the Pareto-optimal space: We ran our ap-
proach on the three benchmarks mentioned above. We used
confidence measure δ = 0.05 and error margin ε = 0.05 to
determine the size of the sample set (as given in Table I)
under the realizability assumption referred to in Section IV.
Figures 3(a) to 3(c) show the measures of the Pareto-optimal
interpretations found by our exploration algorithm. We used
prediction accuracy for correctness (recall this satisfies the
technical assumption mentioned in Section IV), and an ex-
plainability measure that favored decision diagrams of smaller
size with predicates having a fewer number of branchings.

For all three benchmarks we found a variety of inter-
pretations with interesting tradeoffs between the correctness
and explainability measures, reflected by the blue squares in
each plot. The exploration algorithm shows that searching for
interpretations that are optimal only in size or in accuracy may
result in unfavorable solutions. For example, in Figure 3(a)
we see that the interpretation with highest accuracy has very
low explainability. However, a very small tradeoff in accuracy
resulted in significantly more explainable interpretations.

d) Performance: Table I presents our results on each
benchmark and gives the confidence value δ, error rate ε and
the number of samples |S| used for each run. The number of
Pareto-optimal points (PO), total number of points explored
(TNP) and minimum, maximum and median times to find
a Pareto-optimal interpretation are also shown. The number
shown in parenthesis next to each benchmark is the number
of predicates used. From Table I we can see that the number
of Pareto-optimal (PO) points is considerably smaller than the
total number of points explored (TNP). The minimum time
taken to find an interpretation was less than 3 seconds for all
benchmarks, but there were a few points in the Pareto-optimal
space where finding an interpretation took considerably more
time (see the maximum times). For most Pareto-optimal points
though, the time taken to the find an interpretation was less
than 20 seconds, as demonstrated by the median values. If
an interpretation did not exist for a combination of correct-
ness and explanability measures, the MaxSAT solver returned
UNSAT in less than a second in all performance runs.

TABLE I
PERFORMANCE OF QUINTSYNT: EXPLORATION OF THE ENTIRE

PARETO-OPTIMAL SPACE

Bench Explored min max median unsat
mark δ,ε |S| (PO, TNP) time (s) time (s) time (s) time (s)

Theorem 0.05, 0.05 338 4, 20 0.767 3.392 1.138 < 1
Prover (6) 0.05, 0.03 703 3, 28 2.051 18.148 3.643 < 1

Air 0.05, 0.05 333 7, 25 1.709 388.527 5.696 < 1
plane (3) 0.05, 0.03 555 5, 26 2.513 616.520 11.222 < 1

Bank 0.05, 0.05 365 7, 27 1.927 387.599 8.975 < 1
Loan (4) 0.05, 0.03 608 4, 27 2.855 1299.196 17.998 < 1

As none of the other interpretation synthesis tools in the
literature compute the set of all Pareto optimal interpretations,
we omit comparison with other tools (any such comparison
wouldn’t be fair, especially when using different notions for
explainability). However, to understand if the variation in run-
ning times is inherent to the problem, we performed a similar
experiment with MinDS, a tool for learning decision sets [38].
In MinDS, correctness and explainability are combined in
a single objective and the contribution of the explainability
measure is governed by a parameter λ. We ran MinDS for
15 values of λ and found interpretations for all these values.
We observed again (Table II) that the time taken to find
interpretations for some λ was much more than others.

Note that unlike in our approach, running MinDS in this
manner does not guarantee that the entire Pareto-optimal space
of interpretations has been obtained. Finding all Pareto optimal
points by varying the weights of explainability and correctness
measures is also not feasible, since this requires trying out all
(infinitely many) weight combinations. While some decision
sets learned by MinDS were indeed semantically equivalent to
some of the Pareto-optimal interpretations synthesized by our
approach, some interpretations that our methods found did not
have a decision set counterpart within the range of weights we
experimented on. We emphasize that running approaches like
MinDS that combine explainability and correctness measures
into single objective function may result in the same interpre-
tation being returned for different combinations of weights.
This can be avoided using our exploration method.

TABLE II
ILLUSTRATING VARIATION IN RUNNING TIMES EVEN ON

NON-EXHAUSTIVE PARETO SEARCH WITH MINDS

Bench min max median
mark δ,ε |S| time (s) time (s) time (s)

Theorem 0.05, 0.05 338 0.707 0.813 0.719
Prover (6) 0.05, 0.03 703 0.687 0.798 0.725

Air 0.05, 0.05 333 0.771 364.456 7.603
plane (3) 0.05, 0.03 555 0.748 757.639 9.687

Bank 0.05, 0.05 365 0.744 25.819 1.165
Loan (4) 0.05, 0.03 608 0.738 52.388 0.841

VI. RELATED WORK

There is a large body of work on interpreting black-box
models, where a dominant paradigm is to generate labeled
data samples and obtain an interpretable model representation
in terms of input features, some of which were discussed in
the introduction. In some applications, the aim is to explain the

160

0.4 0.6 0.8 1

0.6

0.8

1

∆E

∆
C

(a) Pareto-optimal solution for airplane perception module bench-
mark. Used decision diagrams of size 7 over 3 different predicates.

0.4 0.6 0.8 1

0.6

0.8

1

∆E

∆
C

(b) Pareto-optimal solution for the bank loan predictor benchmark.
Used decision diagrams of size 7 over 4 different predicates.

0.4 0.6 0.8 1

0.6

0.8

1

∆E

∆
C

(c) Pareto-optimal solution for the theorem prover solvability bench-
mark. Used decision diagrams of size 7 over 6 different predicates.

Fig. 3. Exploring Pareto-optimal solutions for three benchmarks. The size of the sample sets used for constructing interpretations was computed based on
confidence values δ = 0.05 and error margin ε = 0.05, as well as the size of the class of interpretation in each benchmark.

output of a black-box model in the neighbourhood of a specific
input, and specialized techniques [12], [24], [29], [30], [39]
give such local and robust explanations. Other applications
use techniques like model distillation (in the form of decision
trees [7], [9], [20], [22], [23]), counterfactual explanations [26]
etc. For further information on these techniques, we refer to
reader to the excellent surveys in [2], [13].

The work in [15], [38] comes closest to ours. In [38], the
authors encode the problem of finding an interpretation as
optimal decision sets (to a weighted MAXSAT formulation).
They present two variants: (i) optimize on accuracy (100%)
while constraining the explanability (number of literals), and
(ii) directly minimize the size of decision sets at the cost of
accuracy. In [15], sparse optimal decision trees are built using
an objective function that combines misclassification rate and
number of leaves. Solution approaches like these give a single
point of the optimized function in the Pareto-optimal space
and hence a single value for the correctness and explainability
measures.

Our Pareto-optimal interpretation synthesis problem formu-
lation can also be related to Structural Risk Minimization
(SRM), which is well-studied in the literature. Like in SRM,
we have two orthogonal measures – one that depends only
on the structure/complexity of the hypothesis/interpretation,
and the other that depends on how well the hypothe-
sis/interpretation “explains” the given sample set. The SRM
formulation (e.g., see [32], Section 7.2) effectively combines
these two measures into one and treats the problem as a single-
objective optimization problem. In contrast, our Pareto-optimal
synthesis problem is inherently a multi-objective optimization
problem. As mentioned in the introduction, such a multi-
objective optimization problem cannot be reduced to a single-
objective optimization problem in general, without potentially
excluding some (possibly important) solutions.

Finally, we note that the idea of using SAT (and related)
solvers for systematically searching for all Pareto-optimal
points has been used in other settings earlier (see, for example,
systems biology applications in [4], [14]). However, their use
in finding Pareto-optimal interpretations for black-box ML
components appears not to have been explored earlier.

VII. CONCLUSION AND FUTURE WORK

We have presented a new approach to automatically generate
a complete set of Pareto-optimal interpretations for black-
box ML models, which works in the absence of training or
test data sets. Our interpretations are obtained by instanti-
ating user-provided decision diagram templates, and satisfy
optimality conditions, while also providing formal guarantees
on the tradeoff between accuracy and explainability. We have
presented an empirical evaluation demonstrating that our ap-
proach produces compact, accurate explanatory interpretations
for neural networks used for applications such as autonomous
plane taxiing, predicting bank loans and classifying theorem-
provers. The discovery of multiple Pareto-optimal interpreta-
tions, as opposed to a single one, demonstrates the value of
the multi-objective approach.

The current work focuses on finite classes of possible
interpretations, although we allow a class to be combinatorially
large. The weighted MAXSAT encoding allows us to solve
this problem symbolically by leveraging significant recent
advances in MaxSAT solving that scale to very large solution
spaces. Using a finite, yet large hypothesis class permits us
to strike a balance between generality and practical efficiency
of our approach. An interesting avenue for futurework would
be to see if our approach can be extended to interpretation
classes of infinite cardinality but finite Vapnik-Chervonenkis
(VC) dimension. While the overall problem formulation, the
notions of Pareto-optimality of explanations, and our algorithm
for finding representative sets of explanations easily adapt to
this setting, we would need to go beyond the current weighted
MAXSAT formulation to find individual Pareto-optimal in-
terpretations. Using an optimization modulo theories (OMT)
encoding is a promising direction for such a generalization.

Acknowledgments. This work is partially supported by NSF grants 1545126
(VeHICaL), 1646208 and 1837132, by the DARPA contracts FA8750-18-C-
0101 (AA) and FA8750-20-C-0156 (SDCPS), by Berkeley Deep Drive, and by
Toyota under the iCyPhy center. We would also like to express our gratitude to
the anonymous reviewers for their in-depth reviews, constructive suggestions
and various pointers.

161

REFERENCES

[1] General Data Protection Regulation (GDPR). https://gdpr.eu/, 2018.
[2] Amina Adadi and Mohammed Berrada. Peeking inside the black-box:

A survey on Explainable Artificial Intelligence (XAI). IEEE Access,
6:52138–52160, 2018.

[3] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning Optimal
Decision Trees Using Caching Branch-and-Bound Search. In AAAI
2020, pages 3146–3153. AAAI Press, 2020.

[4] S. Akshay, Sukanya Basu, Supratik Chakraborty, Rangapriya Sundarara-
jan, and Prasanna Venkatraman. Functional Significance Checking
in Noisy Gene Regulatory Networks. In Principles and Practice of
Constraint Programming, pages 767–785, 2019.

[5] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J
Frey. Predicting the sequence specificities of DNA-and RNA-binding
proteins by deep learning. Nature biotechnology, 2015.

[6] Florent Avellaneda. Efficient Inference of Optimal Decision Trees. In
AAAI 2020, pages 3195–3202. AAAI Press, 2020.

[7] Olcay Boz. Extracting Decision Trees from Trained Neural Networks.
In Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’02, New York, NY,
USA, 2002. Association for Computing Machinery.

[8] James P. Bridge, Sean B. Holden, and Lawrence C. Paulson. Machine
Learning for First-Order Theorem Proving - Learning to Select a Good
Heuristic. J. Autom. Reasoning, 53(2):141–172, 2014. https://archive.
ics.uci.edu/ml/datasets/First-order+theorem+proving.

[9] Mark W. Craven and Jude W. Shavlik. Extracting Tree-Structured
Representations of Trained Networks. In Proceedings of the 8th
International Conference on Neural Information Processing Systems,
NIPS’95, page 24–30, Cambridge, MA, USA, 1995. MIT Press.

[10] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. Large-scale
malware classification using random projections and neural networks. In
Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 3422–3426. IEEE, 2013.

[11] Daniel J. Fremont, Johnathan Chiu, Dragos D. Margineantu, Denis
Osipychev, and Sanjit A. Seshia. Formal analysis and redesign of a
neural network-based aircraft taxiing system with VerifAI. In 32nd
International Conference on Computer Aided Verification (CAV), July
2020.

[12] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi,
Franco Turini, and Fosca Giannotti. Local Rule-Based Explanations of
Black Box Decision Systems. CoRR, abs/1805.10820, 2018.

[13] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A Survey of Methods for
Explaining Black Box Models. ACM Comput. Surv., 51(5), August 2018.

[14] Friedman A. M. He L. and Bailey-Kellogg C. A divide-and-conquer
approach to determine the Pareto frontier for optimization of protein
engineering. Proteins, 80(3):790–806, 2012.

[15] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal Sparse De-
cision Trees. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[16] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A
Python toolkit for prototyping with SAT oracles. In SAT, pages 428–437,
2018.

[17] Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an
efficient MaxSAT solver. J. Satisf. Boolean Model. Comput., 11(1):53–
64, 2019.

[18] Mikolás Janota and António Morgado. SAT-Based Encodings for
Optimal Decision Trees with Explicit Paths. In Luca Pulina and Martina
Seidl, editors, Theory and Applications of Satisfiability Testing - SAT
2020, volume 12178 of Lecture Notes in Computer Science, pages 501–
518. Springer, 2020.

[19] Susmit Jha, Tuhin Sahai, Vasumathi Raman, Alessandro Pinto, and
Michael Francis. Explaining AI Decisions Using Efficient Methods for
Learning Sparse Boolean Formulae. J. Autom. Reasoning, 63(4):1055–
1075, 2019.

[20] U. Johansson and L. Niklasson. Evolving decision trees using oracle
guides. In 2009 IEEE Symposium on Computational Intelligence and
Data Mining, pages 238–244, 2009.

[21] Eric Knorr. How PayPal beats the bad guys with machine learn-
ing. http://www.infoworld.com/article/2907877/machine-learning/how-
paypal-reduces-fraud-with-machine-learning.html, 2015.

[22] R. Krishnan, G. Sivakumar, and P. Bhattacharya. Extracting decision
trees from trained neural networks. Pattern Recognition, 32(12):1999 –
2009, 1999.

[23] Sanjay Krishnan and Eugene Wu. PALM: Machine learning explanations
for iterative debugging. In Proceedings of the 2nd Workshop on Human-
In-the-Loop Data Analytics, HILDA’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[24] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting
Model Predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 4765–4774. Curran
Associates, Inc., 2017.

[25] Douglas Merrill. AI is coming to take your mortgage woes
away. https://www.forbes.com/sites/douglasmerrill/2019/04/04/
ai-is-coming-to-take-your-mortgage-woes-away/, April 2019.

[26] Christoph Molnar. Interpretable Machine Learning. 2019. https:
//christophm.github.io/interpretable-ml-book/.

[27] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and João Marques-
Silva. Learning Optimal Decision Trees with SAT. In Jérôme Lang,
editor, International Joint Conference on Artificial Intelligence, IJCAI
2018. ijcai.org, 2018.

[28] NVIDIA. Nvidia tegra drive px: Self-driving car computer, 2015.
[29] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I

Trust You?”: Explaining the Predictions of Any Classifier. In Knowledge
Discovery and Data Mining, KDD ’16. Association for Computing
Machinery, 2016.

[30] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors:
High-Precision Model-Agnostic Explanations. In AAAI Conference on
Artificial Intelligence, 2018.

[31] Hazem Torfah Shetal Shah, Supratik Chakraborty, S. Akshay, and
Sanjit A. Seshia. Synthesizing pareto-optimal interpretations for black-
box models. CoRR arXiv, abs/2108.07307, 2021.

[32] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine
Learning: From Theory to Algorithms. Cambridge University Press,
USA, 2014.

[33] Justin Sirignano, Apaar Sadhwani, and Kay Giesecke. Deep learning
for mortgage risk, 2016.

[34] Pang-Ning Tan, Michael S. Steinbach, and Vipin Kumar. Introduction
to Data Mining. Addison-Wesley, 2005.

[35] Hélène Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy Quim-
per, and Pierre Schaus. Learning Optimal Decision Trees using Con-
straint Programming (extended abstract). In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 4765–4769. ijcai.org, 2020.

[36] Sicco Verwer and Yingqian Zhang. Learning Decision Trees with
Flexible Constraints and Objectives Using Integer Optimization. In
Domenico Salvagnin and Michele Lombardi, editors, Integration of AI
and OR Techniques in Constraint Programming, pages 94–103, Cham,
2017. Springer International Publishing.

[37] Sicco Verwer and Yingqian Zhang. Learning Optimal Classification
Trees Using a Binary Linear Program Formulation. In AAAI 2019,
pages 1625–1632. AAAI Press, 2019.

[38] Jinqiang Yu, Alexey Ignatiev, Peter J. Stuckey, and Pierre Le Bodic.
Computing Optimal Decision Sets with SAT. In Principles and Practice
of Constraint Programming, pages 952–970, Cham, 2020. Springer
International Publishing.

[39] Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. Interpreting
Neural Network Judgments via Minimal, Stable, and Symbolic Correc-
tions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 4874–4885. Curran Associates, Inc., 2018.

162

https://gdpr.eu/
https://archive.ics.uci.edu/ml/datasets/First-order+theorem+proving
https://archive.ics.uci.edu/ml/datasets/First-order+theorem+proving
https://www.forbes.com/sites/douglasmerrill/2019/04/04/ai-is-coming-to-take-your-mortgage-woes-away/
https://www.forbes.com/sites/douglasmerrill/2019/04/04/ai-is-coming-to-take-your-mortgage-woes-away/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Formal Methods in Computer-Aided Design 2021

Dynamic Partial Order Reductions for Spinloops
Michalis Kokologiannakis

MPI-SWS
Kaiserslautern, Germany

michalis@mpi-sws.org

Xiaowei Ren
The University of British Columbia

Vancouver, Canada
xiaowei@ece.ubc.ca

Viktor Vafeiadis
MPI-SWS

Kaiserslautern, Germany
viktor@mpi-sws.org

Abstract—Stateless model checking (SMC) coupled with dy-
namic partial order reduction (DPOR) is an effective way for
automatically verifying safety properties of loop-free concurrent
programs. SMC, however, does not work well for programs with
loops because it cannot distinguish loop iterations that make
progress from ones that revisit the same state. This results in
redundant exploration that dominates the verification time.

We present SAVER (Spinloop-Aware Verifier), a memory-
model-agnostic SMC/DPOR extension that detects zero-net-effect
spinloops and avoids redundant explorations that lead to the same
local state. As confirmed by our experiments, SAVER achieves an
exponential reduction in verification time and outperforms state-
of-the-art tools in a variety of real-world benchmarks.

Index Terms—stateless model checking, spinloops

I. INTRODUCTION

Stateless model checking (SMC) [1] is a prominent tech-
nique for verifying safety properties of concurrent programs,
especially under weak memory consistency [2]–[6]. The key
design choice that makes SMC scale is that it does not
record the set of states explored, but rather uses alternative
techniques, namely dynamic partial order reduction (DPOR)
[7], [8], to avoid exploring the same state multiple times. The
downside of this choice, however, is that SMC struggles with
spinloops, i.e., loops that continuously read a shared variable
until some condition holds: as SMC does not record the set
of visited program states, it cannot distinguish loop iterations
that make progress from those that return to the same state. To
make matters even worse, such loops are ubiquitous in real-
world concurrent programs, whether lock-based or lock-free.

Consequently, spinloops typically have to be bounded. Since
bounding generally sacrifices the soundness of the verification,
one would like to use fairly large loop bounds to be confident
enough that the program verified is correct. Doing so, however,
is practically infeasible. A loop bound of N ≥ 2 typically
leads to an exponential blowup in the state space, since the
model checker explores the possibility of each spinloop failing
0, 1, . . . , N − 1 times and, for each failure, all possible stores
from which the spinloop loads(s) can read.

To avoid the blowup, the solution is to use a bound of N =
1. So far, this is typically done manually by rewriting the
program to use assume statements (a.k.a. await), special
verifier commands that block the execution of the relevant
thread when the condition of the assume is violated.

The goal of this paper is to determine conditions under
which it is sound to do such conversions automatically. As
we shall see, this turns out to be quite challenging.

First, spinloops cannot be adequately detected by a sim-
ple syntactic criterion. Since programming languages have
many ways of creating spinloops (e.g., while loops, repeat-
until loops, for-loops, goto statements), their detection is best
done after converting each program thread into a control-flow
graph (CFG). However, even there, simply removing the CFG
backedges for side-effect-free loops (i.e., loops with no stores
to global variables or to local variables that are live at the loop
header) is insufficient, as illustrated by the program below.
As a convention, in our examples, we use x, y, z for global
(shared) variables and a, b, c, ... for registers.

do a := x
while (a ̸= 0)

b := x
while (b ̸= 0) b := x

(LOOP-PEEL)

While the loop in thread I can be easily bounded by converting
it into a := x;assume(a = 0), the one in thread II cannot
because b is “live” at the header of the loop (its value is used
in the loop).

Second, some spinloops may have side-effects, but these
either do not occur on all their iterations or are never observed
by the other threads (e.g., writing to a global variable that
is not concurrently read) or cancel each other out (e.g.,
incrementing and then decrementing a variable, acquiring and
releasing a lock). As an example of the latter kind, consider
the following zero-net-effect (ZNE) spinloops extracted from
a lock implementation.

while (true)
a := fetch_add(x, 1)
if (a = 0) break
fetch_add(x,−1)

// critical section
fetch_add(x,−1)

while (true)
b := fetch_add(x, 1)
if (b = 0) break
fetch_add(x,−1)

// critical section
fetch_add(x,−1)

(INC-DEC-SPIN)
Each thread tries to acquire the lock by incrementing x. If
the lock was already taken, it decrements x and tries again.
The lock is finally released by decrementing x. Since each
decrement cancels out the previous increment, we would
like to avoid considering loop iterations with a decrement,
i.e., unsuccessful lock acquisition attempts. The soundness of
doing so depends on the context. If, for instance, there is
another thread repeatedly reading x, it may observe the value
of x flickering, which cannot happen if we bound the ZNE
loops to a single iteration. Similarly, if another thread writes
to x concurrently, the loop may no longer have a zero net
effect, rendering the transformation unsound.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 25 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-7905-9739
https://orcid.org/0000-0002-9148-8536
https://orcid.org/0000-0001-8436-0334
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_25
https://creativecommons.org/licenses/by/4.0/

To address these challenges, we develop SAVER (Spinloop-
Aware Verifier), a model checker that reduces spinloops to a
single iteration. SAVER works at the level of reduced control
flow graphs, obtained by merging bisimilar nodes. Whenever
a spinloop cannot be shown to be side-effect-free statically,
SAVER dynamically checks that the reduced spinloop itera-
tions have a zero net effect (in particular, that the context
does not observe any of their effects), and if the check fails,
it rolls back the transformation.

We remark that our results are independent of the memory
consistency model: they hold not only for sequential consis-
tency (SC), but also for weak memory models, which admit
executions that cannot be expressed as program interleavings.

II. PRELIMINARIES

In this section, we review how programs can be represented
as control flow graphs (§ II-A), how their executions can
be modeled as execution graphs (§ II-B), and how DPOR
enumerates these executions (§ II-C).

A. Control Flow Graphs

To avoid cluttering the presentation, we omit all features
irrelevant to loops and concurrency. We represent a concurrent
program P as a top-level parallel composition of threads, each
of which is modeled as a control-flow graph (CFG). A CFG is
a directed graph whose nodes are program labels and whose
edges are labeled with instructions of the following form:

Inst ∋ i ::= r := e | error | assume(e) | r := x | x := e |
r := fetch_add(x, e) | r := CAS(x, e1, e2)

where r ranges over registers (i.e., local variables), x over
global (shared) variables, and e over simple expressions built
from integer constants n, registers, and arithmetic operators:

Exp ∋ e ::= n | r | e1 + e2 | e1 − e2 | ...

Instructions comprise plain assignments; error, that halts the
program (e.g., due to a safety violation); assume(e), that
blocks the calling thread if e has the value zero; and memory
accesses. Memory accesses include r := x, that reads the
value of x and stores it in r; x := e, that stores the value con-
tained in e in the global variable x; r := fetch_add(x, e)
(fetch-and-increment) that atomically increments the value of
x by the value of e and returns the old value to r, and
r := CAS(x, e1, e2) (compare-and-swap), that atomically com-
pares the value stored in location x with the value of e1, and if
they are equal, replaces the value of x with the value of e2. The
r := CAS(x, e1, e2) instruction always returns the result of the
comparison in r. We also use the term load instruction to refer
to r := x, r := CAS(x, e1, e2), and r := fetch_add(x, e)
instructions, while we use store instruction to refer to x := e,
r := CAS(x, e1, e2), and r := fetch_add(x, e) instructions.

We assume that input programs are deterministic in that
each node n either has at most one successor (for standard
program statements), or it has two successors labeled with
assume(e) and assume(¬e) respectively (for conditionals
and loops). As an example, Fig. 1 shows the CFGs for the

1

2 3

a := x assume(a ̸= 0)

assume(a = 0)

4

5 7

6

b := x
assume(b = 0)

assume(b ̸= 0)b := x

Fig. 1. CFGs for the two threads of LOOP-PEEL.

two threads of the LOOP-PEEL program from §I. The loops
generate cycles in the CFGs, and the conditional tests (whether
to execute another loop iteration or to exit the loop) generate
the edges labeled with assume statements.

A path π in a CFG is an alternating sequence of nodes
and instructions corresponding to edges in the CFG, start-
ing and ending with a node. That is, π is of the form
n1i1n2i2n3 ... nk−1ik−1nk where (nj , ij , nj+1) is an edge in
the CFG for all 1 ≤ j < k. As it is common in the literature,
we are primarily interested in simple paths, which do not visit
the same node twice, except possibly by their last node. A
(simple) path is cyclic if it starts and ends with the same
node, while a lasso path is one whose end node is one of
its intermediate nodes. We write |π| to denote the length of
the path (i.e., the number of edges it contains), and π(k) to
project the kth node and/or instruction of the path.

We say that node a dominates b if all paths from the entry
node of the CFG to b contain a. Given a path π in a CFG, we
say that a node h of π is its header if it dominates all nodes
in π. By definition, paths can have at most one header; in the
case of reducible graphs, every cyclic path has a header. For
example, in Fig. 1, nodes 1 and 5 are the headers of the two
cyclic paths, respectively.

A loopy path is a simple path that starts and ends at its
header. Formally, a simple path π is called a loopy path of an
edge n→ h if π(1) = π(|π|) = h and π(|π| − 1) = n and h
dominates all nodes in π (i.e., h is a header of π).

B. Execution Graphs

In order to keep our approach as general as possible, we
follow the standard axiomatic approach of Alglave et al.
[9] and represent the executions of a concurrent program as
execution graphs. Using execution graphs allows us to keep
our formalism memory-model-agnostic, as our contributions
do not depend on a particular memory consistency model.

Execution graphs have two basic components:
(i) a set of events (nodes), that represent the memory ac-

cesses performed by the program, and
(ii) some relations on these events (edges), such as the

program order, which relates events in the same thread,
and the reads-from relation, which relates reads to writes
they are reading from.

The semantics of a program P is given by the set of execution
graphs that correspond to the instructions of the program and
satisfy the consistency predicate of the underlying memory
model. The purpose of the consistency predicate is to rule

164

1 [init]

W(x, 1)

W(y, 1)

R(y)

R(x)

po

rf

2 [init]

W(x, 1)

W(y, 1)

R(y)

R(x)

3 [init]

W(x, 1)

W(y, 1)

R(y)

R(x)

4 [init]

W(x, 1)

W(y, 1)

R(y)

R(x)

Fig. 2. MP: three consistent execution graphs under SC.

out executions with nonsensical edges, such as a load reading
from a store later in program order or a store that has been
overwritten by another store before the load.

To see how execution graphs model the executions of a
program, consider the following example:

x := 1
y := 1

a := y
b := x

(MP)

Under SC, the MP program has three consistent executions,
shown in Fig. 2, where the solid edges represent the program
order and the green dashed edges the reads-from relation.
As can be seen, execution 4 is inconsistent under SC—the
consistency predicate of SC forbids the load of x to read from
the initial state as the load is already aware of the x := 1
store. This execution, however, is allowed under certain weak
memory models, such as the ‘relaxed’ fragment of RC11 [10].

Let us now formally describe events and execution graphs.
For a more extensive discussion regarding execution graphs,
we refer interested readers to Kokologiannakis et al. [5].

Definition 1. An event, e ∈ Event, is either an initialization
event ⟨init l⟩ for a location l ∈ Loc or a thread event
⟨t , i , lab⟩ where t ∈ Tid is a thread identifier, i ∈ Idx

△
= N is

a serial number inside each thread, and lab ∈ Lab is a label
that takes one of the following forms:

• Read label: R(l) where l ∈ Loc is the location accessed.
• Write label: W(l , v) where l ∈ Loc is the location

accessed, and v ∈ Val
△
= Z is the value written.

• Error label: error.
• Blocked label: blocked, generated by assume(e) state-

ments when e is false.
• ZNE label: zne(x), which is used to mark ZNE loops.

Definition 2. An execution graph G consists of:

1) a set G.E of events that includes initialization events for
all locations accessed by the program, and

2) a function G.rf, called the reads-from map, that maps
each read event of G to a same-location write event of
G from where it gets its value.

Our formal definition of execution graphs does not record
the program order (po) as an explicit component because it

Algorithm 1 Dynamic Partial Order Reduction
1: procedure VERIFY(P)
2: ⟨G,Γ⟩ ← ⟨G∅,Γ∅⟩
3: do
4: VISITONE(P, G,Γ)
5: while ⟨G,Γ⟩ ← pop(Γ)

6: procedure VISITONE(P, G,Γ)
7: while consistent(G) ∧ a← nextP(G) do
8: G.E← G.E ⊎ {a}
9: if a ∈ error then exit(“error”)

10: else if a ∈ R then
11: let {w0} ⊎ ws = G.E ∩ Wloc(a)
12: G← SetRF(G,w0, a)
13: Γ← push(Γ,

{︁
SetRF(G,w, a) | w ∈ ws

}︁
)

14: else if a ∈ W then
15: CALCREVISITS(G,Γ, a)

16: CHECKZNEVALIDITY(G, a)

can be defined directly from our representation of events:

po
△
=

{︁
⟨⟨init l⟩, ⟨t , i , lab⟩⟩ ∀l , t , i , lab

}︁
∪{︁

⟨⟨t1, i1, lab1⟩, ⟨t2, i2, lab2⟩⟩ t1 = t2 ∧ i1 < i2
}︁

Initialization events precede all non-initialization events in po,
while events in the same thread are ordered according to their
serial numbers. Events from different threads are unordered.

C. Dynamic Partial Order Reduction

DPOR verifies a program by generating all of its consistent
execution graphs and checking that none of them contains an
error. To do so, DPOR typically assumes some basic prop-
erties of the consistency predicate, such as prefix-closedness
and extensibility [5], which are satisfied by all known memory
models that follow the graph representation of § II-B.

This graph representation is also very helpful for DPOR
because it encodes the independence relation that is tradition-
ally used by DPOR algorithms to decide which interleavings
should be explored. Indeed, under sequential consistency, each
graph corresponds to the set of thread interleavings that are
equivalent under the reads-from equivalence [11], [12] (or
under Mazurkiewicz equivalence if we extend the graphs to
also record the coherence order).

Algorithm 1 shows the general structure of a DPOR algo-
rithm. The procedure VERIFY verifies a concurrent program P
by starting from the graph G∅ containing only the initialization
events and an empty environment Γ∅ (Line 2), and exploring
the executions of P one by one by calling VISITONE (Line 4).
VISITONE does most of the exploration work: it explores one
full execution of P and populates Γ with alternative exploration
options. These exploration options recorded in Γ are later
explored by VERIFY (Line 5).

At each step, VISITONE extends the current execution G
by one event a (obtained via nextP(G)), as long as G remains
consistent according to the memory model (Line 7). If there

165

are no more events to add, then G is complete, and VISITONE
returns. If a denotes an error (e.g., an assertion violation), it
is reported to the user and verification terminates (Line 9).

If a is a read, then it must read from some write in G. To
this end, VISITONE calculates the set of all writes in G on the
same location as a (Line 11), and chooses one write w0 as the
reads-from option for a (Line 12). For all other same-location
writes, an alternative execution is added to Γ so that it can be
explored later by VERIFY (Line 13).

If a is a write, it needs to revisit existing reads of the
same location in G, because a was not present in the graph
when VISITONE was considering possible reads-from options
for these reads. To that end, VISITONE calls CALCREVISITS
(Line 15), which extends Γ with such alternative explorations.
Since the discussion on how these explorations are calculated
is not relevant for this paper, we do not present it here; we
refer interested readers to Kokologiannakis et al. [5], where
CALCREVISITS is explained in detail.

Note that Algorithm 1 does not have any special treatment
for assume statements. Whenever nextP(G) encounters an
assume statement whose condition is not satisfied, it returns
a blocked event and stops scheduling that thread thereafter.
When VERIFY later pops some graph that does not contain
the blocked label (e.g., because the graph represents an
alternative exploration choice before the blocked event), the
thread will be again schedulable, and other options that might
not block the assume will be considered.

III. BOUNDING EFFECT-FREE SPINLOOPS

Effect-free loop iterations that do not exit the loop are
almost unobservable: they do not affect the set of reachable
program states, and so can be ignored when verifying safety
properties of a program. (We note that for liveness properties,
effect-free loop iterations cannot be discarded that simply.
An infinite sequence of such effect-free iterations, unless
prevented by some fairness assumption about the program’s
semantics, yields a non-terminating run of the program.)

What remains to be clarified is what exactly constitutes an
effect-free loop iteration. Clearly, the iteration should not be
writing to a global variable, as otherwise other threads may
be able to observe whether the iteration took place or not.
Similarly, it should also not be assigning to any local registers
that could affect the subsequent execution of the thread itself,
i.e., to any variables that are live at the header of the loop.
Assigning to a dead variable is harmless because, by definition,
it does not affect the subsequent execution of the thread, even
if technically it might reach a slightly different local state
(differing only in the values of dead variables).

We note that spinloops need to be effect-free only along
looping paths—they may well have side-effects on paths
exiting the loop. This is frequently the case for CAS-loops,
such as the following implementation of an atomic increment:

do
a := x
success := CAS(x, a, a+ 1)

while (¬success)

(CAS-LOOP)

while (true)
h := head
t := tail
n := next [h]
h′ := head
if (h ̸= h′) continue
if (h = t)

if (n) break
CAS(tail , t, n)

else
b := CAS(head , h, n)
if (b) break

1

2

3

4

5

6

7

8

h:= ...

t:= ...

n:= ...

h′:= ...

h̸=h′

h=h′

h=t h̸=t

¬n

n

CAS(...)

b:= ...

¬b

b

Fig. 3. Simplified dequeue operation from the ms-queue benchmark and
its CFG, whose instructions are abbreviated. In the code, head , next , and
tail are global variables, while b, h, h′, n, and t are local registers.

Here, even though the loop contains a CAS, which is generally
an effectful instruction, along the looping path, the CAS fails,
and so the path is effect-free.

We also note that loops often have multiple looping paths,
only some of which are effect-free. Consider, for instance,
the while loop in Fig. 3, which is extracted from the
ms-queue benchmark of §VIII. It contains three loopy paths.
The first (through the continue statement) is trivially effect-
free because it contains only loads and assignments to dead
variables. (All local variables are dead at the loop header.) The
second path (when h = t) can have side-effects—the CAS to
tail . The third path (when h ̸= t) is again effect-free because
whenever its CAS succeeds, the function returns.

Let us now make these intuitions more formal. A path π is
pure if it either contains no store instructions or, if it contains
any, all of them are failed CASes. That is, whenever π(i) is
a store instruction, then it is of the form r := CAS(x, e1, e2)
and there is i < j < |π| such that π(j) = assume(¬r) and
for all i < k < j, π(k) does not assign to r.

Pure paths do not affect the global state, but can affect the
local state. A loopy path does not affect the local state if it
always reaches the same local state it started from. A simple
approximation to reaching the same state is for the path to not
assign to any variable that is live at its header. Putting these
conditions together, an effect-free spinloop is a pure loopy path
that does not assign to any variable live at its header. Formally:

Definition 3. A CFG edge n → h is an effect-free spinloop
backedge if every loopy path of n → h is pure and assigns
only to registers dead at h.

The spin-assume transformation removes all effect-free
spinloop backedges from the CFG. Returning to the exam-
ple in Fig. 1, the edge 2 → 1 is an effect-free spinloop
backedge; removing it transforms thread I of LOOP-PEEL
into a := x;assume(a = 0). In contrast, the backedge of
thread II (6 → 5) is not effect-free and so the spin-assume
transformation does not affect thread II.

166

IV. DETECTING MORE KINDS OF SPINLOOPS

While the spin-assume transformation defined in the previ-
ous section can detect typical cases of do-while spinloops,
it does not apply to while loops that have a non-trivial
condition.

The main problem is that the registers used to evaluate the
condition are live at the loop header, and so any loop iterations
that update these registers are deemed effectful. As a simple
example, consider the spinloop of thread II of LOOP-PEEL
from §I: register b is live at the beginning of the loop, and so
the body of the loop (b := x) is effectful. (Formally, in the
CFG of Fig. 1, register b is live at node 5—the loop header.)

One simple way to resolve this problem is to apply a
compiler transformation called loop rotation, which moves the
loop exit checks to the end of the loop. Applying loop rotation
transforms the second thread of LOOP-PEEL as follows:
b := x
while (b ̸= 0)

b := x
⇝

b := x
if (b ̸= 0)

do b := x while (b ̸= 0)

The transformed loop can be bounded with the spin-assume
transformation yielding executions with at most two loads of
x. We note that this bounding outcome is suboptimal, since
thread I of LOOP-PEEL is bounded with a single load of x.

A better approach for this example is to exploit bisimilarity
among CFG nodes. Two nodes are bisimilar if they produce
the exact same computations, i.e., if their outgoing edges can
be matched 1-to-1 in a way that every two matched edges are
labeled with the same instruction and lead to bisimilar nodes.
Bisimilarity can be computed as a greatest fixed point, starting
with the identity relation (i.e., each node being bisimilar to
itself) and adding pairs of nodes whenever they have matching
outgoing edges to nodes already calculated to be bisimilar.
For example, in Fig. 1, nodes 4 and 6 are bisimilar because
they both have only one outgoing edge labeled with the same
instruction (b := x) and leading to the same node (5).

Having detected that two (distinct) nodes a and b are
bisimilar, we can then merge them into one node by redirecting
b’s incoming edges to a and deleting node b. For example,
merging nodes 4 and 6 of Fig. 1 would add an edge from 5 to
4 with label assume(b ̸= 0), and remove node 6. Effectively,
this transformation converts the second thread of LOOP-PEEL
to a do-while loop analogous to that in its first thread, which
makes the spin-assume transformation applicable.

We note that merging bisimilar nodes is not always strictly
better than loop rotation. There are cases where loop rotation
(or a similar transformation called jump threading) can trans-
form a loop into the do-while form, but no two distinct
bisimilar nodes exist. Such cases frequently arise with CAS
loops like the following.

success := false
while (¬success)

a := x
success := CAS(x, a, a+ 1)

(CAS-LOOP2)

Here, the spin-assume transformation is not directly applicable
to CAS-LOOP2 because success is live at the loop header

and is updated by the loop body. Loop rotation and/or jump
threading, followed by dead assignment elimination, convert
this program to CAS-LOOP, which can by handled by the spin-
assume transformation. By contrast, merging bisimilar nodes
does not change the program, since the program does not
contain the same instruction twice.

V. DYNAMICALLY CHECKING PURITY

The spin-assume transformation as described in §III uses a
completely static definition of purity. If a CAS along a CFG
path cannot be determined to always fail, the path is deemed
effectful. This is, however, suboptimal for two reasons.

First, using a static purity definition prevents us from
transforming paths that are pure only under certain contexts.
For instance, consider the thread below, and assume that it is
running as part of a program that only writes the value 0 to z
(this might not be inferable statically):

do
a := z
b := CAS(x, 0, 1)

while (a = b)

1 2 3

4

a := z b := CAS(x, 0, 1)

assume(a = b)
assume(a ̸= b)

In this case, the (only) loopy path of this thread will not be
deemed pure (as the CAS is not followed by an assume(¬b)
statement), even though it will never produce observable
effects in its running context as a will always be 0.

Second, in cases where a loopy path contains a CAS
that does have observable effects, it is wasteful to explore
executions where such a CAS fails. To see this, consider again
the dequeue operation of the ms-queue example in Fig. 3.
As explained in §III, the second loopy path of this operation
is not pure, as it potentially has side-effects. Still, it does not
make sense to consider iterations where the CAS of this path
fails, as they both do not contribute to the loop exiting, and
they produce no observable side-effects.

Leveraging the insights above, we say that a CFG backedge
n → h is a potentially effect-free spinloop backedge if every
loopy path of n → h assigns only to registers dead at h.
The dynamic-spin-assume transformation marks all potentially
effect-free spinloop backedges with a dynamic purity check.
Whenever the nextP(G) function of Algorithm 1 encounters
such a check, it validates whether G contains any write event
originating from the respective loop iteration and, if not, it
returns a blocked event, thereby blocking the execution of the
respective thread. Otherwise, if the loop iteration did generate
a write event, nextP(G) proceeds with the next event.

In fact, the dynamic purity check described above can be
relaxed even further: SAVER allows loop iterations to contain
write events, as long as these only affect memory locations
that are not reachable by other threads. In turn, this proves
very useful in cases where some initialization writes need to
take place as part of a loop.

To see an example of this, consider the push operation
of the treiber-stack benchmark (cf. Fig. 4). First, a node to
be inserted to the stack is created, but this node cannot be
initialized fully: its next field needs to point to the existing

167

n := new-node()
n.value := 42
do

s := stack
n.next := s
b := CAS(stack , s, n)

while (¬b)

1

2

n := new-node()

n.value := 42

s := stack

n.next := s

b := CAS(stack , s, n)

assume(¬b)

assume(b)

Fig. 4. Simplified push operation from the treiber-stack benchmark
with its CFG: stack is a global variable, while b, n, and s are registers.

top of the stack, but the stack top might change between the
time it is read, and the time the node is created. Thus, the
push operation first reads the stack, sets it as the node’s next ,
and then tries to atomically replace the stack with the newly
created node. If the replacement succeeds, the operation exits;
otherwise, it tries again. Notice, however, that, as long as the
replacement CAS does not succeed, the store to the node’s
next remains unobserved by the other threads. Thus, it is safe
to consider failed CAS loop iterations as effect-free, and block
their exploration.

As a final remark, we observe that validating effect-free
loops dynamically makes SAVER resilient to more aggressive
loop rotation passes that convert loops to a canonical form
containing a single backedge (see §VII).

VI. HANDLING ZERO-NET-EFFECT SPINLOOPS

Let us now consider the more challenging case of zero-net-
effect (ZNE) loops. Recall that these are spinloop iterations
that do have side-effects but (1) whose side-effects cancel each
other out, and (2) whose intermediate effects are not observed
by other threads. While condition (1) can be checked pretty
well statically, condition (2) has to be checked dynamically.
In the discussion below, we focus on ZNE loops that arise
because of an atomic increment being followed by an atomic
decrement of the same location and value.

A decrement instruction at node k is a canceling decrement
in a loop h if all of h’s loopy paths that contain node k also
contain a prior opposite increment instruction, and the paths
are effect-free modulo two instructions. More formally:

Definition 4. A node k in a (minimal) CFG cycle with header
h is a canceling decrement if it has a (unique) outgoing edge
of the form r1 := fetch_add(x, n), and for every loopy
path π of h such that π(i) = k for some 1 < i < |π|, there
exists j < i such that π(j) = r2 := fetch_add(x,−n) for
some r2, and replacing the instructions at π(i) and π(j) with
plain assignments to r1 and r2 yields an effect-free path.

SAVER’s spin-zne transformation annotates all canceling
decrements so that when nextP(G) encounters them for the
first time (cf. Algorithm 1, Line 7), it generates a zne(x) event
and blocks the thread instead of generating a read event and
afterwards a write event. The zne(x) event serves as a marker
for SAVER to validate that the transformation is sound.

Validation of ZNE loops happens every time a new event
e is added to the graph by calling the CHECKZNEVALIDITY

[init]

R(x)

W(x, 1)

zne(x)

R(x)

rf

rf

Fig. 5. Execution graph encountered during the exploration of ZNE-OBS.

routine (Algorithm 1, Line 16). If we use the pair ⟨w, z⟩ to
represent a blocked ZNE loop iteration with w being the event
corresponding to the increment of the ZNE loop and z being
the zne event, the addition of e can render the reduction of
the ⟨w, z⟩ loop unsound in one of the following two ways.

First, if e writes to the same location as w, it can be ordered
(in coherence) between w and the blocked decrement (after
z), and so, unless e is also an atomic increment, w and its
corresponding decrement will no longer cancel each other out.

Second, if e reads from w and there is already some other
read event reading from w, then, in an alternate execution,
it is possible for e to read from the canceling decrement
instead of w, thereby observing the value of the shared variable
flickering. To see this, consider the example below.

while (true)
a := fetch_add(x, 1)
if (a = 42) break
fetch_add(x,−1)

b := x
if (b)
c := x
assert(c)

(ZNE-OBS)

Note that the loop of the first thread fulfills the conditions of a
ZNE loop, and so the second fetch_add() will be annotated
by the spin-zne transformation.

Figure 5 shows the execution graph arising from adding the
events of thread I and then adding the read event corresponding
to the b := x instruction of thread II in the case it reads the
incremented value of x. Next, we have to add the event cor-
responding to c := x. In this graph, the only consistent option
for this event is to also read the incremented value of x, which
satisfies the subsequent assertion. Yet, if we had the decrement
of x instead of the zne event in the graph, c could also have
read the value 0 from the decrement, and the assert would
have failed. Thus, it is clear that concurrent reads can render
the transformation of ZNE spinloops unsound.

Therefore, CHECKZNEVALIDITY(G, e) (cf. Algorithm 2)
checks whether either of these two conditions holds for any
existing zne(x) event in the graph (where x is the location
accessed by e), and if so, it removes the zne event(s) and
unblocks the corresponding thread(s), which will eventually
add the missing decrement event(s) and restore soundness.

Other cases of ZNE loops can be handled in a similar
manner. For example, consider spinloops containing matching
lock acquisitions and releases. In such a case, acquiring the
lock acts as the increment operation and releasing the lock
as the matching decrement. Statically, it therefore suffices to
check that each lock release in the spinloop has its correspond-
ing lock acquisition earlier in the same spinloop iteration.

168

Algorithm 2 ZNE Spinloop Validity Check
1: procedure CHECKZNEVALIDITY(G, e)
2: if e is a write other than from a fetch_add() then
3: G.E← G.E \ zne(location-of(e))
4: else if e ∈ Rloc(x)∧∃e′ ̸= e.G.rf(e′) = G.rf(e) then
5: G.E← G.E \matching-zne(G.rf(e))

Dynamically, we simply check that no other thread accesses
the lock besides by calling the acquire and release methods.

VII. IMPLEMENTATION

We implemented SAVER as an extension to the open-source
GENMC tool [5], [13]. GENMC is a state-of-the-art stateless
model checker for C/C++ programs that works at the level
of LLVM Intermediate Representation (LLVM-IR), and can
verify programs under weak memory models such as RC11
[10] and IMM [14]. SAVER is implemented as (a) a collection
of transformation passes that modify GENMC’s input before
the latter starts the verification procedure, and (b) slight
modifications to GENMC’s DPOR algorithm that handle the
dynamic checks for pure and ZNE loops.

As expected, SAVER imposes negligible overhead over
GENMC, as its transformations take place statically, before
the verification procedure starts, and the dynamic conditions
for purity and ZNE loops can be checked in O(n) time (where
n is the size of the graph), which is dominated by GENMC’s
existing consistency checks.

We conclude this section with some remarks regarding the
implementation of loop rotation and the merging of bisimilar
nodes over GENMC/LLVM.

In the case of loop rotation, we have implemented our own
custom loop rotation pass that applies to loops whose rotation
is deemed worthwhile. Although LLVM already contains an
implementation of loop rotation, that implementation performs
a more aggressive transformation by converting loops to a
canonical form containing a single backedge. That is, if the
loop contains multiple backedges, it constructs a new node
with a backedge to the loop header and redirects all the
existing backedges to the new node. This latter transforma-
tion is detrimental to the static detection of effect-free paths
because it would, for example, conflate the three loopy paths
of ms-queue’s dequeue operation (Fig. 3), thereby disabling
the spin-assume transformation for the two that are effect-free.
To avoid this unintended consequence, one would then have
to undo this transformation (e.g., by invoking a form of jump
threading) or rely on dynamic purity checks (§V). Instead, and
to be able to statically transform as many loops are possible,
we opted for implementing our own loop rotation pass, that
transforms simple loops like CAS-LOOP2; loops that are not
captured by our loop rotation pass are handled dynamically.

In the case of merging of bisimilar nodes, there are also a
couple of points worth mentioning. First, detecting bisimilar
nodes on LLVM is more complicated than what was discussed
in §IV because LLVM represents programs in static single
assignment (SSA) form. The effect of this design choice is that

there are never two nodes with identical assignments on their
outgoing edges, since by the SSA definition each assignment
is to a different register. Therefore, the standard bisimilarity
algorithm outlined earlier in this section will not detect any
nodes as being bisimilar!

As an example, consider the “SSA-CFG” of thread II of the
LOOP-PEEL program from §I, which is shown below.

1

2b1 := ϕ(b0/1, b2/4) 3

4

b0 := x

assume(b1 = 0)

assume(b1 ̸= 0)b2 := x

The SSA-CFG is an enriched kind of CFG whose nodes may
have ϕ-guards that define a variable differently depending on
the incoming control flow path. For instance, in the SSA-CFG
above, at node 2, b1 is defined to be equal to b0 if node 2 is
reached from node 1, or to b2 if it is reached from node 4.

In order to match nodes 1 and 4, our bisimilarity implemen-
tation has not only to account for ϕ-nodes, but also unify the
variables b0 and b2. It does so by collecting equality constraints
and solving them by unification. For each node with more than
one incoming edge, the algorithm starts iterating backwards for
each pair of predecessors, and collects the constraints under
which these predecessors are equal, simplifying them along
the way. The iteration stops when some nodes cannot be equal
under any constraints, or the entry node has been reached. At
that point, any pair of nodes whose constraints can be trivially
solved (namely, nodes 1 and 4 above) are deemed bisimilar.

Besides making bisimilarity detection more complex, SSA
also affects the merging of bisimilar nodes. Consider the
program below along with its SSA-CFG.

a := 0
b := x
while (true)

a := a+ 1
b := x

1

2

3a1 := ϕ(a0/2, a2/4) b1 := ϕ(b0/2, b2/4)

4

a0 := 0

b0 := x

a2 := a1 + 1b2 := x

As can be seen, each of the assignments is to a different
register, and node 3 contains two ϕ-guards (one for a and
one for b) selecting the appropriate register to use depending
on the incoming branch. With the algorithm outlined above
one can detect that nodes 2 and 4 are bisimilar. However, one
cannot simply add an edge a2 := a1 +1 from node 3 to node
2 because that would violate the SSA form. To ensure that the
resulting CFG is well-formed we also have to introduce a ϕ-
guard at node 2 to say which version of a should be used for
node 2. Our implementation achieves this by moving ϕ-guards
the incoming values of which have not been deemed bisimilar
(e.g., the ϕ-guard for a here) to the new loop header, along
with any other incoming edges these ϕ-guards have.

169

VIII. EVALUATION

In this section, we evaluate the effectiveness of SAVER’s
optimizations on a variety of benchmarks. Our evaluation
comprises two distinct parts, with the first part concerning
the overall performance of SAVER in a real-world setting,
and the second part evaluating the effectiveness of employing
individual transformations.

In general, we observe that applying the transformations
introduced in this paper typically leads to exponential gains in
real-world benchmarks with spinloops. Key to these gains are
SAVER’s dynamic checks for spinloop purity and/or validity
of ZNE spinloops, as well as the bisimilarity-based reduction
of CFGs, which enables more spinloops to be bounded.

We conducted all experiments on a system with an Intel(R)
Core(TM) i5-6600 CPU (4 cores @ 3.30GHz) and 16GB of
RAM, running a custom Debian-based distribution. We used
LLVM 7 for GENMC (v0.5.3). All reported times are in
seconds. We set the timeout limit to 30 minutes.

A. Overall Performance

We start by evaluating SAVER on some challenging data
structures utilizing weak-memory atomics that we harvested
from the literature, including all data-structure benchmarks
from GENMC’s original paper [5]. Since we want to measure
the effectiveness of SAVER’s optimizations over the existing
GENMC implementation, we do not compare against other
tools and use GENMC as a baseline for our comparison.
Since GENMC already contains a simple heuristic that con-
verts some very simple do-while spinloops into assume
statements, we use two versions of GENMC: one with its
heuristic disabled and one with it enabled.

As can be seen in Table I, these benchmarks demonstrate
that SAVER is extremely effective in a real-world setting, and
that SAVER’s extensions combined lead to exponential gains.
For all these benchmarks apart from mutex-musl, we have
used an unroll value of N + 1 (where N is the number of
threads, shown in parentheses) for both GENMC and SAVER
to avoid manually unrolling any loops that spawn threads
or initialize thread-local variables. For mutex-musl an unroll
value of 2 and some manual unrolling was used, to keep
the state space manageable. The transformations that SAVER
applies are shown on the rightmost column, where S, D, Z,
L, and B stand for spin-assume, dynamic-spin-assume, zne-
assume, loop-rotation, and bisimilarity, respectively.

As can also be seen, GENMC’s simple heuristic is of
rather limited value. It works very well only for the first two
benchmarks (mcslock and qspinlock), where it matches the
performance of SAVER. For the next three benchmarks (se-
qlock, mpmc-queue, and linuxrwlocks), it reduces the number
of executions explored, but is still much slower than SAVER.
Specifically, for mpmc-queue(4) and linuxrwlocks(4) GENMC
does not manage to terminate within the time limit, while for
seqlock(4) it needs 30.71 seconds. For the remaining eight
benchmarks, GENMC’s heuristic does not apply at all.

SAVER, on the other hand, is able to employ its transforma-
tions (even if only partially) on all the benchmarks and, with

TABLE I
REAL-WORLD BENCHMARKS

GENMC\S GENMC SAVER

Execs Execs Execs Time Trans

mcslock(3) 5964 336 336 0.09 S
mcslock(4) � 26 232 26 232 6.20 S

qspinlock(2) 12 6 6 0.02 S
qspinlock(3) 13 764 564 564 0.09 S

seqlock(3) 430 147 9 0.03 S
seqlock(4) 3 670 360 87 980 88 0.21 S

mpmc-queue(3) 1 232 884 15 808 166 0.12 S, D
mpmc-queue(4) � � 39 706 193.41 S, D

linuxrwlocks(3) 14 059 037 38 033 24 0.04 B, S, Z
linuxrwlocks(4) � � 1060 0.36 B, S, Z

chase-lev(5) 17 367 17 367 3835 0.20 S
chase-lev(6) 778 581 778 581 41 055 2.39 S

treiber-stack(3) 426 426 18 0.10 S, D
treiber-stack(4) 1 546 168 1 546 168 484 0.61 S, D

mutex(2) 18 18 12 0.09 S, D
mutex(3) 59 760 59 760 7086 0.54 S, D

mutex-musl(2) 34 34 26 0.09 S, D
mutex-musl(3) 652 104 652 104 361 296 28.20 S, D

ttaslock(3) 11 031 11 031 162 0.10 S, D
ttaslock(4) � � 20 760 2.46 S, D

twalock(3) 1338 1338 96 0.10 S
twalock(4) 1 018 872 1 018 872 6144 0.72 S

ms-queue(3) 1389 1389 75 0.09 L, S, D
ms-queue(4) � � 10 662 28.13 L, S, D

scgather(3) 7560 7560 90 0.04 Z
scgather(4) 1 247 400 1 247 400 2520 1.07 Z

the exception of mutex-musl, this leads to a huge reduction
in verification time over GENMC. That is, even if in some
cases, SAVER only applies spin-assume/zne-assume in some
of the data-structure’s methods, or even in some paths of a
particular method, SAVER is still orders of magnitude faster
than GENMC. Concretely, for all benchmarks, SAVER is able
to transform at least one of the spinloops completely into
an assume statement. For seqlock, SAVER reduces the read
paths; for mpmc-queue, it reduces both the enqueue and de-
queue methods; for linuxrwlocks, the read lock and write lock
methods, for chase-lev, the steal method; for treiber-stack, the
pop method; for mutex, mutex-musl, ttaslock, and twalock,
various spinloops in the lock and unlock paths; for ms-queue,
the enqueue and dequeue methods; and for scgather the check
method. Finally, the smaller gains in verification time for
mutex-musl are due to the small unroll value used and the
fact that SAVER’s transformations do not apply to all the
benchmark loops.

B. Employing Dynamic Purity/Unobservability Checks

As it can be seen from Table I, in more than half of
the benchmarks, SAVER checked the purity of a spinloop or
the non-observability of its intermediate effects dynamically.
Dynamic checking proves useful for three cases.

First, in cases like ms-queue, plain spin-assume is not
enough to fully transform some spinloop iterations into

170

TABLE II
BENEFITS OF BISIMILARITY

SAVER\B\L SAVER\B SAVER

Execs Time Execs Time Execs Time

ws+r-peeled(3) 9 264 697 81.01 5418 0.04 1 0.01
ws+r-peeled(4) 83 357 632 1353.39 13 419 0.18 1 0.01

w+rs-peeled(3) � � 893 025 4.75 1 0.01
w+rs-peeled(4) � � � � 1 0.03

assume statements because they contain possibly succeeding
CAS operations. Recall from Fig. 3 that the second loopy path
of the simplified dequeue implementation is not effect-free.
By adding a dynamic check to the relevant backedge, SAVER
only considers iterations where the CAS actually succeeds,
thus greatly reducing the state space of the program.

Second, in other cases (e.g., mutex and ttaslock), dynamic-
spin-assume is necessary as spinloops contain function calls
possibly containing side-effects. As it is difficult to determine
statically whether these side-effects will actually take place in
the particular calling context, the check is deferred to runtime.

Third, the unobservability checks both for initialization
writes in failed CAS loops (e.g., treiber-stack) and for ZNE
loops (linuxrwlocks and scgather) are very hard to perform
statically with sufficient precision. As such, performing them
dynamically is the only viable option.

C. Employing Loop Rotation and Bisimilarity Reduction

Loop rotation and bisimilarity reduction are similarly impor-
tant in some real-world test cases. Even though they do not
yield any performance improvements on their own, they are
instrumental in making the spin-assume and zne-assume trans-
formations applicable to more complex cases. Specifically,
in benchmarks like ms-queue and linuxrwlocks, spin-assume
and zne-assume are not applicable without loop rotation and
bisimilarity respectively. And, in fact, these are not the only
cases that we have encountered; there are many ways to rewrite
the same benchmarks so that they also require bisimilarity
and/or loop rotation, thus rendering these transformations a
necessity, as opposed to an enhancement.

As a further demonstration of their usefulness, we consider
two synthetic test cases inspired by the LOOP-PEEL example.
In these tests, some threads repeatedly write to a shared
variable, which is read by readers that employ schemes similar
to LOOP-PEEL’s second thread. As explained in §III, spin-
assume is not directly applicable in such cases because the
live variables of the header are redefined within the loop.
Thus, we used an unroll value of 3, and manually unrolled any
loops utilized by the writer threads. For these benchmarks, we
used three SAVER versions: the default version that employs
both bisimilarity and loop rotation (SAVER), a version where
bisimilarity is disabled (SAVER\B) and a version where both
bisimilarity and loop rotation are disabled (SAVER\B\L). The
results can be seen in Table II.

With bisimilarity reduction, SAVER transforms the spinloops
into assume statements and only explores one execution,

since only one combination of values satisfies the assumes.
Applying only loop rotation is equivalent to transforming the
syntactic spinloops in these programs into assume statement
but keeping the peeled iteration. Thus, SAVER\B explores a
much larger number of executions, which affects the veri-
fication time. Applying neither transformation (SAVER\B\L)
explores a huge number of executions and often timeouts.
These results highlight the necessity of being resilient against
small syntactic variations as, even if a single read is not taken
into account when transforming a spinloop into an assume,
the state space might grow exponentially.

IX. RELATED WORK AND CONCLUSIONS

We have presented a set of automated techniques for
soundly bounding various kinds of spinloops to a single
iteration, which empowers SMC to reason effectively about
programs containing such spinloops. Although our contribu-
tion was presented in terms of SMC, it should be equally ap-
plicable to SAT/SMT-based bounded model checking (BMC)
implemented by different tools (e.g., [15]–[17]).

Although there is a large body of work on model checking
concurrent programs (e.g., [12], [18]–[22]), we are not aware
of any other automated technique for bounding such a wide
range of spinloops including potentially effect-free and ZNE
loops. NIDHUGG [3], [23], RCMC [4] and GENMC [5], [13]
are the only other tools we are aware of that automatically
transform some spinloops to assume statements but they limit
themselves to very simple busy-wait loops with no side-effects
and no CAS instructions and they are not resilient to simple
syntactic variations of such loops. POET [24] does recognize
spinloop iterations that do not make progress, but saves the
program state in order to do so.

Since both SMC and BMC cannot handle programs with
executions of unbounded length, most tools bound the number
of allowed loop iterations by a user-specified bound. Other
tools like CDSCHECKER [2] use a memory-liveness bound to
ensure termination for spinloops. As shown in §VIII, bounding
techniques in general are inferior to converting spinloops to
assume statements in terms of scalability.

Bounding of spinloops to a single iteration is, however, not
a totally new idea. In a rather different context, Flanagan et
al. [25] have used purity for proving atomicity of concurrent
libraries treating effect-free spinloops as though they had been
reduced to assume statements. Elmas et al. [26] have also
performed similar transformations in their tool QED, which
allows a programmer to initiate a sequence of reductions and
abstractions to statically establish correctness of a program.

ACKNOWLEDGMENTS

This work was supported by a European Research Council
(ERC) Consolidator Grant for the project “PERSIST” under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 101003349).

171

REFERENCES

[1] P. Godefroid, “Model checking for programming languages using
VeriSoft,” in POPL 1997, Paris, France: ACM, 1997, pp. 174–186.
DOI: 10.1145/263699.263717.

[2] B. Norris and B. Demsky, “CDSChecker: Checking concurrent data
structures written with C/C++ atomics,” in OOPSLA 2013, ACM, 2013,
pp. 131–150. DOI: 10.1145/2509136.2509514.

[3] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson,
and K. Sagonas, “Stateless model checking for TSO and PSO,” in
TACAS 2015, ser. LNCS, vol. 9035, Berlin, Heidelberg: Springer, 2015,
pp. 353–367. DOI: 10.1007/978-3-662-46681-0 28.

[4] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Ef-
fective stateless model checking for C/C++ concurrency,” Proc. ACM
Program. Lang., vol. 2, no. POPL, 17:1–17:32, Dec. 2017, ISSN: 2475-
1421. DOI: 10.1145/3158105.

[5] M. Kokologiannakis, A. Raad, and V. Vafeiadis, “Model checking for
weakly consistent libraries,” in PLDI 2019, New York, NY, USA:
ACM, 2019. DOI: 10.1145/3314221.3314609.

[6] M. Kokologiannakis and V. Vafeiadis, “HMC: Model checking
for hardware memory models,” in ASPLOS 2020, ser. ASPLOS
’20, Lausanne, Switzerland: ACM, 2020, pp. 1157–1171, ISBN:
9781450371025. DOI: 10.1145/3373376.3378480.

[7] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in POPL 2005, New York, NY, USA: ACM,
2005, pp. 110–121. DOI: 10.1145/1040305.1040315.

[8] P. A. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal
dynamic partial order reduction,” in POPL 2014, New York, NY, USA:
ACM, 2014, pp. 373–384. DOI: 10.1145/2535838.2535845.

[9] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling,
simulation, testing, and data mining for weak memory,” ACM Trans.
Program. Lang. Syst., vol. 36, no. 2, 7:1–7:74, Jul. 2014, ISSN: 0164-
0925. DOI: 10.1145/2627752.

[10] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer, “Repairing
sequential consistency in C/C++11,” in PLDI 2017, Barcelona, Spain:
ACM, 2017, pp. 618–632, ISBN: 978-1-4503-4988-8. DOI: 10.1145/
3062341.3062352.

[11] P. A. Abdulla, M. F. Atig, B. Jonsson, M. Lång, T. P. Ngo, and K. Sag-
onas, “Optimal stateless model checking for reads-from equivalence
under sequential consistency,” Proc. ACM Program. Lang., vol. 3,
150:1–150:29, OOPSLA Oct. 10, 2019. DOI: 10.1145/3360576.

[12] M. Chalupa, K. Chatterjee, A. Pavlogiannis, N. Sinha, and K. Vaidya,
“Data-centric dynamic partial order reduction,” Proc. ACM Program.
Lang., vol. 2, no. POPL, 31:1–31:30, Dec. 2017, ISSN: 2475-1421.
DOI: 10.1145/3158119.

[13] M. Kokologiannakis and V. Vafeiadis, “GenMC: A model checker for
weak memory models,” in CAV 2021, A. Silva and K. R. M. Leino,
Eds., ser. LNCS, vol. 12759, Springer, 2021, pp. 427–440. DOI: 10.
1007/978-3-030-81685-8\ 20.

[14] A. Podkopaev, O. Lahav, and V. Vafeiadis, “Bridging the gap between
programming languages and hardware weak memory models,” Proc.

ACM Program. Lang., vol. 3, no. POPL, 69:1–69:31, Jan. 2019, ISSN:
2475-1421. DOI: 10.1145/3290382.

[15] E. M. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS 2004, ser. LNCS, vol. 2988, Berlin, Heidelberg:
Springer, 2004, pp. 168–176. DOI: 10.1007/978-3-540-24730-2 15.

[16] N. Gavrilenko, H. Ponce-de-León, F. Furbach, K. Heljanko, and R.
Meyer, “BMC for weak memory models: Relation analysis for compact
SMT encodings,” in CAV 2019, I. Dillig and S. Tasiran, Eds., Cham:
Springer International Publishing, 2019, pp. 355–365, ISBN: 978-3-
030-25540-4. DOI: 10.1007/978-3-030-25540-4 19.

[17] S. Burckhardt, R. Alur, and M. M. K. Martin, “CheckFence: Checking
consistency of concurrent data types on relaxed memory models,” in
PLDI 2007, New York, NY, USA: ACM, 2007, pp. 12–21. DOI: 10.
1145/1250734.1250737.

[18] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent pro-
grams,” in OSDI 2008, USENIX Association, 2008, pp. 267–280.
[Online]. Available: https : / /www.usenix .org / legacy /events /osdi08 /
tech/full papers/musuvathi/musuvathi.pdf (visited on 11/16/2020).

[19] E. Albert, P. Arenas, M. G. de la Banda, M. Gómez-Zamalloa, and P. J.
Stuckey, “Context-sensitive dynamic partial order reduction,” in CAV
2017, R. Majumdar and V. Kunčak, Eds., Cham: Springer International
Publishing, 2017, pp. 526–543, ISBN: 978-3-319-63387-9. DOI: 10 .
1007/978-3-319-63387-9 26.

[20] E. Albert, M. Gómez-Zamalloa, M. Isabel, and A. Rubio, “Constrained
dynamic partial order reduction,” in CAV 2018, H. Chockler and G.
Weissenbacher, Eds., Cham: Springer International Publishing, 2018,
pp. 392–410, ISBN: 978-3-319-96142-2. DOI: 10 .1007/978- 3- 319-
96142-2 24.

[21] N. Zhang, M. Kusano, and C. Wang, “Dynamic partial order reduction
for relaxed memory models,” in PLDI 2015, New York, NY, USA:
ACM, 2015, pp. 250–259. DOI: 10.1145/2737924.2737956.

[22] P. A. Abdulla, M. F. Atig, B. Jonsson, and T. P. Ngo, “Optimal
stateless model checking under the release-acquire semantics,” Proc.
ACM Program. Lang., vol. 2, no. OOPSLA, 135:1–135:29, Oct. 2018,
ISSN: 2475-1421. DOI: 10.1145/3276505.

[23] P. A. Abdulla, M. F. Atig, B. Jonsson, and C. Leonardsson, “Stateless
model checking for POWER,” in CAV 2016, ser. LNCS, vol. 9780,
Berlin, Heidelberg: Springer, 2016, pp. 134–156. DOI: 10.1007/978-
3-319-41540-6 8.

[24] C. Rodrı́guez, M. Sousa, S. Sharma, and D. Kroening, “Unfolding-
based partial order reduction,” in CONCUR 2015, ser. LIPIcs, vol. 42,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 456–
469. DOI: 10.4230/LIPIcs.CONCUR.2015.456.

[25] C. Flanagan, S. N. Freund, and S. Qadeer, “Exploiting purity for
atomicity,” IEEE Trans. Software Eng., vol. 31, no. 4, pp. 275–291,
2005. DOI: 10.1109/TSE.2005.47.

[26] T. Elmas, S. Qadeer, and S. Tasiran, “A calculus of atomic actions,”
in POPL 2009, Z. Shao and B. C. Pierce, Eds., ACM, 2009, pp. 2–15.
DOI: 10.1145/1480881.1480885.

172

https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3373376.3378480
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3360576
https://doi.org/10.1145/3158119
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3290382
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1145/1250734.1250737
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://www.usenix.org/legacy/events/osdi08/tech/full_papers/musuvathi/musuvathi.pdf
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1145/2737924.2737956
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.4230/LIPIcs.CONCUR.2015.456
https://doi.org/10.1109/TSE.2005.47
https://doi.org/10.1145/1480881.1480885

Formal Methods in Computer-Aided Design 2021

Robustness between Weak Memory Models
Soham Chakraborty

EEMCS, TU Delft
Email: s.s.chakraborty@tudelft.nl

Abstract—
Robustness of a concurrent program ensures that its behaviors

on a weak concurrency model are indistinguishable from those
on a stronger model. Enforcing robustness is particularly useful
when porting or migrating applications between architectures.
Existing tools mostly focus on ensuring sequential consistency
(SC) robustness which is a stronger condition and may result in
unnecessary fences.

To address this gap, we analyze and enforce robustness
between weak memory models, more specifically for two main-
stream architectures: x86 and ARM (versions 7 and 8). We iden-
tify robustness conditions and develop analysis techniques that
facilitate porting an application between these architectures. To
the best of our knowledge, this is the first approach that addresses
robustness between the hardware weak memory models.

We implement our robustness checking and enforcement
procedure as a compiler pass in LLVM and experiment on a
number of standard concurrent benchmarks. In almost all cases,
our procedure terminates instantaneously and insert significantly
less fences than the naive schemes that enforce SC-robustness.

I. INTRODUCTION

Robustness analysis checks whether a program running on a
weak memory consistency model demonstrates only the behav-
iors that are allowed by a stronger model. Robust programs can
therefore be seamlessly migrated from one model to another as
far as their concurrent behaviors are concerned. If a program
is not robust, we can insert fences to enforce robustness.

Robustness analysis is especially beneficial in porting ap-
plications [1, 2] where it is crucial to preserve the observable
behaviors of a running application. For instance, consider the
porting of an application written for x86 to ARM. Since the
x86 model is stronger than the ARM models (x86 exhibits
less behavior), x86-robustness abstracts the underlying ARM
machine specification to an outside observer. Consider the
following programs where initially X = Y = 0.

X = 1;
a = Y ;

Y = 1;
b = X;

(SB)
a = X;
Y = 1;

b = Y ;
X = 1;

(LB)

Both x86 and ARM allow same set of concurrent executions
in the SB program and hence indistinguishable on x86 and
ARM. Therefore SB can be ported seamlessly between these
architectures. Now consider the porting of the LB program
from x86 to ARM. x86 disallows a = b = 1 but ARM allows
the outcome. Hence the LB program in ARM is not x86-robust.
To enforce x86-robustness we insert fences in both threads and
restrict the a = b = 1 outcome.

Checking and enforcing robustness to a stronger but non-SC
model from a weaker model can play a key role in migrat-
ing programs between architectures having weak concurrency

models. Existing SC-robustness approaches may not provide
an optimal solution as they check a stronger constraint and
hence may introduce additional fences. For example, if we
use an SC-robustness checker for SB, it identifies that the
a = b = 0 outcome is allowed on ARM but disallowed in SC.
Hence the analyzer inserts two full fences (DMB in ARMv7 and
DMBFULL in ARMv8) between the memory accesses in both
threads which are unnecessary in this case.

To address this scenario we propose robustness analysis
and enforcement between weak memory models of two main-
stream architectures: x86 and ARM (version 8 and 7). As
ARMv8 is a stronger model than ARMv7, we also study
ARMv8-robustness for ARMv7 to enable application porting
between these ARM models. We also check SC-robustness in
x86, ARMv8, ARMv7 and restrict relaxed memory behaviors.

In this paper we propose M -K robustness where M is a
stronger model than K and M can also be a non-SC model
unlike existing approaches in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14]. We propose the M -K robustness conditions in §III and
prove their correctness [15]. Our proposed M -K robustness
conditions ensure that if a K-consistent execution satisfies the
M -K condition then the execution is also M -consistent. We
check if certain memory access pairs are appropriately ordered
in a K-consistent execution so that the execution shows no
weaker behavior. Otherwise we insert fences to enforce order
and restrict the weaker behaviors. However, as fences are
costly, we investigate if it is possible to weaken the robustness
constraints for the memory access pairs which are on same-
location or are ordered by dependencies. We observe that these
relations suffice in x86 and ARMv8, but the results in ARMv7
are counter-intuitive.
• We note that dependency based ordering preserved-

program-order (ppo) is not strong enough to ensure robust-
ness in ARMv7. Consider the following ARMv7 program.

a = T ;
X = a;

X = 2;
b = X;
Y = b;

c = Y ;
Z = c;

Z = 1;
d = Z;
T = d;

(WP)

The execution in Fig. 4 exhibits non-SC behavior though
all the memory access pairs result in ppo relations due to
data dependencies. Even an intermediate full fence in one
of these threads cannot restrict the relaxed behavior.

• We evaluate the role of same-location program-order rela-
tion in defining robustness conditions. On ARMv7, same-
location read-write access pair is unordered (see ARM-
Weak [16] example in Fig. 2). Yet if all external-program-
orders (see §III) are on same-location or have intermediate
fences then the program exhibits only SC behavior.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_26 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_26
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_26
https://creativecommons.org/licenses/by/4.0/

In §IV we propose static analyses to check if a program is
M -K robust based on the respective conditions. Otherwise
we insert fences to enforce robustness. These analyses are
computed in polynomial time as shown in § IV-C unlike the
robustness checkers which explore program executions and are
of significantly higher computational complexity.

The robustness checking procedures analyze the programs
with thread functions. In these programs each thread func-
tion may result in any number of concurrent threads in an
execution. Thus our analysis is parameterized by the thread
functions and the analyses are applicable to all the programs
having same thread functions.

We have implemented the analyses procedures in a tool
called Fency based on LLVM [17] and have evaluated on
several well known concurrent programs [8, 14]. We compare
the SC-x86 robustness analysis of Fency to existing SC-
TSO robustness results of Trencher [8] that explore program
executions by model checkers. Yet, Fency is quite precise and
matches Trencher in most of the programs. Moreover, Fency
does not use external model checkers or SAT/SMT solvers and
therefore is significantly fast in most of the cases.

We also compare Fency to a naive fence insertion scheme
that do not use robustness analysis. Fency inserts significantly
fewer fences than the naive scheme in several benchmarks.
Moreover, empirical evaluations show that if a model W is
weaker than M then ensuring W -K robustness often requires
fewer fences than ensuring M -K robustness. Thus precise
robustness analysis is indeed beneficial for many cases instead
of using SC-robustness checkers.

Outline and Contributions. §II reviews the concurrency
models. §III proposes the M -K robustness conditions. §IV
explains our approach to check and enforce robustness. §V
examine the experimental results. §VI discusses the related
work and we conclude in §VII. The proofs and additional
details are in the supplementary material [15].

II. CONCURRENCY MODELS

In this section we review SC, x86, ARMv8, and ARMv7
concurrency. For all models we follow a common syntax.

E ::=r |v |E + E |E ∗ E |E ≤ E | · · ·
C ::=skip |C;C | t = E | t = X |X = E |RMW(X,E,E)

|Fence |RMW(X,E) |br label | br label label | · · ·
P ::=X = v; · · ·X = v; {C · · · C}

An expression E results from thread-local temporary (t), value
(v), and arithmetic operations (E). Command t = X returns
the value of a shared memory location X to a thread-local
register r and X = E writes the evaluation of expression E
to X . The RMW(X,Er, Ew) atomically compares the values
of X and Er; if equal then X is written to the value of
Ew and set r. If the value of X is not equal to the value
of Er then the RMW fails. Command RMW(X,Er) atomically
updates the value of X with the value of Er and returns the
value of X to r. A failed RMW performs only read access. A
fence orders certain memory accesses. We use conditional and

unconditional branches for program’s control flow. Finally, a
program consists of a set of initialization writes followed by
a parallel composition of thread commands. Unless otherwise
mentioned, the initializations set all memory locations to zero.

A. Program Semantics and Execution Graphs

We follow the axiomatic models for all architectures [18,
19, 20, 21, 22, 23, 24, 25, 26]. In these axiomatic models a
program’s semantics is defined by a set of consistent execu-
tions. An execution consists of a set of events and relations.
Event. An event ⟨id, tid, lab⟩ consists of unique identifier
id, thread identifier tid ∈ N, and a label lab based on the
respective executed memory or fence access. A label is of the
form ⟨op, loc, val⟩ where op, loc, and val are operation type,
location, and read or written value.
Preliminaries. Given a binary relation P on events, dom(P)
and codom(P) are its domain and its range. P−1, P ?, P+,
and P ∗ are inverse, reflexive, transitive, and reflexive-transitive
closures of P respectively. Pℓ denotes P related event pairs
on same locations i.e. Pℓ ≜ {(e, e′) ∈ P | e.loc = e′.loc}
and P̸=ℓ ≜ P \ Pℓ denote the P related event pairs on
different locations. imm(P) defines the immediate P relation,
i.e. imm(P) ≜ ∃a, b. P (a, b) ∧ ∄c. P (a, c) ∧ R(c, b). P ; S
is the relational composition of the binary relations P and S.
Finally, [A] is an identity relation on a set A.
R, W, and F are the set of read, write, and fence events. The

events are related by primitive relations: strict partial order
program-order (po) captures the syntactic order among the
events, reads-from (rf) relates a write event to a read event
that justifies its read value, and strict total order coherence-
order (co) relates same-location writes.
Execution. An execution is of the form X = ⟨E, po, rf, co⟩
where X.E is the set of events in X. The set of po, rf, and co
relations between the events in X.E are X.po, X.rf, and X.co.
Execution X is well-formed if X.po is total in each thread and
every read reads-from some write, i.e. X.R ⊆ codom(X.rf).

We derive a number of relations from these primitive
relations. Relation rmw ⊆ imm(po) ∩ ([R]× [W])ℓ denotes
atomic update where a read has an immediate po-successor
write on the same location. The non-rmw read and write events
are load (Ld) and store (St) events.

Ld ≜ R \ dom(rmw) St ≜W \ codom(rmw)

A successful RMW generates an rmw and a failed RMW generates
a Ld event. We use a ·b ≜ [{a}]; imm(po); [{b}] to denote that
a and b are immediate po related events.

Relation WR denotes a write-read event pair on different
locations that does not have any intermediate rmw.

WR ≜ ([W]; po ̸=ℓ; [R]) \ (po; rmw; po)

The from-read (fr) relation relates a pair of same-location read
and write events r and w where r reads-from a write w′ which
is co-before w, that is, fr ≜ rf−1; co. For example, in Fig. 1a
the R(X, 0) and W(X, 1) events are in fr relation.

We categorize the relations as external and internal based
on whether the events are also in po relation. Considering rf,

174

co, and fr relations rfi, coi, fri and rfe, coe, fre denote the
internal and external relations respectively.

rfe ≜rf \ po coe ≜co \ po fre ≜fr \ po
rfi ≜rf ∩ po coi ≜co ∩ po fri ≜fr ∩ po

For example, the rf and fr edges in Fig. 1a edges are rfe
and fre edges respectively. Based on the rfe, coe, and fre
we define extended-coherence-order (eco) on same location
events: eco ≜ (rfe ∪ coe ∪ fre)+.
Consistency Axioms. An axiomatic model is defined by a set
of axioms. An execution is consistent in a model if it satisfies
all its axioms. An axiom violation can be captured by a cycle
on the respective execution graph.

B. Formal Models
Now we move to the axiomatic definitions based on var-

ious relations. We elide some definitions here due to space
constraint which we discuss in the technical appendix [15].

In these models a store access writes value v on location
x and generates an event with label W(x, v). A load access
reads value v from x and generates an event with label R(x, v).
A successful RMW on x reads value v′ and writes value v to
generate a pair of R(x, v′) and W(x, v) events that are in rmw
relation. A failed RMW generates an R(x, v′) event. The full
fences in x86, ARMv8, and ARMv7 are MFENCE, DMBFULL,
and DMB respectively. A full fence generate an event with label
F. ARM architectures also provides ISB fence to order a pair
of reads. In ARMv7 an ISB access along with control (cmp)
and jump (bc) instructions generate cmp; bc; ISB that result in
ctrlISB between a pair of read events in an execution [19]. In
ARMv8 an ISB generates an ISB event.
ARMv8 Specific Accesses. In addition, ARMv8 has synchro-
nizing memory accesses such as release write, acquire read,
and acquirePC load which are denoted by events with label
L(x, v), A(x, v), and Q(x, v). ARMv8 also provide DMBLD
and DMBST fences that generate FLD, and FST events. Finally,
L ⊆ W, A ⊆ R, Q ⊆ Ld ⊆ R, and F, FLD, FST are the set of
release, acquire, acquirePC, and full, load, store fence events.

All these models satisfy coherence and atomicity properties.
Coherence. The property enforces SC per location i.e. in an
execution all accesses on same memory locations are totally
ordered. A complete execution graph X satisfies coherence if
X.poℓ ∪ X.rf ∪ X.co ∪ X.fr is acyclic.
Atomicity. An execution X violates atomicity if there is an
intermediate write on same location between rmw related read
and write events. In that case X.fre(r, w) and X.coe(w′, w)
hold where r and w are X.rmw-related events and w′ is another
write on the same location as r and w.
SC. An well-formed execution X is SC when:

• (X.po ∪ X.rf ∪ X.fr ∪ X.co) is acyclic (SC)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)

The executions in Fig. 1 are inconsistent in SC. For example,
the SB execution has po ∪ fr cycle. Note that coherence
constraint is included in (SC) axiom as poℓ ⊆ po holds
and therefore if (X.po ∪ X.rf ∪ X.fr ∪ X.co) is acyclic then
(X.poℓ ∪ X.rf ∪ X.fr ∪ X.co) is also acyclic.

[X = Y = 0]

W(X, 1)

R(Y, 0)

W(Y, 1)

R(X, 0)
fr

(a) SB

[X = Y = 0]

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)
rf

(b) LB

W(X[1], 1) W(Y [1], 1)

R(X[1], 1)

R(Y [1], 0)

R(Y [1], 1)

R(X[1], 0)

ppo ppo

(c) IRIW

Fig. 1: Distingushing executions: SB execution is disallowed
in SC but allowed in x86 and ARM. SC and x86 disallow
LB execution but ARM models allow it. IRIW execution is
disallowed in SC, x86, ARMv8, but allowed in ARMv7.

x86. Relation x86-preserved-program-order (xppo) orders
read-read, read-write, write-write access pairs. Relation
implied signifies that an intermediate rmw or F acts as a
full fence. Based on these relations x86 defines x86-happens-
before (xhb). Finally, x86 defines its consistency constraints
for a well-formed execution.

• X.poℓ ∪ X.rf ∪ X.fr ∪ X.co is acyclic (sc-per-loc)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)
• X.xhb is acyclic where (GHB)

– xhb ≜ xppo ∪ implied ∪ rfe ∪ fr ∪ co where
– xppo ≜ ((W ×W) ∪ (R×W) ∪ (R× R)) ∩ po
– implied ≜ po; [dom(rmw)∪F]∪ [codom(rmw)∪F]; po

x86 satisfies coherence and atomicity by (sc-per-loc) and
(atomicity) axioms respectively. Axiom (GHB) ensures a
global order based on xhb relation. The model allows Fig. 1a
but disallows the executions in Figs. 1b and 1c.

ARMv8. In ARMv8 relation observed-by (obs ⊆ eco) re-
lates same-location external events. Relation atomic-ordered-
by (aob ⊆ poℓ) orders events based on rmw and acquire
or acquirePC events. The dependency-ordered-before (dob)
captures dependency based ordering between events e.g. data∪
addr ⊆ dob. Relation barrier-ordered-by (bob) orders events
by fences and stronger memory accesses as follows.

bob ≜po; [F]; po ∪ [R]; po; [FLD]; po ∪ [W]; po; [FST]; po; [W]

∪ [L]; po; [A] ∪ po; [L] ∪ [A ∪ Q]; po ∪ po; [L]; coi

A full fence orders all accesses, a load fence orders a read
with its successors, and a store fence orders a pair of writes.
A release access is ordered with its predecessors and an
acquire or acquirePC is ordered with its successors. Release
and acquire accesses are ordered. Finally, (a, b) is ordered if
b is a write and there is an intermediate release store on the
same-location as b. Based on these relations ARMv8 defines
Ordered-before (ob) order: ob ≜ (obs∪ dob∪ aob∪ bob)+. A
well-formed ARMv8 execution X is consistent when:

• X.poℓ ∪ X.rf ∪ X.co ∪ X.fr is acyclic (internal)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)
• X.ob is irreflexive (external)

These axioms allow the executions in Figs. 1a and 1b but
disallows the execution in Fig. 1c by the (external) axiom.

175

a=X;
X=1;

Y =X; X=Y ;

(ARM-Weak)

R(X, 1)

W(X, 1)

R(X, 1)

W(Y, 1)

R(Y, 1)

W(X, 1)

poℓ ppo ppo

Fig. 2: Outcome a = 1 is allowed in ARMv7.

ARMv7. ARMv7 orders memory accesses in a thread by
preserved-program-order (ppo) based on dependencies or
fence ⊆ po; [F]; po relation. ARMv7 also defines happens-
before (ahb) and propagation (prop ⊆ R1; fence;R2) relations
that can order events across threads. Finally a well-formed
ARMv7 execution X is consistent when:

• (X.poℓ ∪ X.rf ∪ X.fr ∪ X.co) is acyclic. (sc-per-loc)
• X.rmw ∩ (X.fre;X.coe) = ∅ (atomicity)
• X.fre;X.prop;X.ahb∗ is irreflexive. (observation)
• (X.co ∪ X.prop) is acyclic. (propagation)
• X.ahb is acyclic. (no-thin-air)

Axiom (observation) constrains the set of writes from which
reads may read-from; if a write w is in prop; ahb∗ relation
with a same-location read r then r does not read from w′

which is co-before w. (propagation) ensures that prop does
not contradict co and (no-thin-air) constrain causality cycle.

ARMv7 allows the executions in Fig. 1 including IRIW with
a = c = 1, b = d = 0 outcome in the following program.

X[1] = 1;
a = X[1];
b = Y [a];

c = Y [1];
d = X[c];

Y [1] = 1; (IRIW)

In addition read-write accesses on same-location can be un-
ordered in ARMv7. As a result, the ARM-Weak program in
Fig. 2 has an execution with a = 1 outcome.

III. ROBUSTNESS ANALYSIS AND ENFORCEMENT

In this section we first define M -K robustness and then
propose the M -K robustness conditions.

Definition 1. A program is M -K robust if all its K-consistent
executions are also M -consistent.

Suppose a K-consistent execution X violates an axiom from
M -consistency. The violation results in a cycle in X. If the
cycle contains no po edge then it is formed by rfe, fre, and
coe edges on same location events. The cycle also violates
coherence. This is not possible as execution X is K-consistent
and all K models we are considering satisfy coherence. So the
cycle consists of a set of po-edges along with the eco edges
between them. We define these po edges as external-program-
order (epo) i.e. epo ≜ po ∩ (codom(eco)× dom(eco)).

a

b

c

d

· · ·

. . .

p

q
epo epo epo

eco eco

ecoeco

Thus we represent an axiom violation as a (epo; eco)+ cycle
where all the epo edges on the cycle are not sufficiently
ordered. To enforce order we insert fences to strengthen these
epo edges and restrict a cycle to enforce M -K robustness.

R

R W

fre
W

R W

coe
W R

W
coe

R WW

W
fre coe

Fig. 3: Coherence ensures eco; epoℓ ∪ epoℓ; eco ⊆ eco.

Theorem 1. A program P is M -K robust if in all its K-
consistent execution X, X.epo ⊆ X.R holds where R is defined
as M -K condition as follows.

(SC-x86) xppo ∪ poℓ ∪ implied; po?

(SC-ARMv8) poℓ ∪ (aob ∪ dob ∪ bob)+

(x86-ARMv8) poℓ ∪ (aob ∪ bob ∪ dob)+ ∪WR

(SC-ARMv7) poℓ ∪ fence

(x86-ARMv7) poℓ ∪ fence ∪WR

(ARMv8-ARMv7) poℓ ∪ [W]; po ∪ fence

Next, we explain the M -K conditions for the concurrency
models. The correctness proofs for these robustness conditions
are in the technical appendix [15].

A. Robustness of x86 Programs

From the SC-x86 condition in Theorem 1, relation xppo
orders read-read, read-write, and write-write pairs. So if an
x86 execution violates SC-x86 robustness then it contains a
(epo; eco)+ cycle with one or multiple epo edges that are
in WR relation. If it is on same location then there is an
alternative (eco; epo)+ cycle as shown in Fig. 3 that also
denote the violation. The implied; po? relation can order a
write-read pair by intermediate rmw or F.

Consider the SB execution from Fig. 1a in x86. The epo
edges do not satisfy SC-x86 condition and the execution is
non-SC. If we insert fences between the store-load pairs in
each thread then the program exhibits only SC behaviors.

B. Robustness of ARMv8 Programs

SC-ARMv8 Robustness. Suppose an ARMv8 execution con-
tains a (epo; eco)+ cycle that violates SC-ARMv8 robustness.
If an epoℓ edge is on the cycle then as shown in Fig. 3 there
is an alternative (epo; eco)+ cycle without the edge.

Now consider an (epo; eco)+ cycle where each epo on the
cycle is in (aob ∪ bob ∪ dob)+ relation. In that case ((aob ∪
bob ∪ dob)+; eco)+ cycle implies an ob cycle which is not
possible as an ARMv8 consistent execution satisfies (external).
The epo edges in SB and LB executions in Fig. 1 do not
satisfy the SC-ARMv8 condition. The executions are allowed
in ARMv8 but not in SC.

x86-ARMv8 Robustness. The x86-ARMv8 robustness con-
dition orders all epo relations except WR pairs as WR is also
unordered in x86. Hence an ARMv8 execution exhibits only
x86 behavior if the x86-ARMv8 condition holds. Consider the
SB execution from Fig. 1a in ARMv8; both the epo edges are
also in WR and the execution is x86 consistent.

176

R(T, 1)

W(X, 1)

W(X, 2)

R(X, 2)

W(Y, 2)

R(Y, 2)

W(Z, 2)

W(Z, 1)

R(Z, 1)

W(T, 1)

Fig. 4: ARMv7 allows the execution of the WP program.

C. Robustness of ARMv7 Programs

SC-ARMv7 Robustness. The ARMv7 model uses poℓ and
fence relations to order epo edges for SC-ARMv7 robustness.

The ppo and poℓ do not guarantee SC-ARMv7 robustness
as shown in the execution in Fig. 2. If we insert fences in
the second and third threads the execution is disallowed in
ARMv7 and the resulting program is SC-ARMv7 robust.

Moreover, ppo relations in all epo edges do not ensure
SC behavior in an execution. For instance, the WP program
execution in Fig. 4 is non-SC even though the epo edges are
ppo-ordered. Note that, even if we insert an intermediate DMB
in one of the threads the cycle is still possible in ARMv7.

x86-ARMv7 Robustness. To ensure x86-robustness, ARMv7
orders all epo relations except write-read pairs. Consider the
SB program execution in Fig. 1a where the epo edges are WR
pairs and the execution is consistent in both ARMv7 and x86.

ARMv8-ARMv7 Robustness. ARMv8-ARMv7 robustness
requires to order all epo ̸=ℓ relations except write-read and
write-write pairs. In this case also ppo relation cannot order
epo ̸=ℓ edges. Hence the cycle in the ARMv7 execution in
Fig. 4 is disallowed in ARMv8 as it is an ob cycle.

IV. CHECKING AND ENFORCING ROBUSTNESS

In this section we lift the semantic notion of M -K ro-
bustness to the program syntax and propose static analyses
to check and enforce robustness in the following steps.
1) Identify program components which may run concurrently.

We consider fork-join parallelism and identify the thread
functions where each function may create multiple threads.

2) Memory-access pair graph construction. We identify the
memory accesses in thread functions and construct a
memory-access pair graph (MPG) that captures the poten-
tial epo and eco edges in the executions.

3) Checking robustness. If an MPG contains a cycle then we
check whether each access pair on the cycle is ordered. If
so then all K-consistent execution of the program preserve
M -K robustness condition and as a result all K consistent
executions of these programs are also M consistent.

4) Enforcing robustness. If the memory access pairs on the
cycle are not ordered we insert appropriate fences between
the memory access pairs. These fences disallow these cycle
in the executions in the K consistency model and in turn
enforce M -K robustness.

A. MPG Construction

Let {f1, f2, . . . , fn} be the set of thread functions in a
program that may run in parallel. Let C = ⟨V , E⟩ be a control

SB2(p){
1. if (a) X = 1;
2. else Y = 1;
3. a = Y ;
4. b = X; }

· · ·
1.W(X, -)

3.R(Y, -)

2.W(Y, -)

4.R(X, -)

3.R(Y, -)

4.R(X, -)

Fig. 5: Subgraph of SB2 MPG with potential epo and eco
edges. SB2(true) || SB2(false) violates SC-x86 robustness.

flow graph (CFG) of a thread function where C.V are the
instruction nodes and C.E are the set of control flow edges.
We analyze the thread functions’ CFGs to construct an MPG.

Helper Definitions. We define following helper conditions.
• CFG(f) returns the control-flow-graph of a function f .
• mayAA(i, j) checks if i and j may access same location.
• ac(C, A) returns the primitives in C which create A events

or rmw relations i.e. ac(C, A) ≜ {i | [[i]] ∈ A}. In this case
ac(C, rmw) returns the accesses that create RMW primitives.

• P(C, i, j) checks if there is a path from i to j on the control
flow graph C i.e. P(C, i, j) ≜ (i, j) ∈ [C.V]; C.E+; [C.V].

• MM(C) returns the set of memory access pairs in a control
flow graph C where the second access is reachable from the
first access. These pairs depict the potential epo edges i.e.
MM(C) ≜ {(i, j) | i, j ∈ ac(C,W ∪ R) ∧ P(C, i, j)}.

Definition 2. An MPG is of the form G = ⟨V,E⟩ where G.V
is the set of shared memory access pairs and G.E denote the
set of edges between the nodes. An edge from (a, b) ∈ G.V to
(c, d) ∈ G.V implies that b and c may access same location.

Procedure BuildG in Fig. 6 constructs an MPG. In
BuildG line 2-4 appends the memory access pairs from
CFG(f1),CFG(f1), . . . ,CFG(fn) to V. Line 5-8 compute the
G.E edges. An edge between (a, b) and (c, d) denotes that
mayAA(b, c) holds. Note that we also create G.E edges be-
tween access pairs from the same thread function. It is because
multiple concurrent threads may execute same thread function
and access pairs from a function may result in events which are
concurrent in an execution. In this case we effectively analyze
all programs of the form f1 || · · · f1 || · · · || fn · · · || fn.

B. Checking robustness on MPG

A cycle in MPG G implies a potential (epo; eco)+ cycle in
an execution. Cy(G) returns the set of access pairs that may
create cycle(s) in the MPG G i.e.

Cy(G) ≜{n | n ∈ G.V ∧ ∃m, o ∈ G.V.

m ̸= n ∧ o ̸= n ∧ G.E(m,n) ∧ G.E(n, o)}

We do create any self loop in G on n. A self loop on n implies
that n may create concurrent event pair (p, q) and (r, s) in an
execution where eco(q, r) or eco(p, s) holds which implies
(p, q), (r, s) ∈ poℓ. However, poℓ is included in all M -K
robustness condition and therefore multiple event pairs from
n does not create any new robustness violation.

If Cy(G) has any unordered access pair following respective
Ord condition then we report M -K robustness violation.

177

example. Consider the SB2 function in Fig. 5. The program
SB2(true) || SB2(false) violates SC-x86 robustness due to an
execution where R(Y, 0) and R(X, 0) is possible in the first
and second threads respectively. We construct the MPG from
{1, 2, 3, 4} accesses. The subgraph in Fig. 5 contains a cycle
of (1, 3) and (2, 4) that depicts SC-x86 robustness violation.

1) Defining Ord Conditions

To define an Ord condition we use the following definitions.
• mustAA(i, j) checks if i and j always access same location.
• Procedure getG(i) returns the CFG C of instruction i.
• Pnf checks if there exist any path from i to j on the CFG C

without passing through a fence in F . Else in all executions
the events from i and j are ordered by a set of fences.

Pnf(C, i, j, F) ≜ P(⟨C.V \ F, C.E \B⟩, i, j)
where B = (G.V × F) ∪ (F ×G.V)

• isW(i) and isR(i) check if the access i is write and read
respectively.

• isWR(C, i, j) checks if i and j are write-read pair which may
access different locations without any intermediate RMW. In
an execution i and j may create a WR relation.

isWR(C, i, j) ≜isW(i) ∧ isR(j) ∧ ¬mustAA(i, j)

∧ ∃u (u ∈ ac(C, rmw)

∧ P(C, i, u) ∧ P(C, u, j))

x86. The Ord condition for SC-x86 robustness is as follows.

Ord(SC, x86, C, i, j) ≜isR(i) ∨ isW(j) ∨mustAA(i, j)

∨ ¬Pnf(C, i, j, ac(C,F))

The isR(i) and isW(j) conditions ensure xppo relations be-
tween the events generated from i and j. mustAA(i, j) checks
if i and j generated events pairs are in epoℓ relation. The Pnf

condition checks if there are intermediate fences between i
and j generated events in all executions. The Ord condition is
satisfied in LB and IRIW but violated in the SB program.

In x86 a successful RMW results in rmw which acts as an
intermediate fence. But a failed RMW generates a read event
only and it does not act as a fence. Therefore an RMW operation
between a pair of memory access does not ensure that the
access pair is ordered in all execution. However, if an RMW
is used in an wait-loop where the loop terminates only when
the RMW is successful then the RMW in the wait-loop acts as a
fence in all x86 terminating executions. For these programs we
strengthen SC-x86 robustness checking condition as follows.

SOrd(SC, x86, i, j) ≜isR(i) ∨ isW(j) ∨mustAA(i, j)

∨ ¬Pnf(C, i, j, ac(C,F ∪ rmw))

ARMv8(A8). isL(i), isA(i), isAQ(i) check if an access i is
a release, acquire, acquire/acquirePC respectively. isLA(i, j)
holds for a release, acquire access pair (i, j). Lcoi(i) re-
turns the set of release-writes that access same-location as

i. RA(C, i) returns the set of acquire-reads that is reachable
from i through some release-writes.

RA(C, i) ≜{a | isA(a) ∧ ¬Pnf(C, i, a, ac(C, L))}
Lcoi(C, i) ≜{w | isL(w) ∧mustAA(w, i)}

We now define the Ord condition for SC-ARMv8 robust-
ness where B ≜ ac(C,F) ∪ RA(i). It results in BF =
po; [F]; po ∪ po; [L]; po[A]; po ⊆ bob that acts as a fence on
an epo. Moreover we define isRR(i, j) ≜ isR(i) ∧ isR(j),
isRW(i, j) ≜ isR(i) ∧ isW(j), isWW(i, j) ≜ isW(i) ∧ isW(j).

Ord(SC,A8, C, i, j) ≜ mustAA(i, j) (1)
∨(¬Pnf(C, i, j, B)) ∨ isLA(i, j) ∨ isAQ(i) ∨ isL(j) (2)
∨(isRR(i, j) ∧ ¬Pnf(C, i, j, B∪ac(C,FLD))) (3)
∨(isRW(i, j)∧¬Pnf(C, i, j, B∪ac(C,FLD)∪Lcoi(C, j))) (4)
∨(isWW(i, j)∧¬Pnf(C, i, j, B∪ac(C,FST)∪Lcoi(C, j))) (5)

The definition ensures that the generated events from i and
j are in (1) poℓ or in one of the following bob relations:
(2) BF ∪ [L]; po; [A] ∪ [A ∪ Q]; po ∪ po; [L], (3) BF ∪
[R]; po; [FLD]; po, (4) BF ∪ [R]; po; [FLD]; po ∪ po; [L]; coi, (5)
BF ∪[W]; po; [FST]; po; [W]∪po; [L]; coi. The overall condition
ensures SC-ARMv8 robustness. The condition is satisfied in
IRIW but violated in SB and LB.

The dob and aob relations also order memory accesses.
From the definition aob ⊆ poℓ which is already captured
by (1). We do not include dob in the Ord condition as
a dependency can be optimized away after the robustness
analysis which may result in a non-robust program even when
we report the original program to be robust.

Next, we define x86-ARMv8 robustness condition where an
(i, j) access pair is ordered or may generate a WR pair.

Ord(x86,A8, C, i, j) ≜ Ord(SC,A8, C, i, j) ∨ isWR(C, i, j)

SB and IRIW satisfy the condition but LB violates it.

ARMv7(A7). We define the Ord condition to ensure the SC-
ARMv7 robustness condition in all ARMv7 executions. Then
we extend the Ord for SC-ARMv7 to define the Ord conditions
for x86-ARMv7 and ARMv8-ARMv7 robustness.

Ord(SC,A7, C, i, j) ≜ mustAA(i, j)∨(¬Pnf(C, i, j, ac(C,F)))
Ord(x86,A7, C, i, j) ≜ Ord(SC,A7, C, i, j)∨isWR(C, i, j)
Ord(A8,A7, C, i, j) ≜ Ord(SC,A7, C, i, j)∨isW(i)

The memory access pairs in the LB program satisfies the
ARMv8-ARMv7, and the SB program satisfies the x86-
ARMv7, ARMv8-ARMv7 conditions.

2) Robustness Analysis and Enforcement Procedure

The MKRobust procedure in Fig. 6 checks M -K robustness
on an MPG G: (line 3) we first compute Cy(G). (line 4-7) if
an access pair (a, b) in Cy(G) is on a cycle then we check
if (a, b) is ordered by the Ord condition. (line 8) returns the
unordered memory access pairs O.

If O is empty then the program is M -K robust. Else Enforce
procedure insert appropriate fences to enforce robustness.
Procedure getF returns a fence based on the access type a and

178

1: procedure BuildG({f1, . . . , fn})
2: for f ∈ {f1, . . . , fn} do
3: C ← CFG(f);
4: V← V ∪MM(C);
5: for (a, b) ∈ V do
6: for (c, d) ∈ V do
7: if mayAA(b, c) then
8: E← E∪{(a, b), (c, d)};
9: return ⟨V,E⟩;

10: end procedure

1: procedure MKRobust(M , K, G)
2: O ← ∅;
3: AB ← Cy(G);
4: for (a, b) ∈ AB do
5: C ← getG(b);
6: if ¬Ord(M,K, C, a, b) then
7: O ← O ∪ {(a, b)};
8: return O;
9: end procedure

1: procedure Enforce(K,O)
2: H ← ∅;
3: for (a, b) ∈ O do
4: if b /∈ H then
5: f ← getF(K, a, b);
6: insertF(getG(b), a, b, f);
7: H ← H ∪ {b};
8: end procedure

G← BuildG({f1, . . . , fn}); O ← MKRobust(M,K,G); Enforce(K,O);

Fig. 6: Static M -K robustness analysis and enforcement.

1: procedure getF(K, a, b)
2: if K == x86 then return new(MFENCE);
3: if K == A7 then return new(DMB);
4: if K == A8 then
5: if isW(a) ∧ isR(b) then return new(DMBFULL);
6: if isW(a) ∧ isW(b) then return new(DMBST);
7: if isR(a) then return new(DMBLD);
8: end procedure
1: procedure insertF(C, a, b, f)
2: V ′ ← C.V ∪ {f};
3: E1 ← C.E ∪ {(f, b)}
4: E ′ ← E1 ∪ {(e, f) |C.E+(e, b)}∪{(f, e) |C.E+(b, e)}
5: return ⟨V ′, E ′⟩;
6: end procedure

Fig. 7: Procedure getF and insertF.

b in the memory model K. Procedure insertF inserts the fence
f between a and b. Note that one inserted fence may order
multiple access pairs. These methods are defined in Fig. 7. In
case of x86 and ARM programs we insert MFENCE and DMB
respectively. In ARMv8 we first insert DMBFULL followed by
DMBLD and then DMBST fences.

C. Complexity of Robustness

To analyze the complexity of the robustness algorithm we
analyze the main procedures: BuildG, MKRobust, and Enforce
which perform MM, Pnf , and Cy computations. Given a
program with n statements, the number of shared memory
accesses and control flow edges are bound by n and n2 re-
spectively. Hence MM contain maximum n2 elements and Pnf

computation is bound by traversing n2 edges. So procedure
BuildG constructs an MPG graph with maximum |MM |= n2

nodes and |MM |2= n4 edges. Hence Cy computation traverses
maximum n4 edges. In procedure MKRobust, for each node
in MPG, we check (i) if it is on the cycle by computing Cy (ii)
if yes then it performs Pnf computation for the memory access
pair. Hence MKRobust overall incurs n2∗(n4+n2) = n6+n4

computation. Next, procedure Enforce takes maximum n2

computation for each access pair in MM and for overall incurs

maximum n2∗ |MM |= n4 computation. Hence, the robustness
checking and enforcement computation is bounded by O(n6)
which is polynomial in terms of the program size.

V. EXPERIMENTAL EVALUATION

Implementation. We implement the robustness analysis and
enforcement techniques in Fency (for FENCe analYsis) as
LLVM compiler passes for x86, ARMv8, and ARMv7 pro-
grams. We leverage the existing analyses in LLVM. The CFG
analyses are used to define MM, Path, P , and Pnf conditions.
We define the mayAA and mustAA conditions using memory
operand type and alias analyses provided in LLVM.

We run the analyses on a MacOS machine having a 2.4GHz
8-Core Intel i9 processor with 64 GB RAM.

Benchmarks. We analyze a number of well-known concur-
rent algorithms and data structures [14, 27] including global
barrier (Barrier) construct, mutual exclusion algorithms (by
Dekker, Peterson, and Lamport), different lock algorithms
(e.g. Spinlock, Seqlock, Ticketlock), non-blocking write proto-
col (NBW), read-copy-update (RCU) programs, work-stealing
queue in Cilk, and ChaseLev dequeue. These programs
use C11 [28, 29] atomic accesses extensively. The release-
acquire(RA)/TSO/SC versions indicate the memory model for
which the respective version is developed. The number of lines
in the LLVM IR (.ll) files vary between 100-400 which indicate
the approximate size of an analyzed CFG.

Naive fence insertion scheme. We compare Fency to a naive
scheme which does not use robustness information in fence
insertion. The naive scheme works as follows.
• Eliminate existing fences in concurrent threads.
• Enforce robustness by fence insertion in concurrent threads.

– (x86) Insert MFENCE after load, store, and RMW accesses.
– (ARMv8) Insert DMBLD after non-acquire loads and
DMBFULL for other memory accesses.

– (ARMv7) Insert DMB after all memory accesses.

A. Experimental Results

In Figs. 8 and 9 we report the results of some benchmarks.
The full results are in the supplementary material [15]. For
comparison we also provide the number of fences required by

179

Prog.
SC-x86

result ⟨sec
Trencher

result ⟨sec
Barrier 6|0✗2 ⟨0.005 ✗2 ⟨0.004

Dekker-TSO 20|4✓0 ⟨0.002 ✓0 ⟨0.007
Peterson-SC 14|0✗2 ⟨0.004 ✗2 ⟨0.013
Lamport-SC 17|0✗4 ⟨0.019 ✗4 ⟨0.107

Spinlock 14|0✓0 ⟨0.004 ✓0 ⟨0.007
Ticketlock 12|0✓0 ⟨0.004 ✓0 ⟨0.006

Seqlock 7|0✓0 ⟨0.004 ✓0 ⟨0.582
RCU-offline 33|4✗3 ⟨0.038 ✗- ⟨0.246

Cilk-TSO 22|2✓0 ⟨0.011 ✗0 ⟨2.039
Cilk-SC 22|0✓0 ⟨0.010 ✓2 ⟨6.322

Prog. ARMv7
SC

result ⟨sec
x86

result ⟨sec
ARMv8

result ⟨sec
Barrier 6|2✗2 ⟨0.012 6|2✓0 ⟨0.002 6|2✓0 ⟨0.002

Dekker-TSO 20|8✗6 ⟨0.003 20|8✗6 ⟨0.007 20|8✗6 ⟨0.009
Peterson-SC 14|0✗12 ⟨0.002 14|0✗10 ⟨0.002 14|0✗8 ⟨0.003
Lamport-SC 17|7✗10 ⟨1.699 17|7✗8 ⟨1.659 17|7✗5 ⟨1.698

Spinlock 18|12✓0 ⟨0.141 18|12 ✓0 ⟨0.133 18|12✓0 ⟨0.133
Ticketlock 14|8✓0 ⟨0.025 14|8✓0 ⟨0.022 14|8✓0 ⟨0.023

Seqlock 9|6✗2 ⟨0.006 9|6✗2 ⟨0.002 9|6✗2 ⟨0.002
RCU-offline 36|19✗17 ⟨0.335 36|19✗15 ⟨0.334 36|19✗10 ⟨0.339

Cilk-TSO 33|10✗6 ⟨2.455 33|10✗6 ⟨2.411 33|10✗6 ⟨2.427
Cilk-SC 33|8✗7 ⟨2.445 33|8✗7 ⟨2.410 33|8✗7 ⟨2.411

Fig. 8: Robustness analyses and enforcement for x86 and ARMv7 programs.

the naive schemes as well as the results from state-of-the-art
x86-robustness checker Trencher [8].

Intrpreting the Results. The (SC-K) entries in the tables are
of the form (a|b(✓/✗) c ⟨ d) where
• ‘a’: number of fences required by naive scheme.
• ‘b’: number of existing fences in the program.
• ‘c’: number of fences inserted by proposed scheme.
• ‘✓/✗’ symbol denotes if a program is M -K robust or not.
• ‘d’: time taken by the robustness pass in seconds.
In ARMv8 we show total number of DMB(FULL/LD/ST)
fences. We use #(a-(b+c)) less fences than the naive schemes
e.g. from Fig. 8 the Barrier program requires 6-(0+2)=4 less
fences than the naive scheme to enforce SC-x86 robustness.

For Trencher we analyze the encoded programs taken from
[14]. We report if the program is SC-x86 robust (✓/✗), number
of inserted fences (i.e. ‘c’) and the execution time (i.e. ‘d’).
Trencher fence insertion does not terminate for RCU-offline.

1) Checking Robustness

x86 programs. We report the SC-x86 robustness analysis
results of Fency in Fig. 8 (and in [15]) and compare the results
from Trencher. on the corresponding programs.

The SC-x86 robustness analysis in Fency is quite precise and
agrees to Trencher in all cases except Lamport-RA, Lamport-
TSO, and Cilk-SC programs. Lamport-(RA/TSO) have un-
ordered write-read pairs that generate WR relations and hence
Fency report SC-robustness violation though these access pairs
never execute concurrently in any x86 execution. Moreover, in
most cases Fency insert same number of fences as Trencher.

We note a subtle case in Cillk-SC. It has an access sequence
a = RRLX(T);WRLX(T, a-1);RRLX(H). Trencher reports SC-
violation due to the WR pair. However, LLVM combines
the load and store of T and create an atomic fetch-and-sub:
a = RRLX(T);WRLX(T, a-1) ⇝ a = fsub(T, 1). Hence the
resulting x86 program ensures SC-robustness which Fency
reports correctly.

We also note the execution time of Fency and of Trencher.
Trencher incurs significantly more time for the Seqlock, Cilk-

Prog. ARMv8
SC

result ⟨sec
x86

result ⟨sec
Barrier 6|2✗2 ⟨0.009 6|2✗0 ⟨0.007

Dekker-TSO 20|8✗4 ⟨0.007 20|8✗4 ⟨0.011
Peterson-SC 14|0✗11 ⟨0.001 14|0 ✗10 ⟨0.001
Lamport-SC 17|7✗9 ⟨0.007 17|7✗9 ⟨0.008

Spinlock 18|12✗4 ⟨0.017 18|12 ✗4 ⟨0.009
Ticketlock 14|8✗2 ⟨0.006 14|8✗2 ⟨0.007

Seqlock 9|6✗2 ⟨0.002 9|6 ✗2 ⟨0.005
RCU-offline 35|16✗17 ⟨0.157 35|16 ✗19 ⟨0.160

Cilk-TSO 33|10✗7 ⟨0.025 33|10 ✗7 ⟨0.024
Cilk-SC 33|8✗8 ⟨0.011 33|8✗8 ⟨0.012

Fig. 9: Robustness analyses & enforcement in ARMv8.

TSO, Cilk-SC programs and does not terminate for RCU-
offline fence insertion. Trencher exhibits comparable efficiency
in certain programs e.g. Spinlock, Ticketlock. However, in
these programs also if we increase the number of threads by
replicating the thread functions then Trencher incurs orders of
seconds to check and enforce robustness. At the same time
Trencher inserts more fences. On the other hand, the analyses
in Fency are parameterized by thread functions and therefore
are unaffected by the number of executing threads.

ARMv8 programs. In Fig. 9 (and in [15]) we report the
robustness results of the ARMv8 programs. The ARMv8
programs violate SC and x86 robustness as the programs
contain independent memory accesses on different locations
which are unordered in ARMv8.

As ARMv8 is weaker than x86, the programs (e.g. Barrier)
which violate SC-x86 robustness also violate SC-ARMv8
robustness. Moreover, there are programs which are SC-x86
robust but violates SC-ARMv8 robustness such as dekker-
TSO. These programs violate both SC-ARMv8 and x86-
ARMv8 robustness due to unordered accesses that result in
[R]; po ̸=ℓ; [R] or [W]; po ̸=ℓ; [W] relation in an execution. These
access pairs are ordered in x86 but not in ARMv8 and hence
violate x86-ARMv8 robustness.

180

Robustness of ARMv7 programs. In general the ARMv7
programs violate robustness when x86 or ARMv8 are not
robust as shown in Fig. 8 (and in [15]). However, C11
release/acquire/SC accesses which generate full fences in
ARMv7 and synchronizing accesses in ARMv8 which act as
half fences. As a result, in some programs the ARMv7 version
enforce stronger ordering than the ARMv8 version. Hence the
ARMv7 programs are robust unlike the ARMv8 programs. For
example, Consider the C11 event (without read/written values)
sequences from Spinlock and Ticketlock programs and their
C11 to ARMv8 and ARMv7 mappings [30].

R(X) ·WSC(Y) · R(Z) ↦→ R(X) · L(Y) · R(Z) (C-v8)
R(X) ·WSC(Y) · R(Z) ↦→ R(X) · F ·W(Y) · F · R(Z) (C-v7)

The reads are unordered in ARMv8 and may violate SC-
ARMv8. The ARMv7 event sequence is ordered by fences
that leads to SC-ARMv7 robustness.

The Barrier (and Peterson-RA-b) program violates SC-
ARMv7 due to unordered store-load pairs, but satisfies x86
and ARMv8 robustness. Some ARMv7 programs violate SC,
x86, ARMv8 robustness due to unordered read-read pairs.

2) Enforcing robustness.

In most of the programs enforcing weaker model requires less
number of inserted fences. However, certain ARMv8 programs
(e.g. lamport-SC) incur less fences to enforce SC-ARMv8 than
x86-ARMv8. Consider the ARMv8 sequence W(X) · R(X) ·
R(Y) ·W(Y) that may violate SC-ARMv8 and x86-ARMv8.
To ensure SC-ARMv8 we insert a DMBFULL that results in
W(X) · R(X) · F · R(Y) · W(Y) sequence. To ensure x86-
ARMv8 we insert a DMBLD and a DMBST to generate a W(X) ·
R(X) · FLD · R(Y) · FST ·W(Y) sequence.

3) Performance of Robustness Analyses

We have already compared the execution times of SC-x86
robustness analysis in Fency and Trencher. In case of ARM
program versions Fency incurs less than a second except
for ARMv7 Cilk-(TSO/SC) programs. The timings of Fency
analyses vary among different program versions. It is because
LLVM may optimize a program differently for different archi-
tectures. So the number of memory accesses (parameter ‘a’ in
Figs. 8 and 9) and the number of memory access pairs vary.
Moreover, the CFGs in different architectures also differ which
affect the Pnf and Cy computations.

VI. RELATED WORK

SC-robustness is studied against TSO [3, 4, 5, 6, 7, 8, 9, 10],
PSO [11, 12], POWER [13], and Release-Acquire [14] models
by exploring possible executions using model checking tools.
On the contrary, we analyze and transform programs as LLVM
passes without exploring program executions.

[8] check and enforce SC-robustness for parameterized
programs for any number of threads. It reduces the robustness
checking problem to parameterized reachability analysis on
possible executions. Instead, our approach is static and param-
eterized over the thread functions for any number of threads.

PORTHOS [31] checks portability of a program from one
model to another, particularly from POWER to TSO by
encoding models in SAT/SMT solvers. On the contrary, we
check robustness or portability of ARM models which are
different from POWER. In addition, our analysis enable fence
insertion to enforce robustness unlike PORTHOS.

A number of approaches [32, 8, 33, 34, 35, 18, 6, 11]
propose fence insertion to ensure SC. Among these fence
insertion schemes our approach is closer to static approaches
[34, 18, 35]. [18] use delay-set analysis to ensure SC for weak
memory programs. [35] proved that identifying minimal set of
fences is NP-hard and proposed minimal fence insertion based
on control flow analysis. Similar to [35], we analyze control
flow graph without exploring the executions.

[32] checks SC-robustness against x86 and POWER, and
restore SC by inserting lock-unlock or RMW constructs. [34]
proposed fence insertion in POWER to strengthen a program to
release/acquire semantics which has same ordering constraints
between memory accesses as TSO. On the contrary, we
propose M -K robustness; we define robustness conditions
for ARMv7 and ARMv8 programs and show that ppo is not
sufficient to enforce SC in ARMv7. Moreover, we analyze
parameterized programs unlike these approaches.

We extend abstract event graph (AEG) from [34] and pro-
pose memory pair graph in our analyses. An AEG captures the
possible execution graphs statically for a given set of threads
and statically detect possible robustness-violating cycles which
may occur in an execution. The proposed memory-access pair
graph (MPG) also considers that the program is parameterized
where each thread function may create multiple threads and
hence construct the event graph on all memory access pairs
from all threads. Then similar to AEG we statically detect
possible robustness-violating cycles on MPG. However, our
fence insertion may not be optimal; identifying optimal fence
insertion is an well studied problem [35, 18, 34] which we
will pursue in the context of M -K robustness.

VII. CONCLUSION AND FUTURE WORK

In this paper we identify robustness conditions for x86,
ARMv8, and ARMv7 relaxed memory models. Based on these
identified conditions we check M -K robustness. If robustness
is violated we insert appropriate fences to enforce robustness.
We implement our approach as LLVM compiler passes and
evaluate the efficiency on a number of well-known concurrent
algorithms and data structures.

Going forward we want to extend the analyses to other
concurrency features in x86 and ARM models [36]. We would
also like to extend these analyses to other architectures such
as RISC-V [37] and Power [38].

REFERENCES

[1] A. Barbalace, M. L. Karaoui, W. Wang, T. Xing,
P. Olivier, and B. Ravindran, “Edge computing: the case
for heterogeneous-isa container migration,” in VEE’20,
2020, pp. 73–87.

181

[2] A. Barbalace, R. Lyerly, C. Jelesnianski, A. Carno,
H. Chuang, V. Legout, and B. Ravindran, “Breaking the
boundaries in heterogeneous-isa datacenters,” in ASPLOS
2017, 2017, pp. 645–659.

[3] S. Burckhardt and M. Musuvathi, “Effective program
verification for relaxed memory models,” in CAV’08,
2008, pp. 107–120.

[4] A. Bouajjani, R. Meyer, and E. Möhlmann, “Deciding
robustness against total store ordering,” in ICALP’11,
2011, pp. 428–440.

[5] J. Burnim, K. Sen, and C. Stergiou, “Sound and complete
monitoring of sequential consistency for relaxed memory
models,” in TACAS’11, 2011, pp. 11–25.

[6] A. Linden and P. Wolper, “A verification-based approach
to memory fence insertion in relaxed memory systems,”
in SPIN’11, 2011, pp. 144–160.

[7] A. Gotsman, M. Musuvathi, and H. Yang, “Show no
weakness: Sequentially consistent specifications of tso
libraries,” 2012.

[8] A. Bouajjani, E. Derevenetc, and R. Meyer, “Checking
and enforcing robustness against TSO,” in ESOP 2013,
2013, pp. 533–553.

[9] P. A. Abdulla, M. F. Atig, and T.-P. Ngo, “The best
of both worlds: Trading efficiency and optimality in
fence insertion for tso,” in Programming Languages and
Systems. Springer Berlin Heidelberg, 2015, pp. 308–
332.

[10] A. Bouajjani, C. Enea, S. O. Mutluergil, and S. Tasiran,
“Reasoning about tso programs using reduction and
abstraction,” in CAV’18, 2018, pp. 336–353.

[11] A. Linden and P. Wolper, “A verification-based approach
to memory fence insertion in pso memory systems,” in
TACAS’13, 2013, pp. 339–353.

[12] P. A. Abdulla, M. F. Atig, M. Lång, and T. P. Ngo,
“Precise and sound automatic fence insertion procedure
under pso,” in Networked Systems, 2015, pp. 32–47.

[13] E. Derevenetc and R. Meyer, “Robustness against power
is pspace-complete,” in ICALP’14, ser. LNCS, vol. 8573,
2014, pp. 158–170.

[14] O. Lahav and R. Margalit, “Robustness against re-
lease/acquire semantics,” in PLDI 2019, 2019, pp. 126–
141.

[15] S. Chakraborty, “Technical appendix.” 2021,
available at https://www.st.ewi.tudelft.nl/sschakraborty/
mkrobustness.html.

[16] A. Podkopaev, O. Lahav, and V. Vafeiadis, “Promising
compilation to armv8,” in ECOOP’17, 2017.

[17] “The LLVM compiler infrastructure,” http://llvm.org/.
[18] D. E. Shasha and M. Snir, “Efficient and correct exe-

cution of parallel programs that share memory,” ACM
Trans. Program. Lang. Syst., vol. 10, no. 2, pp. 282–312,
1988.

[19] J. Alglave, L. Maranget, and M. Tautschnig, “Herding
cats: modelling, simulation, testing, and data-mining
for weak memory,” ACM Trans. Program. Lang. Syst.,
vol. 36, no. 2, pp. 7:1–7:74, 2014.

[20] O. Lahav, V. Vafeiadis, J. Kang, C.-K.
Hur, and D. Dreyer, “Repairing sequential
consistency in C/C++11,” in PLDI 2017, 2017,
pp. 618–632, technical Appendix Available at
https://plv.mpi-sws.org/scfix/full.pdf.

[21] J. Alglave and L. Maranget, “herd7 consistency model
simulator,” http://diy.inria.fr/www/.

[22] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and
P. Sewell, “Simplifying ARM concurrency: multicopy-
atomic axiomatic and operational models for ARMv8,”
PACMPL, vol. 2, no. POPL, pp. 19:1–19:29, 2018.

[23] “SC cat file,” 2021, available at https://github.com/herd/
herdtools7/blob/master/herd/libdir/sc.cat.

[24] “x86 cat file,” 2021, available at https://github.com/herd/
herdtools7/blob/master/herd/libdir/x86tso.cat.

[25] “Armv8 cat file,” 2021, available at https://github.com/
herd/herdtools7/blob/master/herd/libdir/aarch64.cat.

[26] “Armv7 cat file,” 2021, available at https://github.com/
herd/herdtools7/blob/master/herd/libdir/arm.cat.

[27] B. Norris and B. Demsky, “CDSChecker: Checking con-
current data structures written with C/C++ atomics,” in
OOPSLA’13, 2013.

[28] ISO/IEC 9899, “Programming language C,” 2011.
[29] ISO/IEC 14882, “Programming language C++,” 2011.
[30] “C/C++11 mappings to processors,” https://www.cl.cam.

ac.uk/~pes20/cpp/cpp0xmappings.html.
[31] H. Ponce de León, F. Furbach, K. Heljanko, and

R. Meyer, “Portability analysis for weak memory models.
porthos: One tool for all models,” 08 2017.

[32] J. Alglave and L. Maranget, “Stability in weak memory
models,” in CAV 2011, 2011, p. 50–66.

[33] F. Liu, N. Nedev, N. Prisadnikov, M. Vechev, and E. Ya-
hav, “Dynamic synthesis for relaxed memory models,” in
PLDI ’12, 2012, pp. 429–440.

[34] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl, “Don’t
sit on the fence: A static analysis approach to auto-
matic fence insertion,” ACM Trans. Program. Lang. Syst.,
vol. 39, no. 2, pp. 6:1–6:38, 2017.

[35] J. Lee and D. A. Padua, “Hiding relaxed memory con-
sistency with a compiler,” IEEE Transactions on Com-
puters, vol. 50, no. 8, pp. 824–833, 2001.

[36] J. Alglave, W. Deacon, R. Grisenthwaite, A. Hacquard,
and L. Maranget, “Armed cats: Formal concurrency mod-
elling at arm,” vol. 43, no. 2, 2021.

[37] “RISC-V specification.” https://riscv.org/technical/
specifications/.

[38] “Powerisa public.v3.1.” https://wiki.raptorcs.com/wiki/
File:PowerISA_public.v3.1.pdf.

182

https://www.st.ewi.tudelft.nl/sschakraborty/mkrobustness.html
https://www.st.ewi.tudelft.nl/sschakraborty/mkrobustness.html
http://llvm.org/
https://plv.mpi-sws.org/scfix/full.pdf
http://diy.inria.fr/www/
https://github.com/herd/herdtools7/blob/master/herd/libdir/sc.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/sc.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/arm.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/arm.cat
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://wiki.raptorcs.com/wiki/File:PowerISA_public.v3.1.pdf
https://wiki.raptorcs.com/wiki/File:PowerISA_public.v3.1.pdf

Formal Methods in Computer-Aided Design 2021

Pruning and Slicing Neural Networks
using Formal Verification

Ori Lahav and Guy Katz
The Hebrew University of Jerusalem, Jerusalem, Israel

{ori.lahav, guykatz}@cs.huji.ac.il

Abstract—Deep neural networks (DNNs) play an increasingly
important role in various computer systems. In order to create
these networks, engineers typically specify a desired topology, and
then use an automated training algorithm to select the network’s
weights. While training algorithms have been studied extensively
and are well understood, the selection of topology remains a form
of art, and can often result in networks that are unnecessarily
large — and consequently are incompatible with end devices that
have limited memory, battery or computational power. Here, we
propose to address this challenge by harnessing recent advances
in DNN verification. We present a framework and a methodology
for discovering redundancies in DNNs — i.e., for finding neurons
that are not needed, and can be removed in order to reduce the
size of the DNN. By using sound verification techniques, we can
formally guarantee that our simplified network is equivalent to
the original, either completely, or up to a prescribed tolerance.
Further, we show how to combine our technique with slicing,
which results in a family of very small DNNs, which are together
equivalent to the original. Our approach can produce DNNs
that are significantly smaller than the original, rendering them
suitable for deployment on additional kinds of systems, and even
more amenable to subsequent formal verification. We provide a
proof-of-concept implementation of our approach, and use it to
evaluate our techniques on several real-world DNNs.

I. INTRODUCTION

The wide-spread adoption of deep learning [17] has caused
a significant leap forward in many domains within computer
science. Deep neural networks (DNNs) have now become
the state of the art solution for a myriad of real-world
problems, such as game playing [40], image recognition [41],
and autonomous vehicles [5], [25]. This trend is likely to
continue and intensify, thus creating an urgent need for tools
and techniques to analyze and manipulate DNNs.

A part of the appeal of DNNs is that they are produced in a
mostly automated way. In order to create a DNN for a particu-
lar task at hand, engineers first specify the network architecture
— specifically, the number of layers in the network, the size
and type of each layer, and the inter-layer connections. Then,
they invoke an automated training algorithm for assigning
weights to the network’s edges [17]. While the automated
training process has been extensively studied and is generally
well understood [17], the choice of network architecture is
still performed according to various rules of thumb, and is
considered a form of art. This can often lead to a choice of
architecture that is wasteful — i.e., which results in a large
DNN, whereas a smaller DNN could have achieved similar
accuracy [15], [19], [23]. For DNNs intended to run on devices

with limited resources (e.g., mobile phones, or embedded
circuits), excessive DNN size can be a limiting factor [25].

One successful approach for mitigating this difficulty is to
first train a large network, and then shrink it by removing re-
dundant neurons. Informally, we say that a neuron is redundant
if removing it does not change the DNN’s output; and thus,
removing it from a network N results in a smaller network,
N ′, that is equivalent to N . In order to identify redundant
neurons within a DNN, prior work has focused primarily
on heuristic pruning: heuristically identifying neurons and
edges that contribute little to the network’s output, removing
these neurons, and then performing additional training of the
network [19], [23]. These methods have been highly successful
in reducing DNN sizes, but they provide no formal guarantees;
i.e., the removed neurons are not guaranteed to have been
redundant, and the simplified network can thus be dramatically
different from the original, producing different results for
various inputs [35].

Recently, there has been a surge of interest in the formal
verification of neural networks (e.g., [2], [14], [20], [26], [28],
[32], [46], and many others). These new capabilities have
made it possible to identify and remove redundancies in a
network, in a way that guarantees that the smaller network
is completely equivalent to the original [15]. Specifically,
Gokulanathan et al. showed how verification could be used
to identify and remove “dead” neurons, i.e. neurons whose
output is 0 regardless of the network’s inputs. This approach
was shown to reduce network sizes by up to 10%, which is
quite significant, while preserving complete equivalence to the
original network.

Here, we propose a new technique, which also attempts
to apply formal verification in order to remove neurons from
a DNN, but which is significantly stronger. Specifically, our
technique: (i) can identify additional kinds of redundant neu-
rons (beyond “dead” neurons), whose removal does not affect
the network’s outputs at all; and (ii) can identify additional
redundant neurons, whose removal does affect the network’s
outputs, but only up to a small, provable bound.

Finally, we propose a method that takes our approach to the
extreme, by integrating it with network slicing. This method,
in which a network is simplified into a family of much smaller
sub-networks, is appropriate for cases where fast inference is
crucial: an input is checked to identify the appropriate sub-
network for handling it, and then only that network needs to
be evaluated for that specific input. Slicing is achieved by

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 27 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-4271-8817
https://orcid.org/0000-0002-7729-8373
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_27
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_27
https://creativecommons.org/licenses/by/4.0/

partitioning the DNN’s input domain into small sub-domains,
maintaining a separate DNN for each input sub-domain, and
then applying the aforementioned simplification techniques on
each of these DNNs. We demonstrate that the use of small
input sub-domains causes many neurons to become redundant,
and consequently removable.

For evaluation purposes, we implemented our approach in
an open-source, publicly available tool [33]. As a backend,
our tool uses the Marabou DNN verification tool [29]. We
note, however, that our approach is agnostic of the underlying
verification engine — indeed, it could be integrated with any
other tool, and will consequently benefit from any development
in DNN verification technology. We evaluated our approach on
a set of airborne collision avoidance networks [25], obtaining
highly favorable results. Specifically, we were able to achieve a
reduction of up to 71% in overall network sizes, while keeping
the outputs identical (up to a prescribed tolerance) to those
produced by the original DNN. This reduction in network
sizes is a significant improvement over the previous state of
the art [15]. Further, while prior techniques were specifically
tailored to networks with only a specific activation function
(i.e., rectified linear units [15]), our technique is applicable to
multiple kinds of DNNs.

The rest of this paper is organized as follows. In Section II,
we provide the necessary background on DNNs and their
verification. Next, in Section III we present the basic building
block of our approach, namely the removal of a single neuron.
We then specify multiple kinds of neurons that can be removed
in Section IV, and discuss the simultaneous removal of neu-
rons in Section V. Subsequently, in Section VI we present
how input slicing and simplification can be used to improve
network evaluation time. An evaluation appears in Section VII,
followed by a discussion of related work in Section VIII. We
then conclude in Section IX.

II. BACKGROUND: DNNS AND THEIR VERIFICATION

A deep neural network [17] is a directed, acyclic graph,
whose nodes (also referred to as neurons) are grouped into
layers. The first layer is the input layer; the final layer is
the output layer; and the intermediate layers are the hidden
layers. When the network is evaluated, the input neurons are
assigned some values (e.g., sensor readings), and these values
are then propagated through the network, layer by layer, until
the output values are computed. In regression networks, the
numeric value of the output is of interest, while in the case
of classification networks, the output neurons correspond to
possible labels that the network can classify the input into;
and the label whose neuron obtained the highest score is the
one returned by the network.

Each layer in the DNN has a type, which determines how
its neuron values are computed. Here, we will focus on two
types: weighted sum layers, and piecewise-linear activation
layers. In a weighted-sum layer, the value of a neuron y is
computed as y = b +

∑︁
civi for neurons vi from preceding

layers, where the weights ci are determined when the network

is first trained. In a piecewise-linear activation layer, the value
of neuron y is computed as

y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1x+ b1 if s1 ≤ x < s2,

a2x+ b2 if s2 ≤ x < s3,

. . .

akx+ bk if sk ≤ x ≤ sk+1

where x is a neuron from some preceding layer, and the ai,
bi and si parameters determine the piecewise linear func-
tion being computed. A common example of a piecewise-
linear activation function is the ReLU function, given by

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 1: The ReLU function.

y = max(x, 0) =

{︄
0 if x < 0

x if x ≥ 0

(see Fig. 1). Together, weighted-
sum layers and piecewise-linear
activation functions make up
many common DNN architec-
tures [17]. Typically, they are
used in alternation (see Fig. 2). Extending our approach to
activation functions that are not piecewise-linear remains a
work in progress.

Inputs
WS ReLU WS ReLU ReLU

OutputsReLU

ReLU

ReLU

ReLU

ReLU

ReLU

..
.

..
.

. .
.

..
.

..
.

..
.

. . .

Fig. 2: An illustration of a DNN with alternating weighted-sum (WS)
and ReLU layers.

More formally, we regard a DNN N with k inputs and
m outputs as a mapping Rk → Rm. The DNN is given as a
sequence of layers L1, . . . , Ln, where L1 is the input layer and
Ln is the output layer. We use si to denote the size of layer Li,
and use v1i , . . . , v

si
i to refer to the individual neurons of Li. We

use Vi to refer to the column vector [v1i , . . . , v
si
i]T . When the

network is being evaluated, we assume that the input values
V1 are given, and that V2, . . . , Vn are computed iteratively.
The type of each hidden layer is given via the mapping TN :
N → T . For simplicity we set T = {weighted-sum,ReLU},
although our technique applies to all types of piecewise-linear
activation functions.

In a weighted-sum layer Li, each neuron vji is associated
with a linear function vji = bji +

∑︁
cl,t ·vtl ; i.e., vji is computed

as a weighted-sum of neurons vtl from preceding layers l < i,
plus a bias value bji . In a ReLU layer Li, each neuron vji is
associated with a specific neuron vtl from a preceding layer
l < i, and its value is given by vji = ReLU(vtl) = max(vtl , 0).
Note that each neuron’s value depends only on neurons from
preceding layers.

184

In recent years, various security and safety issues have been
discovered in DNNs [26], [43]. This has led the verification
community to study the DNN verification problem [36]. Gen-
erally, this problem is defined by a set of constraints P on
the DNN’s inputs, and a set of constraints Q on the DNN’s
outputs; and solving it entails finding (or proving the non-
existence of) an input x such that P (x) ∧ Q(N(x)); i.e., an
input x that satisfies the input condition, and is mapped by
the DNN to a point that satisfies the output condition. When
P and Q characterize an unsafe behavior of the DNN, an
UNSAT answer to the aforementioned query indicates that
the DNN is safe; whereas a SAT answer, accompanied by
a satisfying assignment, demonstrates an unsafe behavior.
This formalization is sufficiently expressive for capturing
many properties of interest [26]. Many approaches for solving
the DNN verification problem have been proposed recently
(e.g., [14], [20], [26], [46], and many others). The techniques
we discuss in this work use a DNN verification engine as a
backend, and do not depend on the precise method used — and
so we do not elaborate on this topic. We refer the interested
reader to [36] for a survey.

III. REMOVING A SINGLE NEURON

The core of our DNN simplification approach is the identi-
fication, and then the removal, of redundant neurons. Given a
DNN N , we seek to identify a redundant neuron vji , and then
produce another network, N ′, which is identical to N except
for the redundant neuron that has been removed. Ideally, we
would like to ensure that N and N ′ are equivalent; i.e.,
that ∀x.N(x) = N ′(x). Because N ′ is obtained from N
by removing a neuron, it is smaller; and this process can be
repeated iteratively, to eventually obtain a significantly smaller
network that is equivalent to N . Of course, the key points that
need addressing are: (i) how to technically remove a redundant
neuron from the network; and (ii) how to identify redundant
neurons. In this section we focus on the first challenge, and
describe the mechanics of removing a neuron.

In order to maintain compatibility with the original network,
we will refrain from removing neurons from the network’s
input or output layers; all other neurons are considered
candidates for removal. We distinguish between neurons in
weighted-sum layers, and neurons in activation function layers.
In fact, our proposed approach only supports the removal of
weighted-sum neurons that feed only into other weighted-sum
neurons; and the removal of activation function neurons will
be performed by first transforming them into weighted-sum
neurons, as described in later sections.

Consider a neuron v computed as a weighted-sum

v = bv +
∑︂

ci · xi,

where xi are neurons from preceding layers. Suppose that v
only feeds into other weighted-sum neurons, and let u be such
a neuron:

u = bu + c · v +
∑︂

di · yi,

where yi are again neurons from preceding layers. In this case,
u’s equation can be updated into:

u = (bu + c · bv) +
∑︂

c · ci · xi +
∑︂

di · yi.

If this process is repeated for every (weighted-sum) neuron
that v feeds into, then afterwards v will have no outgoing
edges. Consequently, v could then be eliminated from the
network altogether. It is straightforward to show that such
an operation will never affect the value of u, and that the
modified network will thus be completely equivalent to the
original. Also, identifying neurons that can be eliminated is
simple, and amounts to searching for weighted-sum neurons
that are only connected to other weighted-sum neurons.

In practice, DNN topology usually alternates between
weighted-sum and activation function layers, and so con-
secutive weighted-sum neurons are likely to be scarce. Our
strategy will thus be to replace activation function neurons
with weighted-sum neurons, in a way that will enable neuron
removal while preserving network accuracy. As an example,
let us consider a ReLU neuron, y = ReLU(x). Because of
layer-type alternation, it is reasonable to assume that x is
a weighted-sum neuron. In this case, if we can express y
as a linear function of x, i.e. y = ax + b for some a and
b, then the previous case of two consecutive weighted-sum
neurons applies: we can remove x entirely, change y’s type
to weighted-sum, and connect y to x’s inputs. Further, if y
also feeds into weighted-sum neurons, then we can apply
simplification once again, and remove y as well. An illustration
appears in Fig. 3.

x y

ReLU

ReLU

ReLU

Fig. 3: Illustration: removing a neuron. x is a weighted-sum neuron
which feeds into y, a ReLU neuron. After converting y into a
weighted-sum neuron, both x and y can be removed.

The aforementioned steps constitute the framework of our
approach — to repeat, until saturation, the two steps: (i) iden-
tify any weighted-sum neurons that only feed into weighted
sum neurons, and remove them; and (ii) identify any activation
function neurons that can be changed into weighted-sum
neurons, without harming the network’s accuracy. The key
remaining issue is how to identify those neurons to which step
2 can be applied. We elaborate on this issue in the following
sections.

IV. LINEARIZING ACTIVATION FUNCTIONS

We next propose various criteria for determining which
activation function neuron can be changed into weighted-sum
neurons. Applying these criteria in practice is discussed later,
in Section V.

Phase Redundancy. In order to transform an activation
function neuron into a weighted-sum neuron without chang-
ing the network’s outputs, we leverage the properties of

185

piecewise-linear functions. Let x be a weighted-sum neuron
and let y = f(x) be an activation function neuron; then,
by definition, the value range of x is divided into segments
[s1, s2], [s2, s3], . . . [sk, sk+1], and in each segment y is a
linear function (a weighted-sum) of x. If we are able to
discover that x is in fact restricted to one of these segments,
i.e. si ≤ x < si+1 for some i, then we can safely discard
the constraint y = f(x) and replace it with a linear constraint
y = aix+ bi, thus changing y to be a weighted-sum neuron.
We stress that this change does not alter the value of y, and
consequently does not alter the network’s outputs. When this
phenomenon occurs, we say that y is phase-redundant. For
the ReLU function, this happens if we discover that x < 0 (y
is inactive-redundant), or x ≥ 0 (y is active-redundant). As
previously stated, transforming the piecewise-linear constraint
into a linear one will often allow us to eliminate two neurons
from the network, without changing its outputs.

Forward Redundancy. Phase-redundancy captures the case
where an activation function neuron is fixed to a single linear
phase, for all possible inputs. However, there actually exist
unstable activation-function neurons, i.e. neurons not fixed to a
particular linear phase, which can still be soundly transformed
into weighted-sum neurons computing one of these linear
phases. Intuitively, this happens when neuron y’s assignment
affects its k succeeding layers, for some k > 0, but gets
“canceled out” in layer k + 1. A small, illustrative example
appears in Fig. 4. When replacing y with a weighted-sum
neuron only affects neurons that are at most k layers away
from y, we say that y is k-forward-redundant. Much like
phase-redundant neurons, k-forward-redundant neurons can be
removed from the network without harming its accuracy.

Input

[−1, 1]

+0

WS

+1

y

ReLU

+1

WS

+1

ReLU

+0

WS

+0

ReLU

Output
1

1

1

−1

1

1

1

1

1

1

1

1

Fig. 4: The orange ReLU neuron, marked y, is 2-forward-redundant.
Replacing y with a constant zero affects the following WS and ReLU
layers, but it does not affect the last WS layer (and thus the network
output). For example, observe that if we input 1 into the network, y
evaluates to 1, and the network’s output evaluates to 12. This output
value is unchanged even if we replace y’s value with 0. A careful
examination of the network reveals that this will always be the case,
regardless of the network’s input value.

More formally, let vji be an activation function neuron, and
let N ′ be a network obtained from N replacing v with a
weighted-sum neuron vji = bji +

∑︁
ckxk. Let V1 denote an

input vector, on which both N and N ′ are evaluated; and
let V2, . . . , Vn and V ′

2 , . . . , V
′
n denote the layer evaluations

of N and N ′ (respectively) on V1. If, for every V1, it holds
that Vi+k = V ′

i+k, then we say that neuron vji is k-forward-
redundant (note that this implies Vi+k′ = V ′

i+k′ for every
k′ > k). We note that a neuron that is phase-redundant is
also k-forward-redundant, for any k ≥ 0.

Relaxed Redundancy. So far, we discussed replacing a
piecewise-linear activation neuron with a weighted-sum neu-
ron that corresponds to one of the activation function’s linear
segments; e.g., in the case of y = ReLU(x), neuron y would be
changed into a weighted-sum neuron computing either y = 0
or y = x. We observe that, although these linear functions
are natural candidates for replacing the original constraint, in
fact any linear function y = ℓ(x) could be used. Specifically,
given an activation function y = f(x) and some known lower
and upper bounds lb and ub for x (computed, e.g., using
interval arithmetic [26] or abstract interpretation [14], [46]),
we propose to find a linear function ℓ(x) that has minimal
error compared to f(x). We define this error to be

max
lb≤x≤ub

|f(x)− ℓ(x)|

See Fig. 5 for an illustration of replacing a ReLU constraint,
whose phase is not fixed, with three linear constraints. In each
illustration, the blue line is the ReLU, the dashed line is the
linear replacement, and the red area is the introduced error. In
case (c), the maximal introduced error (the height of the red
region) is the smallest among the three options.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

(a) Replacing a ReLU with the
zero function

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

(b) Replacing a ReLU with iden-
tity function

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

(c) Replacing a ReLU with an
arbitrary linear function

Fig. 5: Replacing a ReLU with linear functions.

Unlike in the phase-redundancy and k-forward-redundancy
cases, setting y = ℓ(x) will introduce some imprecision to the
network’s output. The motivation is that by replacing y = f(x)
with y = ℓ(x) that has minimal error, we would be introducing
only a small imprecision, while enabling the removal of y.
Let et be some user-defined error threshold; when replacing
y = f(x) with ℓ(x) introduces an error e such that e ≤ et,
we say that neuron y is relaxed-redundant.

Let us focus on the y = ReLU(x) function as an example,
and suppose we know that x ∈ [lb, ub]. If lb < 0 and
ub > 0, the neuron is not phase-redundant. In this case, a
linear function y = lm(x) with minimal error can be easily

186

computed, and is given by:

lm(x) =
ub

ub− lb
· x+

−lb · ub
2(ub− lb)

.

It is straightforward to check that the maximum error is
obtained when x = 0, and it is given by −lb·ub

2(ub−lb) (a proof
appears in Appendix 1 in the extended version of this pa-
per [34]). Unsurprisingly, when lb or ub are close to 0, the error
becomes very small — indicating that such ReLUs, which are
“almost phase-redundant”, could be removed at a small cost
to precision. It should be noted, however, that minimizing
the maximum error introduced by the removal of a single
neuron does not necessarily minimize the overall imprecision
introduced to the network’s outputs.

Result-Preserving Redundancy. In classification networks, it
may be acceptable to give up some precision, as long as the
output label for each input is unchanged; i.e., if the original
network classified input x as label l with 80% confidence, it
may be acceptable to remove neurons in a way that reduces
this confidence to 60%, as long as x is still classified as l.

More formally, let y = f(x) be an activation neuron in
a network N , and let N ′ denote the same network with y
replaced by a weighted sum neuron, y = ℓ(x). If, for every
input vector V1, it holds that argmax(Vn) = argmax(V ′

n), i.e.
if both networks classify each input vector in the same way
(regardless of the actual output neuron values computed), then
we say that neuron y is result-preserving redundant. See Fig. 6
for an example.

Input

[−1, 1]

+0

WS

−0.2

ReLU

y

+0

WS

+0.1

#1

Outputs

#2

1

1

2

1

1

−1

Fig. 6: The orange ReLU, marked y, is result-preserving redundant
and can be replaced with a constant zero. Observe that any input
in range (0.1, 1] is classified as label #1, while any input in range
[−1, 0.1) is classified as label #2. The ReLU in orange is active only
for inputs in (0.2, 1], and it only increases the confidence in label
#1. For example, the network output for input 0.5 is [1.3, 0.3]T , and
after replacing y with 0 the output becomes [1.0, 0.6]T . Label #1
still wins, but with a lower confidence. Thus, y is result-preserving
redundant — replacing it with a constant zero does not change the
winning class, for the entire input domain.

Note that result-preserving redundancy is, in a way, more
permissive than the previous categories: we do not directly
try to bound the imprecision introduced, but rather only try to
maintain the same output label for every input. Clearly, any
neuron that is phase-redundant or k-forward-redundant is also
result-preserving; and it is reasonable to assume that relaxed-
redundant neurons with a small error would also be result-
preserving redundant. The motivation for considering this kind
of redundancy is that, due to its more permissive nature, it can
identify additional redundant neurons.

Our definition of result-preserving redundancy can also be
slightly relaxed, to exclude inputs whose classification was

borderline; i.e., inputs whose highest-scored label and the
second-highest label received very similar scores. Intuitively,
with this alteration, a neuron is considered result-preserving
redundant if it does not change the classification of any
inputs which were previously classified with a high degree
of confidence, but may flip the classification of inputs about
which the DNN was not sure to begin with. The motivation
for this change is to allow the removal of additional neurons.

V. NEURON REMOVAL STRATEGIES

In Section III we laid the theoretical foundations of our
DNN simplification approach, by defining four kinds of redun-
dant neurons that could be removed to reduce network size.
There exist many strategies for applying these definitions in
practice, in order to reduce network sizes. Intuitively, a good
strategy is one that identifies large sets of neurons that can
be removed simultaneously, in a way that is computationally
efficient. In this Section, we propose one such strategy, which
we have empirically observed to perform well.

Step 1: Bound Estimation using MILP. Let v be an activation
function neuron which we are considering for removal. In
this context, it is useful to deduce lower and upper bounds
for v that are as tight as possible. Such bounds could lead,
for example, to the classification of v as phase-redundant,
or enable us to compute lm(v) and declare v to be relaxed-
redundant.

Mixed-Integer Linear Programming (MILP) [9] is a well-
studied method for solving a system of linear constraints with
real and integer variables. In the context of DNN verification,
MILP can be used to derive lower and upper bounds on the
values that the various neurons in the DNN can obtain [10],
[44]. This is done by encoding a linear over-approximation of
the neural network into the MILP solver, and then using the
solver’s objective function to maximize/minimize each of the
individual neurons. For example, after encoding a network N ,
we could set the solver’s objective function to 1 ·v, where v is
some neuron in N ; and the optimal solution discovered would
then constitute v’s upper bound.

As a first step in the simplification process, we propose
to run such MILP queries for every neuron that is candidate
for removal. The number of resulting queries can be large —
two queries per neuron, one for each bound — but the gains
are significant, as the discovered bounds can often be quite
tight [44]. At the end of this step, we immediately remove all
phase-redundant neurons.

In practice, it is useful to run the MILP solver with a short
timeout (e.g., 10 second) for each neuron. In case a timeout
occurs, modern solvers are able to provide a sound approxi-
mation of the optimal solution [38]. In our experiments, we
observed that this initial step already detects a large number
of phase-redundant neurons.

Step 2: Simulations. After the MILP phase is concluded,
we are left with multiple activation-function neurons whose
phases are not yet fixed. It is possible that some of these neu-
rons are also phase-redundant, but that the bounds discovered

187

in the MILP pass were too loose to indicate this. It is also
possible that they are k-forward-redundant or result-preserving
redundant. At this point we wish to quickly rule out as many of
these candidates as possible, before applying computationally
expensive steps to dispatch the remaining candidates.

To do this, we follow in the footsteps of Gokulanathan et
al. [15], and apply simulations; i.e., we evaluate the network
on a large number of random inputs, and for each input record
the values assigned to the network’s neurons. Simulations can
easily show that a neuron is not phase-redundant, by demon-
strating two different inputs for which the neuron is in two
different linear phases. Similarly, they can show that a neuron
is not k-forward-redundant or result-preserving redundant.

Step 3: Formal Verification. After the MILP and simulation
phases, we are left with activation-function neurons that are
candidates for removal, if we can prove them redundant. We
now apply formal verification to classify these remaining neu-
rons. Specifically, for each candidate neuron v, we: (i) apply
verification to check whether v is fixed to one if its linear
phases, and is hence phase-redundant; and if not, (ii) if N is a
classification network, apply verification to check whether v is
result-preserving redundant; else, if N is a regression network,
apply verification to check whether v is k-forward-redundant,
for a value of k that corresponds to the output layer. Each of
these conditions can be posed as a DNN verification query, as
described next. As soon as a neuron is marked redundant, it
is removed, and the process continues.

In order to determine whether v = f(x) is phase-redundant,
we must check whether x is restricted to a certain linear seg-
ment. Let [s1, s2], [s2, s3], . . . [sk, sk+1] be the set of possible
segments. For each such segment [si, si+1], we can encode the
DNN into the verifier, and pose the query: ∃V1.(x < si)∨(x >
si+1). If the answer is UNSAT, we know that x is indeed fixed
into segment [si, si+1]. An illustration appears in Fig. 7.

Inputs

x > 0 v

OutputsReLU

ReLU

ReLU

ReLU

Fig. 7: A query for determining whether ReLU node v = ReLU(x)
is phase-redundant: we check whether it is possible that x > 0,
and if not, we conclude that v is inactive-redundant. To facilitate the
verification process, the neurons in subsequent layers, as well as all
other neurons in layer 2 (grayed out), are not encoded.

Determining whether v = f(x) is k-forward-redundant is
done by creating a query where the part of the network starting
from the neuron in question is duplicated. One copy of the
network is the unmodified one, and in the other copy v =
f(x) is replaced with a weighted-sum neuron, v′ = ℓ(x). We
query the verifier whether it is possible that a neuron k layers
away from v is assigned different values in the original and

modified copies. If the answer is UNSAT, the neuron is k-
forward-redundant. See Fig. 8 for an illustration.

? =

Inputs Outputs

Fig. 8: 4-Forward-Redundancy query illustration. The neuron in
orange is the neuron being checked for forward-redundancy. In this
case the layer being checked is at distance 4, which happens to be
the output layer.

Determining whether v = f(x) is result-preserving redun-
dant is done by creating a query similar to the k-forward-
redundant case, only this time we ask the verifier whether
there exists an input that the two networks classify differently.
If the answer is UNSAT, we know that the neuron is indeed
result-preserving redundant.

Step 4: Relaxed Redundancy and Accumulative Error. The
aforementioned steps were aimed at identifying and removing
redundant neurons, without introducing any imprecision into
the simplified network. Last but not least, we discuss the
removal of relaxed-redundant neurons. Recall that relaxed-
redundant neurons are determined by a user-specified error
threshold et. Identifying these neurons is thus a local opera-
tion, that does not require verification; for every neuron we
can compute the maximum error introduced by replacing it
with lm, and see whether it exceeds the threshold.

While each relaxed-redundant neuron can be identified
locally, removing multiple neurons simultaneously runs the
risk of compounding the overall error, beyond the permitted
threshold. To circumvent this issue and allow the efficient
removal of multiple relaxed-redundant neurons, we introduce
the following lemma:

Lemma 1. Let N be a neural network, and let N ′ be a
simplified network, obtained from N by removing relaxed-
redundant neurons u1, . . . , un. Consider another neuron v in
N ′ that is relaxed-redundant, and let ein denote the error to
v’s input, previously introduced by the removal of u1, . . . , un.
Let ev denote the error introduced by the removal of v. Then,
if we remove v, the overall error introduced to its output is

188

upper bounded by:
ein + ev

This lemma tells us that the iterative removal of relaxed-
redundant neurons does not compound the introduced error;
instead, the error introduced by the removal of each neuron
is only added to the error already introduced by the removal
of other neurons. This enables us, through a straightforward
computation, to upper bound the overall imprecision (on the
output layer) that the removal of a set of relaxed-redundant
neurons might cause. Consequently, our proposed strategy is
to begin removing relaxed-redundant neurons with small error
rates, each time recomputing the overall network inaccuracy,
until hitting the prescribed overall error threshold. A full,
formal description of these claims appears in Appendix 2 in
the extended version of this paper [34].

VI. INTRODUCING REDUNDANCIES VIA INPUT SLICING

So far, our simplification efforts have hinged on the exis-
tence of redundant neurons. Next, we introduce a technique
that can cause neurons to become redundant, even if they are
initially not so.

The core idea is to: (i) slice the input domain D of the DNN
N into smaller sub-domains D1, . . . ,Dn; (ii) duplicate the
original network n times, resulting in networks N1, . . . , Nn,
such that network Ni is associated with domain Di; and
(iii) apply the simplification process described in Section V for
each Ni, separately. Intuitively, splitting the input domain into
sub-domains can serve to separate “simpler” inputs regions, in
which many neurons are phase-redundant, from more “com-
plex” input domains where neurons fluctuate between phases.
Various heuristics can be used for splitting the input domain,
depending on the network in question. A simple splitting
method, which we used in our evaluation, is to split the range
of each input coordinate into n even sub-ranges.

After the slicing and simplification is done, we are left with
a family of DNNs N1, . . . , Nn, which are together equivalent
to the original N . Evaluation is then performed in two steps:
given an input vector V1, we first identify the domain Di to
which V1 belongs; and then compute Ni(V1) and return the
result. As our evaluation shows, the resulting Ni networks
can be quite small, resulting in a significant improvement to
the expected number of operations required for evaluating the
network. This improvement might come at the expense of
increased space requirements for storing the resulting family of
networks, making this approach suitable for cases where space
is abundant but fast inference is crucial. We note that, as a side
effect, the resulting networks may be easier to verify [46], [48].

Discussion: Dependency on Input Dimensions. Our pro-
posed slicing method relies on splitting the input domain,
by restricting input neurons to various values. This approach
works quite well on DNNs with relatively few input neurons
(e.g., the ACAS Xu family of networks [25]; see Section VII
for details). For networks with a larger number of input neu-
rons (e.g., image recognition networks), the number of input
sub-domains might be prohibitively large. Indeed, a similar

phenomenon has been observed for verification techniques that
rely on input slicing [46], [48].

One approach for mitigating this difficulty is through per-
forming slicing not on the input layer, but on some smaller
intermediate layer Lk in the network. Then, the network
would be evaluated by evaluating the original network’s layers
L1 . . . Lk−1, and then using the values computed for layer Lk

in choosing from a set of networks for continuing the evalua-
tion. We speculate that for an intermediate layer of a moderate
size, this approach could lead to improved performance over
input slicing. We leave this for future work.

Extreme Slicing: Complete Linearization. We observe that
input slicing can be used to completely linearize every sub-
domain of the input space; that is, if the resulting sub-
domains are sufficiently small, then in each network Ni all
activation functions will become phase-redundant, effectively
collapsing the DNN into a linear transformation. Additionally,
even if the slicing does not fix the phase of all activation
function neurons, extreme slicing tends to decrease the error
introduced by removing relaxed-redundant neurons; and thus,
complete linearization could be achieved by removing these
neurons, even if they have not become phase-redundant. This
linearization approach can thus be regarded as providing us
with a simple, piecewise-linear approximation of the network
as a whole — with an upper bound on the error in each sub-
domain. Our experimental results in Section VII demonstrate
very low error rates on most sub-domains.

Complete linearization incorporates a trade-off: in order to
obtain very small, nearly-linear networks, the input domain
would have to be sliced many times. Users can fine-tune
the number of slices used, and consequently the sizes of the
resulting DNNs, to their specific needs.

VII. EVALUATION

We created a proof-of-concept implementation of our ap-
proach as a Python framework, available online [33] (together
with all benchmarks reported in this section). The framework
provides all the functionality discussed so far: after importing
a network, it can run MILP queries to compute neuron bounds;
perform simulations; and identify phase-redundant, k-forward-
redundant and result-preserving redundant neurons, by running
verification queries. The framework uses the Gurobi [38]
MILP solver and the Marabou [29] DNN verification engine
as backends, although other backends could also be used.

For evaluation purposes, we conducted extensive experi-
ments on the ACAS Xu system: an airborne collision avoid-
ance system, implemented as a family of 45 neural net-
works [25]. Each of these neural networks has 5 input neurons,
5 output neurons, and 6 hidden layers with 50 neurons each
and ReLU activation functions (310 neurons in total). Keeping
the network sizes small was a key consideration in developing
the ACAS Xu system [25], making it a prime candidate on
which to apply simplification techniques.

We began by comparing our approach to that of Goku-
lanathan et al. [15], which is the current state-of-the-art in

189

verification-based simplification of DNNs. Their technique can
be regarded as a private-case of ours, in which only spe-
cific phase-redundant neurons (specifically, inactive-redundant
ReLUs) are removed. We compared that approach to our
framework, configured to identify and remove both active-
redundant and inactive-redundant ReLUs, and also to remove
relaxed-redundant neurons. We ran both tools on all 45 ACAS
Xu networks; the results appear in Table I.

TABLE I: Phase-Redundancy and Relaxed-Redundancy on
ACAS Xu networks.

Inactive Active Relaxed-Redundant
Redundant Redundant ϵ = 10−4 ϵ = 10−3 ϵ = 10−2

% of all
neurons 4% 4.2% 4.2% 4.6% 4.9%

% of
redundant
neurons

baseline 3.5% 5.3% 13.6% 21.5%

output error
bound 0 0 0.02 2.64 525.1

The table depicts the accumulated numbers of redundant
neurons, when read from left to right (which is the or-
der in which the techniques were applied). First, inactive-
redundant neurons are removed (this is the technique of [15]),
accounting for 4% of all neurons in the network. Active-
redundant neurons are next, removing another 0.2% of all
neurons, which is a 3.5% increase in the number of removed
neurons. Finally, relaxed-redundant neurons are removed, with
three possible alternative ϵ values. The most permissive one,
ϵ = 10−2, leads to the removal of 4.9% of the neurons in
total, which is a 21.5% increase over the baseline — but
the resulting network error bound in this case, 525.1, is quite
high. ϵ = 10−3 appears a better choice, with a total removal
rate of 4.6% and a significantly smaller error bound of 2.64.
We note that our evaluation indicates that the output error
bounds currently computed are far from tight; devising tighter
bounding schemes is a work in progress.

In our second experiment, we evaluated our complete sim-
plification pipeline. First, we applied input-slicing, dividing
the input domain into 32,768 equal sub-domains (3 rounds
of bisecting the range of each of the 5 input neurons in 2).
Next, for each sub-domain we: (i) ran MILP and removed any
discovered phase-redundant neurons; (ii) ran simulations, and
then formal verification to discover and remove any remain-
ing phase-redundant neurons; and (iii) identified all result-
preserving neurons, and greedily attempted to simultaneously
remove large sets thereof, using verification. We note that
identifying the largest set possible of result-preserving neurons
that can be removed simultaneously is a difficult problem, and
our current heuristic was a simple, greedy approach. Devising
more sophisticated heuristics is left for future work.

We ran the MILP step on all 32,768 sub-domains, which
resulted in the discovery of 67.3% phase-redundant neurons
on average in each sub-domain. We continued to run the
pipeline on a sample of 50 sub-domains selected at random.
Most notably, we observed an average removal of 82.5%

redundant neurons (out of all neurons in the network), with
7.2% additional neurons still candidates for removal, but for
which the underlying verification engine timed-out. Of the
82.5% removed neurons, 70.2% were phase-redundant, which
is a very significant increase from the 4.2% neurons removed
when the pipeline was run over the entire input domain.
This demonstrates the high effectiveness of input slicing. In
addition, about 21% of phase-redundant neurons were active-
redundant, which signifies the importance of the generalization
from “dead neurons” [15] to phase-redundancy. The remaining
12.3% neurons removed were result-preserving redundant.
Fig. 9 shows the breakdown.

68%

12%
11%

7%

Phase-Redundant
by MILP
Phase-Redundant
by Formal Verification
Result Preserving
Non-Redundant
Unknown (Timeouts)

Fig. 9: Redundant neuron removal, averaged over 10 ACAS Xu input
sub-domains.

Slicing is highly beneficial for neuron removal, but results
in a large number of sub-domains that need to be checked.
Within our pipeline, verification steps are the most expensive,
whereas MILP queries and simulations are relatively cheap.
We observe, however, that MILP queries already account for
most of the removed neurons. Specifically, 68.5% of all phase-
redundant neurons removed were discovered through MILP
(about 83% of all redundant neurons), with a 10 second
timeout for each individual MILP query.

The next step, namely simulations, is also computationally
cheap and highly effective. For each sub-domain, we ran
100,000 simulations; and out of the of 31.5% neurons which
were still candidates for removal after the MILP phase, an
average of 26.4% of the neurons were ruled not phase-
redundant through simulations. This left only a small number
of candidates to be dispatched through verification (5.1%
of the neurons), which in turn discovered the remaining
1.7% redundant neurons, on average. In our experiment, each
Marabou verification query was run with a 4-hour timeout.

As discussed above, we used a fairly naı̈ve strategy for
discovering result-preserving redundant neurons. Specifically,
we ran formal verification on each candidate neuron to check
whether it was individually result-preserving redundant; this
resulted in a set of candidates for removal. Then, we ran
result-preserving simulations, iteratively removing additional
candidate neurons from the network, as long as the simulations
could not find a counter-example to the redundancy of the
currently removed set. Finally, we ran a single verification
query to verify that removing our selected neurons was indeed
a result-preserving operation. On 75% of the sub-domains
checked, this strategy worked. In sub-domains where we were
successful, we found an additional 24.6% forward-redundant
and result-preserving redundant neurons; whereas in sub-

190

domains where we were not successful, we had a similar
amount of candidates for removal on average.

In the final step of our experiment, we tested our hypothesis
that slicing can lead to the complete linearization of some
of the sub-domains. Indeed, for some of the sub-domains
explored, the simplification pipeline was able to remove all
neurons, resulting in a DNN that is effectively a linear
transformation. We noticed, however, a high variability —
for example, in another sub-domain we were only able to
remove 58% of the neurons. See Fig. 10 for additional details.
We conclude that there is an inherent difference between
the sub-domains: apparently, some of them compute simpler
transformations than others.

81%

17%

37%
5%

42%
15%

Phase-Redundant
by MILP
Phase-Redundant
by Formal Verification
Result Preserving
Non-Redundant
Unknown (Timeouts)

Fig. 10: An “almost” linear sub-domain (left) vs. a complex sub-
domain (right).

VIII. RELATED WORK

The pruning of DNNs in order to reduce their sizes has
received significant attention from the machine learning com-
munity in recent years. The most common approaches are
based on heuristically identifying neurons and edges that seem
to contribute little to the network’s output, removing these
neurons and edges, and performing additional training of the
network [19], [23]. Other approaches apply quantization: by
using fewer bits to store the network’s weights or activation
functions, the DNN’s footprint is decreased [21], [22], [39]. A
common trait of these approaches is that, while they achieve
a significant reduction in memory, they provide no guarantees
about the resemblance of the smaller network to the original.

The most closely related work to our own is that of Goku-
lanathan et al. [15]. There, the authors use formal verification
to remove dead neurons from a network, ensuring that the
resulting network is equivalent to the original. Additionally,
simulations are used to reduce the number of verification
queries that need to be dispatched. Our work uses similar prin-
ciples, but significantly extends them: we consider additional
kinds of redundancy (phase-redundancy, k-forward-redundant,
and result-preserving redundancy) that produce equivalent net-
works, and also relaxed-redundancy which removes additional
neurons by introducing a bounded amount of imprecision.

Our work uses the Marabou DNN verification engine as
a backend [1], [7], [13], [18], [27], [29], [30], [42]; but any
of the many approaches and tools that have been proposed
in recent years could be used as well. These approaches
leverage SMT solvers (e.g., [20]), based on LP and MILP
solvers (e.g., [6], [11], [37], [44]), the propagation of symbolic
intervals and abstract interpretation (e.g., [14], [45]–[47]),
abstraction-refinement techniques (e.g., [3], [12]), and many

others. Recent work has extended beyond answering yes/no
questions about DNNs, targeting tasks such as automated
DNN repair [16], [31] and quantitative verification [4]. Ver-
ification approaches have also been proposed for recurrent
networks [24], [49], which could potentially also be simplified.
As DNN verification technology improves, the scalability of
our approach will also increase.

IX. CONCLUSION AND FUTURE WORK

Neural networks often suffer from a high degree of redun-
dancy, which affects evaluation time, memory footprint and
verification costs. In this paper we presented a novel technique
to identify and remove such redundancy. Our framework is
customizable, allowing users to safely trade network precision
for size reduction, while maintaining the introduced impreci-
sion within a prescribed bound.

In the future, we plan to extend our work along multiple
axes. Specifically, we plan to research more intelligent tech-
niques for input domain slicing than coordinate-splitting; and
also compositional techniques that would allow us to split
the network into several sub-networks, identify redundancies
in each of them, and then re-combine the pruned network
into a single network that is smaller than the original. In
addition, we plan to explore ways of combining our pruning
techniques with techniques from the related field of Boolean
circuit simplification [8].

Acknowledgements. We thank Ittai Rubinstein and Haoze Wu
for their contributions to this project. The project was partially
supported by the Israel Science Foundation (grant number
683/18) and the Binational Science Foundation (grant number
2017662).

REFERENCES

[1] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification
of Deep Reinforcement Learning. In Proc. 21st Int. Conf. on Formal
Methods in Computer-Aided Design (FMCAD), 2021.

[2] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[3] P. Ashok, V. Hashemi, J. Kretinsky, and S. Mühlberger. DeepAbstract:
Neural Network Abstraction for Accelerating Verification. In Proc. 18th
Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), 2020.

[4] T. Baluta, S. Shen, S. Shinde, K. Meel, and P. Saxena. Quantitative
Verification of Neural Networks and its Security Applications. In Proc.
ACM SIGSAC Conf. on Computer and Communications Security (CCS),
pages 1249–1264, 2019.

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

[6] R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. Mudigonda. A
Unified View of Piecewise Linear Neural Network Verification. In Proc.
32nd Conf. on Neural Information Processing Systems (NeurIPS), pages
4795–4804, 2018.

[7] N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-
Distorted Adversarial Examples, 2017. Technical Report. https://arxiv.
org/abs/1709.10207.

[8] S.-C. Chang, M. Marek-Sadowska, and K.-T. Cheng. Perturb and
Simplify: Multilevel Boolean Network Optimizer. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
15(12):1494–1504, 1996.

191

http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1709.10207

[9] G. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1963.

[10] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[11] R. Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks. In Proc. 15th Int. Symp. on Automated Technology
for Verification and Analysis (ATVA), pages 269–286, 2017.

[12] Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Frame-
work for Neural Network Verification. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 43–65, 2020.

[13] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Deep-RL-
Driven Systems. In Proc. Annual Conf. of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM),
2021.

[14] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

[15] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85–93, 2020.

[16] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[18] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A Data-
driven Approach for Assessing Robustness of Neural Networks. In Proc.
16th. Int. Symposium on on Automated Technology for Verification and
Analysis (ATVA), pages 3–19, 2018.

[19] S. Han, H. Mao, and W. Dally. Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding, 2015. Technical Report. http://arxiv.org/abs/1510.00149.

[20] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Binarized Neural Networks. In Proc. 30th Conf. on Neural Information
Processing Systems (NIPS), pages 4107–4115, 2016.

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Quantized Neural Networks: Training Neural Networks with Low Pre-
cision Weights and Activations. Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[23] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and K. Keutzer.
SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <
0.5MB Model Size, 2016. Technical Report. http://arxiv.org/abs/1602.
07360.

[24] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), pages 57–74, 2020.

[25] K. Julian, J. Lopez, J. Brush, M. Owen, and M. Kochenderfer. Policy
Compression for Aircraft Collision Avoidance Systems. In Proc. 35th
Digital Avionics Systems Conf. (DASC), pages 1–10, 2016.

[26] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[27] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards
Proving the Adversarial Robustness of Deep Neural Networks. In Proc.
1st Workshop on Formal Verification of Autonomous Vehicles (FVAV),
pages 19–26, 2017.

[28] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021. To appear.

[29] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[30] Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-
Driven Systems. In Proc. 1st ACM SIGCOMM Workshop on Network
Meets AI & ML (NetAI), pages 83–89, 2019.

[31] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[32] L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochen-
derfer. Toward Scalable Verification for Safety-Critical Deep Networks,
2018. Technical Report. https://arxiv.org/abs/1801.05950.

[33] O. Lahav and G. Katz. Code: Pruning and Slicing Neural Networks
using Formal Verification, 2021. https://github.com/vbcrlf/redy.

[34] O. Lahav and G. Katz. Pruning and slicing neural networks using formal
verification, 2021.

[35] L. Liebenwein, C. Baykal, B. Carter, D. Gifford, and D. Rus. Lost in
Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy,
2021. Technical Report. https://arxiv.org/abs/2103.03014.

[36] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer. Algo-
rithms for Verifying Deep Neural Networks, 2019. Technical Report.
http://arxiv.org/abs/1903.06758.

[37] A. Lomuscio and L. Maganti. An Approach to Reachability Analysis
for Feed-Forward ReLU Neural Networks, 2017. Technical Report. http:
//arxiv.org/abs/1706.07351.

[38] G. Optimization. The Gurobi MILP Solver, 2021. https://www.gurobi.
com/.

[39] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net:
Imagenet Classification using Binary Convolutional Neural Networks.
In Proc. 14th European Conf. on Computer Vision (ECCV), pages 525–
542, 2016.

[40] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, and
S. Dieleman. Mastering the Game of Go with Deep Neural Networks
and Tree Search. Nature, 529(7587):484–489, 2016.

[41] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, 2014. Technical Report. http://arxiv.org/
abs/1409.1556.

[42] C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Rep-
resented by ReLU networks, 2020. Technical Report. http://arxiv.org/
abs/2010.03258.

[43] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

[44] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

[45] H. Tran, S. Bak, and T. Johnson. Verification of Deep Convolutional
Neural Networks Using ImageStars. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 18–42, 2020.

[46] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In Proc. 27th
USENIX Security Symposium, 2018.

[47] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning,
I. Dhillon, and L. Daniel. Towards Fast Computation of Certified
Robustness for ReLU Networks, 2018. Technical Report. http://arxiv.
org/abs/1804.09699.

[48] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[49] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th Conf. of European Conference
on Artificial Intelligence (ECAI), pages 1690–1697, 2020.

192

http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1801.05950
https://github.com/vbcrlf/redy
https://arxiv.org/abs/2103.03014
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1706.07351
http://arxiv.org/abs/1706.07351
https://www.gurobi.com/
https://www.gurobi.com/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1804.09699
http://arxiv.org/abs/1804.09699

Formal Methods in Computer-Aided Design 2021

Towards Scalable Verification of
Deep Reinforcement Learning

Guy Amir, Michael Schapira and Guy Katz
The Hebrew University of Jerusalem, Jerusalem, Israel

{guyam, schapiram, guykatz}@cs.huji.ac.il

Abstract—Deep neural networks (DNNs) have gained signifi-
cant popularity in recent years, becoming the state of the art in
a variety of domains. In particular, deep reinforcement learning
(DRL) has recently been employed to train DNNs that realize
control policies for various types of real-world systems. In this
work, we present the whiRL 2.0 tool, which implements a new
approach for verifying complex properties of interest for DRL
systems. To demonstrate the benefits of whiRL 2.0, we apply it
to case studies from the communication networks domain that
have recently been used to motivate formal verification of DRL
systems, and which exhibit characteristics that are conducive
for scalable verification. We propose techniques for performing
k-induction and semi-automated invariant inference on such
systems, and leverage these techniques for proving safety and
liveness properties that were previously impossible to verify due
to the scalability barriers of prior approaches. Furthermore, we
show how our proposed techniques provide insights into the inner
workings and the generalizability of DRL systems. whiRL 2.0 is
publicly available online.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) [23] have
become highly popular due to their ability to produce state-of-
the-art results in multiple fields, e.g., image recognition [34],
text classification [37], game playing [45], and many oth-
ers [7]. DNNs used in such contexts have been shown to suc-
cessfully learn, by training on data, a model that generalizes
to previously unseen inputs. In particular, deep reinforcement
learning (DRL) [40] has been recently used to train DNNs
to learn control policies for complex computer and networked
systems, surpassing the state-of-the-art in a variety of applica-
tion domains, including database management [60], compiler
optimization [41], congestion control [27], [39] on the Internet,
routing [53], compute-resource scheduling [9], [42], adaptive
video streaming [38], [43], and many more.

Despite the overwhelming success of DNNs, many safety
issues pertaining to them have been identified [22], [51],
demonstrating that although DNN models potentially yield
excellent performance, they also suffer from many weaknesses.
For instance, it has been shown that DNNs can be manipulated
into performing severe errors through only slight distortions
to their inputs [17]. This phenomenon, called adversarial
perturbations, plagues effectively all modern DNNs.

Adversarial perturbations, alongside other safety and secu-
rity vulnerabilities, have brought about a surge of interest in
formally verifying the correctness of DNNs. A plethora of
approaches for DNN verification have been proposed in recent
years (e.g., [19], [25], [30], [55]). Unfortunately, in general,

all proposed tools face significant scalability barriers, which
render them unable to verify state-of-the-art, industrial DNNs
with millions of parameters. Furthermore, even when applied
to small DNNs, these tools are often restricted to verifying
simplistic properties. The scalability challenge is further ag-
gravated in the DRL context, which involves sequential DNN-
informed decision making, and so reasoning about repeated
invocations of the DNN, where the outcome of one invocation
can influence the input to the DNN in subsequent invocations.
Consequently, the applicability of recently introduced DNN
verification tools to complex properties and systems of prac-
tical interest remains extremely limited.

To begin bridging this gap, we previously introduced a
tool called whiRL 1.0 [16], which enables verifying certain
safety and liveness properties, or identifying violations, for
practical DRL systems. We demonstrated whiRL 1.0’s use-
fulness by verifying properties of interest for three systems
from the communication networking domain. We identified
such systems to be prime candidates for verification for two
main reasons: first, state-of-the-art DNNs in this domain tend
to be of moderate sizes, which are within reach of existing
verification technology; and second, meaningful and complex
specifications can be formulated and verified because the
inputs for these systems are carefully handcrafted and reflect
important semantic meaning (as opposed to raw pixel data in
computer vision applications, for example). whiRL 1.0, which
combines DNN verification techniques with bounded model
checking, uses a black-box DNN verification engine as a
backend, and can thus benefit from any future improvements to
DNN verification technology. As exemplified by our promising
initial results in [16], whiRL 1.0 constituted a first step towards
enhancing the reliability of DRL systems.

Still, whiRL 1.0 had severe limitations: most notably, al-
though it successfully generated violations of desired proper-
ties, it was incapable of proving that properties of practical
significance held without making very strong assumptions,
e.g., that runs of the considered system terminate within a very
small number of steps. However, the executions of real-world
systems are often infinite, or finite but consisting of many
steps. In such scenarios, whiRL 1.0 and other DRL verification
tools are unable to prove that most relevant properties hold.

In this work, we present whiRL 2.0 [1] — a verification
engine for DRL systems. whiRL 2.0 significantly extends the
capabilities of the original whiRL 1.0 tool to accommodate
verifying complex properties. In particular, while whiRL 1.0

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 28 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_28
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_28
https://creativecommons.org/licenses/by/4.0/

was limited to verifying basic safety properties, whiRL 2.0
utilizes k-induction techniques for proving both safety and
liveness properties of DRL systems. In addition, whiRL 2.0
uses invariant inference techniques to quickly prove properties
that could otherwise be quite difficult to verify. whiRL 2.0 also
incorporates abstraction methods for providing some visibility
into the DRL system’s operation. We demonstrate the effec-
tiveness of these techniques by revisiting the three case studies
involving state-of-the-art DRL systems to which whiRL 1.0
has been applied in [16]: the Aurora [27] Internet congestion
controller, the Pensieve [43] adaptive video streamer, and the
DeepRM [42] compute resource scheduler. We are able to
prove various properties of these systems that, to the best of
our knowledge, were beyond the reach of prior state-of-the-art
tools, including the original whiRL 1.0 tool.

The rest of this paper is organized as follows. Section II
covers basic background on DNNs, DRL systems, and DNN
verification. Next, in Section III we present our whiRL 2.0 ver-
ification tool, and describe its novelties and main components.
We present whiRL 2.0’s semi-automated invariant inference in
Section IV, and discuss the tool’s implementation in Section V.
Our case studies are described in Section VI, followed by
related work in Section VII. We conclude in Section VIII.

II. BACKGROUND

A. Deep Neural Networks and Deep Reinforcement Learning

A deep neural network (DNN) [23] is a directed graph,
where the nodes (also called neurons) are organized in layers.
In feed-forward DNNs, data flows from the first (input) layer,
onto a sequence of intermediate (hidden) layers, and finally
into a final (output) layer. The network is evaluated by as-
signing values to the input layer’s neurons, and then iteratively
computing the assignment of each of the hidden layers, until
reaching the output layer and returning its evaluation to the
user.

More specifically, the value of each neuron in the hidden and
output layers is computed using the values of neurons in the
preceding layer. Each such layer has a type, which determines
the exact way in which its neuron values are computed. One
common layer type is the weighted sum layer, in which each
neuron is computed as an affine combination of the values
of neurons in the preceding layer, based on edge weights
and bias values determined as part of the DNN’s training
process. Another popular layer type is the rectified linear unit
(ReLU) layer, where each node y is connected to a single
node x from the preceding layer, and its value is computed
by y = ReLU(x) = max(0, x). In this paper we will focus
on weighted sum and ReLU layers, although there exist many
additional layer types, such as max-pooling and hyperbolic
tangent, to which our technique may be extended.

Fig. 1 depicts a toy DNN comprising an input layer with two
neurons, followed by a weighted sum layer and a ReLU layer.
For input V1 = [1, 3]T , the second layer’s computed values
are V2 = [18,−3]T . In the third layer, the ReLU functions
are applied, resulting in V3 = [18, 0]T . Finally, the network’s
single output is V4 = [54].

v11

v21

v12

v22

v13

v23

v14

2

−4

5

1

ReLU

ReLU

3

−1

+1

−2

Weighted
sum ReLUInput Output

Fig. 1: A toy DNN. The values above the edges are weights, and the
values below the vertices are biases.

Formally, a DNN N that receives k inputs and returns n
outputs is a mapping Rk → Rn. The DNN consists of a
sequence of m layers L1, . . . , Lm, where L1 is the input layer
and Lm is the output layer. We use si to denote layer Li’s size,
and v1i , . . . , v

si
i to denote Li’s individual neurons. We refer

to the column vector [v1i , . . . , v
si
i]T as Vi. During evaluation,

the input values V1 are fed to the network’s input layer, and
V2, . . . , Vn are computed iteratively.

Each weighted sum layer Li has a weight matrix Wi of
dimensions si × si−1 and a bias vector Bi of size si. These
Wi and Bi are set at training time, and determine how Vi
is computed: Vi = Wi · Vi−1 + Bi. For a ReLU layer Li,
the values of Vi are computed by applying the ReLU to each
individual neuron in its preceding layer: vji = ReLU(vji−1).

In deep reinforcement learning (DRL) [40], a DNN, called
the agent, learns a policy π, which maps each possible
observed environment state s to an action a. During training,
at each discrete time-step t ∈ 0, 1, 2..., a reward rt is displayed
to the agent, based on the action at it chose to perform
after observing the environment’s state at that time st. This
reward is used for tuning the agent DNN’s weights. The DNNs
produced using DRL fall within the same general architecture
described above; the difference lies in the training process,
which is aimed at generating a DNN that computes a mapping
π that maximizes the expected cumulative discounted return
Rt = E

[∑
t γ

t · rt
]
. The discount factor, γ ∈

[
0, 1
)
, controls

the effect that past decisions have on the total expected reward.

B. Verification of Deep Neural Networks

A DNN verification query typically includes a DNN N ,
a pre-condition P on N ’s input, and a post-condition Q on
N ’s output [28]. The verification algorithm’s goal is to find
a concrete input x0 such that P (x0) ∧ Q(N(x0)) (the SAT
case), or prove that no such x0 exists (the UNSAT case).
Typically, we use the pre-condition P to express some states
of the environment that the network might encounter, and use
the post-condition Q to encode the negation of the behavior
we would like N to exhibit in these states. Thus, when
the verification algorithm returns UNSAT, this implies that
the desired property always holds. Conversely, a SAT result
indicates that the desired property does not always hold, and
this is demonstrated by the discovered counter-example x0.

For example, observe the toy DNN in Fig. 1, and suppose
we wish to verify that the DNN’s output is strictly larger than
5, for any input, i.e., for any x = 〈v11 , v21〉, it holds that N(x) =

194

v14 > 5. This is encoded as a verification query by choosing
a pre-condition which does not restrict the input, i.e., P =
(true), and by setting Q = (v14 ≤ 5), which is the negation
of our desired property. For this verification query, a sound
verifier will return SAT, and a feasible counter-example such
as x = 〈0,−1〉, which produces v14 = 0 ≤ 5. Hence, the
property does not hold for this DNN.

Verifying DRL Systems. Beyond the general challenges of
verifying DNNs (most notably, scalability), verifying DRL
systems involves additional challenges. These challenges stem
from the fact that DRL agents typically run within reactive
systems, and are invoked multiple times, with the inputs to
each invocation usually affected by the outputs of previous
invocations. This means that (i) the specifications for DRL
systems need to account for multiple invocations; and (ii) the
scalability issue is aggravated, because the verifier needs to
consider multiple consecutive invocations of the network,
which is akin to considering a significantly larger DNN.

While attempts have been made to develop tools tailored for
DRL system verification (e.g., [16], [32], [44]), two important
challenges have yet to be addressed. First, existing verifica-
tion approaches for DRL systems have focused on refuting
properties, and not on proving that they hold; and second,
existing approaches were not geared towards verifying reactive
systems. As part of the whiRL project, we make an initial
attempt at addressing these two challenges.

III. whiRL 2.0

Our contribution in this paper is the whiRL 2.0 verification
tool, which significantly extends our existing DRL verification
engine, whiRL 1.0. The whiRL 2.0 tool allows to verify
complex queries on DRL systems, which were previously
beyond our reach. Specifically, it supports the verification
of safety and liveness properties of DRL systems using a
k-induction-based approach. Additionally, it incorporates in-
variant inference techniques, which facilitate the verification
of complex safety properties. whiRL 2.0 uses an underlying
verification engine as a black-box, and is hence compatible
with many existing DNN verifiers.

Formalizing DRL Agents. DRL agents typically operate
within reactive systems: they process a (possibly infinite)
sequence of states, each representing a current snapshot of
the environment observed by the agent. Each state is obtained
from its predecessor by triggering the action outputted by the
DRL agent, and allowing the environment to react.

In line with the formulation proposed in [16], we formalize
the DRL verification problem by encoding the DRL system, as
well as its environment, into a transition system T = 〈S, I, T 〉.
Each state s ∈ S in this transition system is a snapshot of the
current observable environment; these states correspond to the
inputs of the DNN agent. We use I ⊆ S to denote the set of
initial states. The transition relation, T ⊆ S × S, is defined
such that 〈xi, xj〉 ∈ T iff the system can transition from state
xi to state xj ; i.e., when the DNN is presented with state xi,
it selects some action, to which the environment can respond

in a way that leads the system to state xj . Although the DNN
is deterministic, the environment is not necessarily so, and so
T need not be deterministic. An execution of the system is
defined as a sequence of states x1, . . . , xn, such that x1 ∈ I ,
and for all 1 ≤ i ≤ n−1 it holds that T (xi, xi+1). The process
of encoding a DRL system as a transition system is supported
by whiRL 1.0, via constructs for representing features common
to DRL systems (e.g., inputs in the form of a “sliding window”
over the recent history of observations) [16].

Example. As a running example, we focus on the Aurora DRL
system [27], which implements a congestion control policy. In
today’s Internet, different services (e.g., video streaming like
Netflix and Amazon, VoIP services such as Skype) contend
over the same network bandwidth, with aggregate demand for
bandwidth often exceeding the available supply. If Internet
traffic sources do not pace the rates at which their data is
injected into the network, the network will become congested,
resulting in data being lost or delayed, and, consequently, in
bad user experience and even global Internet outages. Con-
gestion control is the task of determining, for each individual
Internet traffic source, how quickly its traffic should be injected
into the network at any given point in time. Congestion control
is thus a both fundamental and timely networking challenge.

Recently, researchers have proposed employing DRL for
this purpose, and presented the Aurora congestion con-
troller [27]. An Aurora-controlled traffic source uses a DNN
to select the next rate at which to send traffic, based on
observations regarding the implications of its past choices
of sending rates. Specifically, Aurora’s inputs are t vectors
v−t, . . . , v−1, containing performance-related statistics per-
taining to the sender’s most recent t rate-change decisions.
These incorporate information about what fraction of sent data
packets were lost following each rate selection, how long it
took the sent packets to reach the traffic’s destination, etc. The
DNN’s output determines whether the current rate should be
increased, kept steady, or decreased. Changing the sending rate
can potentially affect the environment, e.g., an increase to the
rate might lead to packet loss if the new rate exceeds network
capacity. These changes to the environment, in turn, affect the
future inputs to the DNN. See [27] for additional details.

In the formulation of Aurora as a verification challenge
in [16], each state, which corresponds to a possible input to
Aurora’s DNN, is represented by a t-tuple of statistics vectors.
The state also contains the DNN’s (deterministic) output for
the input it represents. This is required for defining good and
bad states, as will be discussed later. Congestion controllers
are expected to converge to “good” rate decisions from any
starting point. Hence, we let the set of initial states be the
set of all states. Recall that the input to the DNN represents
a sliding window over t-long histories of statistics vectors.
Thus, for each two consecutive states, s1

T→ s2, it holds that
s2 is obtained from s1 by augmenting the vectors in s1 with
a statistics vector associated with the DNN’s rate change at
state s1, and discarding the vector in s1 corresponding to the
least recent of the t prior rate changes.

195

DRL System Specifications. Once the DRL system is formu-
lated as a transition system, we can specify safety and liveness
properties [11] that it should uphold. Safety properties indicate
that the system never displays unwanted behavior, and these
are often formulated through a predicate PB(s) that returns
true iff s ∈ S is a bad state, i.e., a state in which the property
is violated. The safety verification problem then boils down to
determining whether there is a reachable bad state in T [4].
Liveness properties indicate that the system eventually displays
desirable behavior, and these are often formulated through a
predicate PG(s) that returns true iff s ∈ S is a good state, i.e.,
a state in which the property is fulfilled. Verifying a liveness
property is performed by checking that there are no infinite
sequences of consecutive states in which only finitely many of
the states are good [4]. For instance, a natural safety property
with respect to Aurora is that when Aurora observes excellent
network conditions (no packet loss, close-to-minimum packet
delays), as reflected by the statistics vectors fed to the DNN,
the DRL agent does not advise to decrease the sending rate in
the next time-step. An example of a liveness property in this
setting is that if excellent network conditions persist, Aurora
should always eventually increase the sending rate.

K-Induction. Proving that safety or liveness properties hold
(or finding counter-examples) involves traversing large tran-
sition system graphs. For modern DRL systems, this is often
infeasible, in particular because the rich environments in which
these systems operate can react in many ways after each action
taken by the agent, resulting in high (or even infinite) out
degrees for many states. In whiRL 1.0, this issue was addressed
through the application of bounded model checking (BMC), an
approach that explores only a small fraction of the transition
system graph, namely, states within a k-step distance from an
initial state. BMC can find safety and liveness violations (if
they are reachable within k steps) as depicted in Fig. 2, but
cannot prove the absence of such violations.

0
1
2
3
4

6
0
1
2
3

k = 1 step

7
6
0
1
2

k = 2 steps

8
7
6
0
1

k = 3 steps

Bad StateBad State

Fig. 2: BMC searches for violations of a safety property. Each vector
represents a state, and encodes the statistics that Aurora observed
in the past t = 5 time-steps. The unwanted state is surrounded by
a red rectangle, and is reachable only after k = 3 steps from the
initial state. Note that consecutive states have shared inputs shifted,
and each time-step sample is depicted in a different color.

In whiRL 2.0, we address this important gap by adding the
means for proving that safety and liveness properties hold. To
this end, we employ the method of k-induction [11].

Intuitively, the idea in k-induction is to look for state
sequences of length k, which can start from arbitrary states

in T (not necessarily from initial states), and for which the
property is violated. If a violating execution exists, it must
contain an indicative k-long sequence of steps — a suffix of
the execution that ends in the bad state for safety properties, or
a sequence of non-good states for liveness properties. Thus, if a
verifier finds that a k-induction query is UNSAT, we know that
the corresponding property holds. If, however, it returns SAT
with a counter-example that does not start at an initial state, we
cannot conclude whether the property holds, and must increase
k in search of a conclusive answer. Fig. 3 depicts a snapshot
of the k-induction process used for proving a safety property.

0
1
2
3
4

6
0
1
2
3 . . .

4
2
7
1
5

6
4
2
7
1

3
4
2
7
1

7
3
4
2
7

Bad State

(k + 1) steps

k steps

(k + 2) steps

Fig. 3: Using k-induction to prove a safety property, i.e., that the
system never reaches the bad state (surrounded by a red rectangle).
Although there are k-long and (k+1)-long execution sequences that
end in the bad state, there is no such sequence of length (k+2); and
due to this and to BMC on the base cases, the property holds.

More formally, following the terminology in [4], verifying
ω-regular liveness properties is reducible to checking persis-
tence properties of the form ”eventually forever B”, where
B represents a “bad” state (∃s s.t. B = ¬PG(s)). Using k-
induction in the spirit of [6], [54], we can rule out the existence
of k-long sequences of bad states for a given k (even ones not
starting at an initial state). This is performed by formulating
the following query:

∃x1, x2, . . . , xk.
(k−1∧

i=1

T (xi, xi+1)
)
∧
(k∧

i=1

¬PG(xi)
)

for increasingly large values of k. As soon as one such query
returns UNSAT, we are guaranteed that the liveness property
holds. A similar encoding can be used for proving safety
properties.

We note that realizing k-induction in our case-studies en-
tailed contending with challenges such as the need to encode
verification queries that capture the system-environment in-
teraction from any (possibly non-initial) state. An additional
challenge was scalability; duplicating the network to encode
k steps can induce an exponential blowup in running time.
whiRL 2.0 curtails the search space by using bound tightening
mechanisms, and by enforcing certain dependencies between
the inputs to the k duplicate networks encoded as part of a k-

196

induction query. Specifically, these k inputs typically represent
the k recent observations of the agent’s environment, and
can be restricted by requiring them to constitute a “sliding
window”: each pair of consecutive inputs must agree on the
k − 1 previous observations that appear in both inputs.

BMC and k-induction are related techniques; the former
is geared towards refuting a property, and the latter is geared
towards proving it. In whiRL 2.0, we take a portfolio approach,
as depicted in Fig. 4: we alternate between BMC and k-
induction queries, until we: (i) refute the property (BMC
returns SAT); or (ii) prove the property (k-induction returns
UNSAT); or (iii) hit a timeout threshold. When steps 1 and 2
both fail, we increment k by 1 and repeat the process. Thus,
although we do not know in advance whether the property in
question holds, we hope that one of the two techniques will
either find a counter-example or prove the property.

verification schema

K++

K-InductionBMC

SAT

UNSAT

UNSAT

SAT

Fig. 4: whiRL 2.0’s verification schema.

Abstraction. In computer networking systems, such as the
Aurora congestion controller, the system’s state is often a set of
observations about the environment. Through close inspection
of our considered case-studies, we observe that occasionally
some of the input fields are irrelevant to the property being
checked, in the sense that the property can be proved even
when disregarding them. We thus integrate into whiRL 2.0
abstraction capabilities [10] — the ability to strip off irrelevant
input fields, as indicated by the user, when dispatching a
verification query. The original transition system T is thus
changed into an abstract transition system, T ′, which over-
approximates the original one. Specifically, the states of T ′
are symbolic, each corresponding to multiple states of T ; and
s′1

T ′

→ s′2 if and only if some states s1 and s2, to which s′1
and s′2 correspond, satisfy s1

T→ s2. If the verification engine
concludes that the property holds for T ′ (i.e., the negation
of the property is UNSAT), it follows that it also holds for
the original T . However, a counter-example for T ′ may be
spurious, as it may not be valid for T , in which case the
original query may need to be solved to obtain a definite result.

For example, in Aurora, the DNN input represents
performance-related statistics pertaining to the t most recent
rate adjustments made by the sender. In Aurora’s implemen-
tation used for our evaluation, we chose t = 10 (as in [27]).
In this context, abstraction might expose, for instance, that a

certain property holds regardless of what values are assigned
to the fields not relating to the 5 most recent rate changes,
indicating that the policy is, in essence, dependent only on
the 5 most recently observed statistics vectors.

We leverage the fact that inputs to recently-proposed com-
puter networked systems consist of fairly few fields with
natural semantic meaning, thus leading to a limited number
of actual combinations of input fields that are abstracted.

In Section VI we demonstrate how whiRL 2.0’s abstraction
capabilities can shed light on the inner workings of the verified
system, rendering the “black-box” policy learned by the DRL
system somewhat more translucent.

IV. INVARIANT INFERENCE

Verifying DRL systems is difficult, as one must often reason
about transitions across many states to establish that a property
holds. BMC and k-induction can mitigate this issue to some
extent, but sometimes this is not enough. To further boost the
scalability of whiRL 2.0, we enhanced it with semi-automated
invariant inference capabilities.

In the context of safety verification of a transition system
graph, an invariant can be regarded as a partition of the
state space S into two disjoint sets, S1 and S2, such that no
transition leads from one set to the other: s1 ∈ S1∧s2 ∈ S2 ⇒
〈s1, s2〉 /∈ T . Invariants are useful if we know that I ⊆ S1 (all
initial states are in S1) and PB(s)⇒ s ∈ S2 (all bad states are
in S2). In this case, the existence of the invariant immediately
guarantees that no bad states are reachable. Unfortunately,
discovering such useful invariants is known to be undecidable
in general, and very difficult to accomplish in practice [46].

As part of whiRL 2.0, we propose a heuristic for semi-
automated invariant inference, which leverages common traits
of communication networking systems. More precisely, we
observe that many relevant properties in these systems can
be regarded as Boolean monotonic functions; they tend to be
satisfiable when the DNN’s input vectors are allowed to fluc-
tuate extensively, but quickly become unsatisfiable when these
input vectors are restricted. Often, finding the tipping point,
i.e., the minimal input restrictions that cause the property to
shift from SAT to UNSAT, constitutes an invariant that is useful
for proving other properties, and which can also render the
policy learned by the DNN more translucent to humans.

We demonstrate these notions on the Aurora congestion
controller. Recall that Aurora’s output indicates whether the
sending rate should be increased, maintained, or decreased.
whiRL 2.0 can search for an invariant that translates to the
range of inputs for which the DNN outputs that the sending
rate should be decreased. Such an invariant can assist in
the verification of complex properties, and provide human
engineers with comprehensible insights into the DRL system.

Technically, whiRL 2.0 allows the user to specify the output
property and mark the relevant input fields. For example, in
Aurora’s case, “the sending rate should be decreased” as the
output property, and a subset of the input statistics as the
relevant fields. Then begins a binary search on the range of
the inputs in order to find the minimal restrictions that render

197

the verification query UNSAT. At each step of the binary
search, we invoke a black-box verification procedure to solve
the resulting query. This allows us to locate the tipping point
up to a prescribed precision. whiRL 2.0 has built-in templates
for input and output restrictions, which can be regarded as
different strategies for conducting the aforementioned binary
search. Each template takes into account either the DRL
system’s input variables or output variables, and controls them
by adjusting their bounds; tightening them to “push” the query
towards the UNSAT region. Currently, these templates include
(i) for a fixed output, tightening or loosening the bounds of
the specified input variables, executing binary search until the
point in which the query switches from SAT to UNSAT is
discovered; and (ii) performing a similar operation, but this
time on the bounds of the specified output variables, while
fixing the inputs according to user-specified constants.

Fig. 5 illustrates an invariant search procedure. In this
procedure, we have a candidate invariant (the middle blue line)

I

B

7

Fig. 5: Invariant search procedure.
The initial states are the green
square labeled I , and the bad states
are the red square labeled B.

that splits the search space
into two parts. Ideally, the
reachable states should all
be on one side of the par-
tition, and the bad states
on the other side. Our bi-
nary search automatically
adjusts the invariant can-
didate. In case an initial
invariant candidate is too
strong (there are reachable
states on both sides), it is
weakened, and the line is moved towards B. If, however, the
initial invariant candidate is too weak (there are bad states on
both sides), it is strengthened, and the line is moved towards
I . Both kinds of adjustments are performed by tightening or
loosening the bounds on the input or output variables.

V. IMPLEMENTATION

We implemented whiRL 2.0 as a Python framework that pro-
vides general functionality for verifying DRL systems. whiRL
2.0 uses Marabou [31], a state-of-the-art SMT-based [5], [12],
[14] DNN verifier, as a backend (although other verifiers could
also be used). whiRL 2.0 includes the following key modules,
which did not exist in whiRL 1.0:
1) K-Induction Query Verifier. A module that allows the

user to generate k-induction queries. The module can
encode either a safety property or a liveness property,
specified by their PB(s) and PG(s) predicates, respectively.

2) Invariant Finder. A module through which a user can
instruct whiRL 2.0 to search for an invariant. The user needs
to provide the post-condition Q, and mark the variables to
focus on. whiRL 2.0 then performs the previously described
semi-automated search procedure, and returns within the
specified parameters a range for which the invariant holds,
if such a range is found.

3) Input Abstraction. A module that allows the user to
specify, for a given verification query, which input fields

TABLE I: whiRL 2.0 features used in each case study.

Aurora Pensieve DeepRM
K-Induction 3 3 7

Bounded Model Checking 3 3 3

Invariant 3 7 3

Abstraction 7 3 3

should be abstracted. When abstraction is applied, whiRL
2.0 will either return UNSAT (if the abstract query returns
UNSAT), or default to the original query if the abstract
query returns a spurious counter-example.

Additionally, whiRL 2.0 retains some of whiRL 1.0’s function-
ality, most notably its DNN loading interfaces and bounded
model checking capabilities. The code for whiRL 2.0, along-
side documentation and the experiments described in the paper,
are all available online under a permissive license [1]. An
appendix with the formulation of the verified properties is also
available online [2].

VI. CASE STUDIES

We evaluate whiRL 2.0 on three case studies of DRL sys-
tems: the Aurora [27] congestion controller, the Pensieve [43]
adaptive video streamer, and the DeepRM [42] compute re-
source scheduler. All three case studies, which were used
to illustrate the power of whiRL 1.0 in [16], are from the
domain of communication networks. We have identified such
DRL systems as highly suitable candidates for evaluating DRL
system verification techniques as they achieve state-of-the-art
results despite being of moderate sizes, rendering verification
tractable. Table I summarizes the whiRL 2.0 capabilities ap-
plied in each case study. All experiments were conducted on an
HP EliteDesk machine with six Intel i5− 8500 cores running
at 3.00 GHz, and with a 32 GB memory.

A. The Aurora Congestion Controller

Aurora [27] is a state-of-the-art DRL system that acts as
a congestion controller for data transmission [27]. Aurora
receives an input vector of size 3t, which consists of obser-
vations from the previous t time-steps. Specifically, the input
consists of 3 distinct values representing performance-related
statistics for each of the previous t rate changes outputted by
the DNN: (i) latency gradient: the derivative of latency (packet
delays) across time, as measured by the sender, following a
change to the rate; (ii) latency ratio: the ratio of the average
latency experienced by the sender, following a change to the
rate, to the minimum past latency experienced. This value is
never smaller than 1; and (iii) sending ratio: the ratio of the
rate at which packets are injected into the network by the
sender (i.e., the sending rate), to the rate at which the sent
packets arrive at the receiver. We note that the latter rate can be
strictly lower than the former rate if the network is congested,
which can lead to sent packets being forced to wait in in-
network buffers, or being dropped along the way. The sending
ratio is never smaller than 1. Intuitively, simultaneous low
latency gradient, latency ratio, and sending ratio are indicative

198

of excellent network conditions. Aurora has a single output
value, which indicates whether the sending rate should be
increased (positive output), decreased (negative output), or
maintained (output is zero). When network conditions are
good (low latency, no packet loss), this in indicative of the
current rate not overshooting the network bandwidth. Hence,
we expect the sending rate to increase so as to take over
available bandwidth. In contrast, when network conditions are
poor (high latency, high packet loss), this is indicative of
network congestion, and so we expect Aurora to decrease the
rate. See [16], [27] for additional details.

In line with previous work [16], [27], we set t = 10, i.e.,
the input size to Aurora’s DNN is of size 3t = 30. Aurora’s
DNN has a single hidden ReLU layer with 48 neurons, and a
single neuron in its output layer.

Proving Liveness. In our previous work [16], two liveness
properties of Aurora were formulated, but could not be verified
using whiRL 1.0. Using whiRL 2.0, we successfully proved that
both properties from [16] always hold. Details follow.
• Property 1: excellent network conditions eventually

imply rate increase. When Aurora observes a history of
excellent network conditions (low latency, no packet loss),
the DRL system should eventually increase the sending rate,
i.e., eventually output positive values. Using whiRL 2.0’s
k-induction capabilities, we successfully proved that this
property, as formulated in [16], indeed holds for any infinite
run. The property was successfully proved, within a few
seconds, for k = 2.

• Property 2: poor network conditions eventually imply
rate decrease. Symmetrically to property 1, when Aurora
observes a history of poor network conditions, the DRL
system should eventually decrease the sending rate by
outputting negative values. By performing k-induction with
k = 5, we proved that this property, as formulated in [16],
indeed holds for all infinite executions. This query took
approximately 4.5 hours to solve.

Semi-Automatic Invariance Inference. Next, we used whiRL
2.0’s invariant inference capabilities to find invariants for
proving safety properties of Aurora.
• Invariant A: bounding the next-step decrease in sending

rate for excellent network conditions. When Aurora ob-
serves a history of excellent network conditions (low latency,
no packet loss), the DRL agent’s output should be non-
negative, i.e., should not imply a decrease to the sending
rate. This safety property was shown to be violated in
previous work [16]. Here, we utilize whiRL 2.0’s invariance
inference techniques to prove a bound on this (undesirable)
next-step decrease in sending rate, to provide visibility into
the performance of the DRL system.
whiRL 2.0’s method for producing the desired invariant
appears in Alg. 1. The algorithm takes two user inputs: the
latency slack ε, and the precision η. The ε input captures the
notion of “excellent network conditions” encoded as inputs
to the DNN: the observed latency gradient is restricted to

the range [−ε, ε]; and the observed latency ratio is restricted
to the range [1, 1 + ε]. Additionally, the sending ratio is
set to 1 (indicating that sent traffic arrives at the receiver
without being delayed or dropped within the network). The
algorithm now performs a binary search over the DNN’s
output space (leaving the prescribed input ranges for the
DNN fixed). Specifically, the η input specifies the desired
precision: the output of the algorithm will be an upper
bound b on the DNN’s output, such that the output b is
impossible, but b+ η is possible, given the aforementioned
input restrictions. Recall that the upper bound b relates to the
negation of the desired property, and so an upper bound of b
implies that Aurora’s DNN will never decrease the sending
rate by b or more when network conditions are excellent.
This procedure terminates within a few seconds, returning an
upper bound on the input for which the DNN verifier returns
UNSAT. The algorithm’s correctness immediately follows
from the underlying verifier’s soundness.

Algorithm 1 Finding Invariant A

Input: ε, η // latency slack, precision
Output: UBUNSAT // worst-case output decrease bound

1: UBUNSAT ← −∞ // −M , for some large constant M
2: UBSAT ← 0
3: QUERY ← DNN VERIFY (ε, output ≤ 0)
4: while (|UBSAT − UBUNSAT| ≥ η) do
5: OUTUPPER ← 1

2 (UBUNSAT + UBSAT)
6: QUERY ← DNN VERIFY (ε, output≤ OUTUPPER)
7: if QUERY is SAT then UBSAT ← OUTUPPER

8: if QUERY is UNSAT then UBUNSAT ← OUTUPPER

9: return UBUNSAT

• Invariant B: inferring when Aurora fails to decrease the
next-step sending rate even though network conditions
are poor. We now wish to characterize poor network
conditions in which Aurora does not decrease its sending
rate, as expected of it. The procedure is described in Alg. 2.
Now, the sending ratio is not fixed to 1, but is rather
within the range [1, P], for a user-specified P value. P
represents a user-provided upper bound on ratio of the
rate at which packets leave the sender (i.e., the sending
rate) to the rate which these packets arrive at the receiver.
For a slack ε, the procedure again restricts the latency
gradient to the range [−ε, ε] and the latency ratio to the
range [1, 1 + ε]. Intuitively, setting low values for ε while
allowing sending ratios to be high corresponds to sending
traffic across communication networks in which in-network
buffers are very shallow. In such networks, packets cannot
accumulate within the network, resulting in low latencies
for packet delivery. However, since in-network buffers are
shallow, packets are dropped once network bandwidth is
even slightly exceeded, resulting in high sending ratios
when the sending rate significantly overshoots the network’s
capacity (and many packets are lost).
The algorithm fixes the output’s lower bound to be non-
negative, and executes a binary search on the input sending

199

ratio. Specifically, the algorithm returns, for any user-chosen
value P, a lower bound (LBUNSAT) such that Aurora always
decreases the sending rate when its observations regarding
past sending ratios all lie within the range [LBUNSAT,P].
whiRL 2.0 finds the invariant within a few seconds.

Algorithm 2 Finding Invariant B

Input: P ≥ 2 // upper bound on the sending ratio
Output: LBUNSAT // worst-case sending ratio bound

1: LBSAT, SRLOWER ← 1
2: LBUNSAT, SRUPPER ← P
3: QUERY ← DNN VERIFY (ε, output ≥ 0, SRLOWER,
SRUPPER)

4: while (LBSAT + 1 < LBUNSAT) do
5: SRLOWER ← 1

2 (LBSAT + LBUNSAT)
6: QUERY ← DNN VERIFY (ε, output ≥ 0, SRLOWER,

SRUPPER)
7: if QUERY is SAT then LBSAT ← SRLOWER

8: if QUERY is UNSAT then LBUNSAT ← SRLOWER

9: return LBUNSAT

Observing the bounds produced by Alg. 2 yielded surpris-
ing insights regarding the decision-making policy learned by
Aurora. Specifically, to gain insight into what our discovered
invariants reveal regarding the policies, we created multiple
instances of Aurora agents, and trained them all on the same
training data until achieving an averaged reward value similar
to that of the original Aurora controller [27]. We then observed
that for some of the Aurora instances, the discovered invari-
ants depended only on the proportion between the sending
ratio’s lower bound (SRLOWER) and upper bound (SRUPPER),
as opposed to their absolute values. Specifically, for violating
counter-examples (inputs to Aurora’s DNN) produced for
these instances, the ratio between the highest and lowest past
sending ratios was at least 2, with lower ratios giving rise
to desirable behavior by Aurora. For other trained instances
of Aurora, violating counter-examples only depended on the
absolute values of the bounds; e.g., Aurora always decreases
the rate for inputs to the DNN where all sending ratios lie in
the range [1,M] for some value M , but not when these lie in
the range [1,M + δ] for some small δ. Our findings show that
policies that yield the same expected reward on the training set
might generalize very differently to inputs that lie outside this
training set, and that our discovered invariants can shed light
on the generalization strategies of different policies learned.

B. The Pensieve Video Streamer

Pensieve is a DRL system [43] for adaptive bitrate (ABR)
selection. To provide high quality of experience for video
clients, Pensieve continuously collects statistics about the
client’s experience when downloading video chunks (e.g., was
the video rebuffered? how long did it take to download the
chunk?) to dynamically adapt the resolution at which the
next video chunk is downloaded from the video server. Each
video chunk represents a fixed-duration video segment (e.g.,
4-second-long chunks in our experiments) encoded in one

of several possible resolutions (SD, HD, etc.), with higher
resolutions corresponding to larger chunks, in terms of number
of bits. When client-sensed network conditions are good, we
expect the ABR algorithm to decide that the next video chunk
will be downloaded in high resolution (HD); and when they are
poor, we expect a low resolution (SD) to be selected, to avoid
having the client not finish the download in time, which leads
to video rebuffering. The input to Pensieve’s DNN consists
of (2t +M + 3) fields, where t > 0 represents the number
of recent video chunk downloads considered, and M > 0
represents the number of available video resolutions. The input
comprises: (i) the bitrate (1 field) in which the last video chunk
was downloaded; (ii) the current video buffer size (1 field) of
the client, reflecting the number of seconds of unwatched video
stored at the client; (iii) network throughput measurements for
video chunks downloaded in the past t time-steps (t fields);
(iv) download times for the video chunks downloaded in
the past t time-steps (t fields); (v) resolution options (M
fields) to download the next chunk; and (vi) the number of
remaining chunks to be downloaded (1 field). See [43] for a
thorough exposition of Pensieve, and [16] for a formalism of
the Pensieve verification challenge.

To maintain consistency with Pensieve’s original hyper-
parameters, in our experiments t = 8 and M = 6. Due
to the nature of an ABR algorithm, all executions are finite
(downloads finish in finite time), and so all relevant properties
are safety properties. In previous work [16], whiRL 1.0 was
applied to check two safety properties of Pensieve:
• Property 1. When the chunk download history represents

excellent conditions (short download times, large client
buffer size), the DRL system should increase the resolution
at which chunks are requested before the download finishes.

• Property 2. When the download history represents poor
network conditions (long download times, small client buffer
size), the DRL system should decrease the resolution at
which chunks are requested before the download finishes.

While Property 1 was shown not to hold [16], no counter-
examples could previously be found for Property 2, and so it
could neither be proved nor disproved using existing tools.

Using whiRL 2.0, we were able to prove that Property 2
indeed holds under certain, realistic, assumptions.1 To achieve
this, we applied k-induction, with k = 1. The result returned
by the verifier indicated that the bad states are unreachable,
and, hence, that the undesirable behavior cannot occur. These
verification queries took approximately 20 minutes to solve.

C. The DeepRM Resource Manager

DeepRM [42] is a DRL-based resource manager, responsible
for allocating various cluster compute resources (e.g., CPU,
memory) to queued jobs, in order to optimize the cluster’s
throughput. DeepRM receives the following as input: (i) the
current resource usage in the system; (ii) a queue with up to

1We assumed that chunks represent 4-second-long video segments. Con-
sidered chunk download times are between 4 to 15 seconds per chunk, which
implies that downloading each chunk takes longer than consuming it.

200

Q pending jobs waiting to be scheduled; and (iii) a backlog,
indicating the number of jobs waiting to be scheduled that
are not yet in the queue. For a fixed Q-sized job queue, the
DeepRM controller may output one of (Q+1) possible actions:
a wait action (i.e., no resources will be allocated at this time-
step), or a scheduleq action for 1 ≤ q ≤ Q, indicating that job
q should be scheduled next. DeepRM’s output is interpreted
as a probability distribution, assigning a certain probability
to each of the (Q + 1) possible actions. We refer the reader
to [42] for a thorough exposition of DeepRM, and to [16] for
a formalism of the DeepRM verification challenge.

In our case study, as in [16], we used a DeepRM system
trained with R = 2 resources: CPU and memory units, and
a job queue of size Q = 5. Overall system resources consist
of 10 CPUs and 10 memory units. We considered two kinds
of jobs: small jobs, which require 1 CPU and 1 memory unit
for a single time-step, and large jobs, which require 10 CPUs
and 10 memory units, for t = 20 time-steps.

Previous work [16] considered the following safety proper-
ties for DeepRM:
• Property 1. When all resources are fully available, and the

queue is filled with small jobs, DeepRM should never assign
the highest probability to the wait action.

• Property 2. When no resources are available, and the queue
is filled with small jobs, DeepRM should assign the highest
probability to the wait action.

• Property 3. When no resources are available, and the queue
is filled with large jobs, DeepRM should assign the highest
probability to the wait action.

Using whiRL 1.0, it was shown [16] that Property 1 holds,
and that there exist counter-examples for Properties 2 and 3.
However, by using whiRL 2.0 we were able to prove (within
a few seconds) a stronger property that, in fact, generalizes
properties 1, 2 and 3. By applying whiRL 2.0’s abstraction
capabilities to both the inputs indicating resource utilization
and the output indicating the recommended action, we proved
that for any resource utilization level, when the queue is filled
with identical jobs, the DRL system’s output assigns a higher
probability to schedule2 than to wait. This immediately proves
Property 1, and implies that Properties 2 and 3 cannot hold.

This finding sheds new light on previous results, and en-
hances our understanding of DeepRM: (i) the three original
properties do not depend on the current resource utilization.
Rather, due to the DRL system learning a suboptimal policy,
it is biased towards scheduling a specific job (job #2), and
may fail to select wait when appropriate; and (ii) the counter-
examples found for Properties 2 and 3 are not outliers, but
rather the general case. Indeed, we were able to use whiRL 2.0
to prove that the inverses of both these properties always hold.
These results demonstrate that, beyond proving or disproving
specific properties, whiRL 2.0 can shed light on the policy
learned by the DRL system, and expose problematic issues.

VII. RELATED WORK

Due to the increasing use of DNNs, many DNN verification
tools have been proposed in recent years; some are SMT-

based (e.g., [28], [31], [35], [47]), whereas others use different
verification strategies, such as abstract interpretation [48],
[56], [59], mixed integer linear programming (MILP) [52],
and many others. Recently, these approaches were extended to
verify systems with multi-step executions, such as Recurrent
Neural Networks (RNNs) [26], [58] or hybrid systems [50].

In our evaluation of whiRL 2.0, we used Marabou [31], [57]
as a black-box DNN verifier. To date, Marabou has mostly
been applied for solving adversarial robustness queries [3], [8],
[24], [29], and our work demonstrates that it is also applicable
in the field of computer and networked systems. Marabou
affords additional features, such as built-in abstraction [15],
simplification [20], [36], repair [21] and optimization [49]
techniques, which could also be applied to our case studies.

In addition to general DNN verification engines, methods
have been devised to formally verify safety properties of DRL
systems, which are the subject matter of this work. Such
approaches include shield synthesis [33], and combining the
verification process with verified runtime monitoring [18].
Other methods focus on finding adversarial attacks that pertain
specifically to DRL agents, e.g., by using MILP [13].

In addition to the whiRL project, other approaches have
been proposed for verifying DRL systems in the domain of
communication networks. These include, e.g., Verily [32] and
Metis [44]. Importantly, however, our focus is on verifying (as
opposed to only refuting) various safety and liveness properties
of these systems. To the best of our knowledge, this lies
beyond the grasp of other existing tools.

VIII. CONCLUSION

DRL systems provide excellent performance in multiple
settings, but suffer from severe vulnerabilities. Several veri-
fication tools have been developed to mitigate this concern,
but these mostly refute, as opposed to prove, safety and
liveness properties of interest. In this work, we presented
whiRL 2.0 — a novel verification engine that supports proving
both safety and liveness properties of DRL systems. whiRL
2.0 accomplishes this through semi-automatic invariance in-
ference, alongside techniques such as k-induction and query
abstraction. We demonstrated our tool’s capabilities through
three case studies from the communication networks domain.
In addition, we demonstrated how whiRL 2.0 can provide
insights into the inner workings of these systems, uncovering
weaknesses that would otherwise remain unnoticed.

In the future, we plan to enhance our tool’s scalability by
using improved search heuristics. Also, we intend to enrich
the semi-automatic invariant inference templates to support
searching for more complex invariants.

Acknowledgements. We thank Nathan Jay, Tomer Eliyahu
and the anonymous reviewers for their contributions to this
project. The project was partially supported by the Israel
Science Foundation (grant number 683/18), the Binational
Science Foundation (grant numbers 2017662 and 2019798),
and the Center for Interdisciplinary Data Science Research at
The Hebrew University of Jerusalem.

201

REFERENCES

[1] G. Amir, M. Schapira, and G. Katz. Artifact Repository, 2021. https:
//doi.org/10.5281/zenodo.4769612.

[2] G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification of
Deep Reinforcement Learning, 2021. Technical Report. https://arxiv.org/
abs/2105.11931.

[3] G. Amir, H. Wu, C. Barrett, and G. Katz. An SMT-Based Approach for
Verifying Binarized Neural Networks. In Proc. 27th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 203–222, 2021.

[4] C. Baier and J. Katoen. Principles of Model Checking. MIT press, 2008.
[5] C. Barrett and C. Tinelli. Satisfiability modulo theories. In Handbook

of Model Checking, pages 305–343. Springer, 2018.
[6] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety

checking. Electronic Notes in Theoretical Computer Science, 66(2):160–
177, 2002.

[7] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao,
and K. Zieba. End to End Learning for Self-Driving Cars, 2016.
Technical Report. http://arxiv.org/abs/1604.07316.

[8] N. Carlini, G. Katz, C. Barrett, and D. Dill. Provably Minimally-
Distorted Adversarial Examples, 2017. Technical Report. https://arxiv.
org/abs/1709.10207.

[9] W. Chen, Y. Xu, and X. Wu. Deep reinforcement learning
for multi-resource multi-machine job scheduling. arXiv preprint
arXiv:1711.07440, 2017.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In Proc. 12th Int. Conf. on Computer
Aided Verification (CAV), pages 154–169, 2000.

[11] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Handbook of
Model Checking, volume 10. Springer, 2018.

[12] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[13] A. Dethise, M. Canini, and N. Narodytska. Analyzing learning-
based networked systems with formal verification. IEEE International
Conference on Computer Communications (IEEE InfoCom, 2021.

[14] B. Dutertre and L. De Moura. The yices smt solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, 2(2):1–2, 2006.

[15] Y. Elboher, J. Gottschlich, and G. Katz. An Abstraction-Based Frame-
work for Neural Network Verification. In Proc. 32nd Int. Conf. on
Computer Aided Verification (CAV), pages 43–65, 2020.

[16] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-
Augmented Systems. In Proc. Annual Conf. of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM),
2021.

[17] H. F. Eniser, M. Christakis, and V. Wüstholz. Raid: Random-
ized adversarial-input detection for neural networks. arXiv preprint
arXiv:2002.02776, 2020.

[18] N. Fulton and A. Platzer. Safe reinforcement learning via formal meth-
ods: Toward safe control through proof and learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2018.

[19] T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri,
and M. Vechev. AI2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Proc. 39th IEEE Symposium
on Security and Privacy (S&P), 2018.

[20] S. Gokulanathan, A. Feldsher, A. Malca, C. Barrett, and G. Katz.
Simplifying Neural Networks using Formal Verification. In Proc. 12th
NASA Formal Methods Symposium (NFM), pages 85–93, 2020.

[21] B. Goldberger, Y. Adi, J. Keshet, and G. Katz. Minimal Modifications
of Deep Neural Networks using Verification. In Proc. 23rd Int. Conf. on
Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 260–278, 2020.

[22] C. Gongye, H. Li, X. Zhang, M. Sabbagh, G. Yuan, X. Lin, T. Wahl,
and Y. Fei. New passive and active attacks on deep neural networks
in medical applications. In Proceedings of the 39th International
Conference on Computer-Aided Design, pages 1–9, 2020.

[23] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

[24] D. Gopinath, G. Katz, C. Pǎsǎreanu, and C. Barrett. DeepSafe: A Data-
driven Approach for Assessing Robustness of Neural Networks. In Proc.

16th. Int. Symposium on on Automated Technology for Verification and
Analysis (ATVA), pages 3–19, 2018.

[25] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification
of Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided
Verification (CAV), pages 3–29, 2017.

[26] Y. Jacoby, C. Barrett, and G. Katz. Verifying Recurrent Neural Networks
using Invariant Inference. In Proc. 18th Int. Symposium on Automated
Technology for Verification and Analysis (ATVA), 2020.

[27] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A
deep reinforcement learning perspective on internet congestion control.
In International Conference on Machine Learning, pages 3050–3059.
PMLR, 2019.

[28] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proc.
29th Int. Conf. on Computer Aided Verification (CAV), pages 97–117,
2017.

[29] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Towards
Proving the Adversarial Robustness of Deep Neural Networks. In Proc.
1st Workshop on Formal Verification of Autonomous Vehicles (FVAV),
pages 19–26, 2017.

[30] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: a
Calculus for Reasoning about Deep Neural Networks. Formal Methods
in System Design (FMSD), 2021. To appear.

[31] G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. Dill, M. Kochenderfer, and C. Barrett.
The Marabou Framework for Verification and Analysis of Deep Neural
Networks. In Proc. 31st Int. Conf. on Computer Aided Verification
(CAV), pages 443–452, 2019.

[32] Y. Kazak, C. Barrett, G. Katz, and M. Schapira. Verifying Deep-RL-
Driven Systems. In Proc. 1st ACM SIGCOMM Workshop on Network
Meets AI & ML (NetAI), pages 83–89, 2019.

[33] B. Könighofer, F. Lorber, N. Jansen, and R. Bloem. Shield Synthesis
for Reinforcement Learning. In Proc. Int. Symposium On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA),
pages 290–306, 2020.

[34] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In Proc. 26th Conf. on Neural
Information Processing Systems (NIPS), pages 1097–1105, 2012.

[35] L. Kuper, G. Katz, J. Gottschlich, K. Julian, C. Barrett, and M. Kochen-
derfer. Toward Scalable Verification for Safety-Critical Deep Networks,
2018. Technical Report. https://arxiv.org/abs/1801.05950.

[36] O. Lahav and G. Katz. Pruning and Slicing Neural Networks using
Formal Verification , 2021. Technical Report. https://arxiv.org/abs/2105.
13649.

[37] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent Convolutional Neural
Networks for Text Classification. In Proc. 29th AAAI Conf. on Artificial
Intelligence, 2015.

[38] A. Lekharu, K. Moulii, A. Sur, and A. Sarkar. Deep learning based
prediction model for adaptive video streaming. In 2020 International
Conference on COMmunication Systems & NETworkS (COMSNETS),
pages 152–159. IEEE, 2020.

[39] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis. Qtcp: Adaptive
congestion control with reinforcement learning. IEEE Transactions on
Network Science and Engineering, 6(3):445–458, 2018.

[40] Y. Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[41] R. Mammadli, A. Jannesari, and F. Wolf. Static neural compiler
optimization via deep reinforcement learning. In 2020 IEEE/ACM 6th
Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC)
and Workshop on Hierarchical Parallelism for Exascale Computing
(HiPar), pages 1–11. IEEE, 2020.

[42] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource manage-
ment with deep reinforcement learning. In Proceedings of the 15th ACM
workshop on hot topics in networks, pages 50–56, 2016.

[43] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming
with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 197–210, 2017.

[44] Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, and H. Hu. Interpreting
deep learning-based networking systems. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and protocols for
computer communication, pages 154–171, 2020.

202

https://doi.org/10.5281/zenodo.4769612
https://doi.org/10.5281/zenodo.4769612
https://arxiv.org/abs/2105.11931
https://arxiv.org/abs/2105.11931
http://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1709.10207
https://arxiv.org/abs/1801.05950
https://arxiv.org/abs/2105.13649
https://arxiv.org/abs/2105.13649

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[46] O. Padon, N. Immerman, S. Shoham, A. Karbyshev, and M. Sagiv.
Decidability of Inferring Inductive Invariants. In Proc. 43th Symposium
on Principles of Programming Languages (POPL), pages 217–231,
2016.

[47] L. Pulina and A. Tacchella. Challenging smt solvers to verify neural
networks. Ai Communications, 25(2):117–135, 2012.

[48] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev. Fast and
effective robustness certification. NeurIPS, 1(4):6, 2018.

[49] C. Strong, H. Wu, A. Zeljić, K. Julian, G. Katz, C. Barrett, and
M. Kochenderfer. Global Optimization of Objective Functions Rep-
resented by ReLU networks, 2020. Technical Report. http://arxiv.org/
abs/2010.03258.

[50] X. Sun, K. H., and Y. Shoukry. Formal Verification of Neural Network
Controlled Autonomous Systems. In Proc. 22nd ACM Int. Conf. on
Hybrid Systems: Computation and Control (HSCC), 2019.

[51] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus. Intriguing Properties of Neural Networks, 2013.
Technical Report. http://arxiv.org/abs/1312.6199.

[52] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating Robustness of Neural
Networks with Mixed Integer Programming, 2017. Technical Report.
http://arxiv.org/abs/1711.07356.

[53] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to route
with deep rl. In NIPS Deep Reinforcement Learning Symposium, 2017.

[54] T. Wahl. The k-induction principle. Northeastern University, College of
Computer and Information Science, pages 1–2, 2013.

[55] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In Proc. 27th
USENIX Security Symposium, pages 1599–1614, 2018.

[56] L. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning,
and I. Dhillon. Towards fast computation of certified robustness for
relu networks. In International Conference on Machine Learning, pages
5276–5285. PMLR, 2018.

[57] H. Wu, A. Ozdemir, A. Zeljić, A. Irfan, K. Julian, D. Gopinath,
S. Fouladi, G. Katz, C. Păsăreanu, and C. Barrett. Parallelization
Techniques for Verifying Neural Networks. In Proc. 20th Int. Conf. on
Formal Methods in Computer-Aided Design (FMCAD), pages 128–137,
2020.

[58] H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska.
Verification of Recurrent Neural Networks for Cognitive Tasks via
Reachability Analysis. In Proc. 24th Conf. of European Conference
on Artificial Intelligence (ECAI), pages 1690–1697, 2020.

[59] H. Zhang, T. Weng, P. Chen, C. Hsieh, and L. Daniel. Efficient neural
network robustness certification with general activation functions, 2018.

[60] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, et al. An end-to-end automatic cloud database tuning
system using deep reinforcement learning. In Proceedings of the 2019
International Conference on Management of Data, pages 415–432, 2019.

203

http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/2010.03258
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356

Formal Methods in Computer-Aided Design 2021

Exploiting Isomorphic Subgraphs in SAT
Alexander Ivrii

IBM Haifa Research Lab, Israel
alexi@il.ibm.com

Ofer Strichman
Information System Engineering,

IE, Technion, Haifa, Israel
ofers@ie.technion.ac.il

Abstract—While static symmetry breaking has been explored
in the SAT community for decades, only as of 2010 research has
focused on exploiting the same discovered symmetry dynamically,
during the run of the SAT solver, by learning extra clauses. The
two methods are distinct and not compatible. The former may
prune solutions, whereas the latter does not – it only prunes
areas of the search that are guaranteed not to have solutions,
like standard conflict clauses. Both approaches, however, require
what we call full symmetry, namely a propositionally-consistent
mapping σ between the literals, such that σ(φ) ≡ φ, where
here ≡ means syntactic equivalence modulo clause ordering and
literal ordering within the clauses. In this article we show that
such full symmetry is not a necessary condition for adding extra
clauses: isomorphism between possibly-overlapping subgraphs
of the colored incidence graph is sufficient. While finding such
subgraphs is a computationally hard problem, there are many
cases in which they can be detected a priori by analyzing the
high-level structure of the problem from which the CNF was
derived. We demonstrate this principle with several well-known
problems.

I. INTRODUCTION: SYMMETRY, ALMOST SYMMETRY, AND
E-CLAUSES

Symmetry breaking [22] is a well known technique for
accelerating SAT solving, which originated decades ago by
Puget [21] for CSP, and later by Crawford et al. [8] for CNF.
Symmetry-breaking for CNF was implemented efficiently in
the tool SHATTER [4] and later improved in BREAKID [11].
In a nutshell, it means that new predicates, called symmetry-
breaking predicates, are added to the input formula φ, without
changing its satisfiability. These predicates prune the search
space and are likely to remove solutions, but without changing
the satisfiability of the formula. The construction of those
predicates is based on finding a mapping σ between the literals
of the input formula φ, such that σ(φ) ≡ φ. Here ‘≡’ means
syntactic equivalence modulo clause ordering and literal order-
ing within the clauses. The mapping has to be propositionally-
consistent, which means that ∀v1, v2 ∈ var(φ). σ(v1) = v2 ⇒
σ(v̄1) = v̄2 and σ(v1) = v̄2 ⇒ σ(v̄1) = v2. If we find such a
mapping, then it means that every satisfying solution α to φ
has the property that σ(α) also satisfies φ. We can then add a
constraint that prunes one of those solutions. As an example,
consider

φ = (1 -3)(2 -3)(1 2 3)(-1 -2)

and the mapping σ : 1 ↦→ 2, 2 ↦→ 1 (by convention, each such
mapping implies that the mapping of the negated literals is

also included in σ, e.g., −1 ↦→ −2 ∈ σ). We see that

σ(φ) = (2 -3)(1 -3)(2 1 3)(-2 -1) ,

and that σ(φ) ≡ φ. Indeed if we take any solution α to φ,
we see that σ(α) is a solution as well. For example, for α =
(1, 2, 3) ↦→ (T, F, F) we have α |= φ, and indeed σ(α) |= φ
as well, since σ(α) = (1, 2, 3) ↦→ (F, T, F). Crawford et al.
showed how to add symmetry-breaking constraints, which we
will not detail here. In this case it may amount to adding
the clause (-1 2), which indeed in this case excludes the first
solution without excluding the second one. Such pruning of
solutions is in many cases helpful for shortening the overall
run-time [4], [17].

Symmetry-breaking tools discover such mappings by ana-
lyzing the colored literals incidence graph1 G with respect
to multiple potential mappings Σ: if for σ ∈ Σ it holds that
σ(G) ≡ G (this is called ‘automorphism’), then σ defines a
symmetry. The isomorphism in this case is restricted such that
for every two nodes, n1, n2 ∈ G, if σ(n1) = n2 then n1 and
n2 must have the same color, i.e., clause nodes are mapped to
clause nodes and literal nodes to literal nodes.

Another way to exploit symmetry is by adding clauses dur-
ing search. Henceforth we will call such clauses ‘e-clauses’,
for ‘Extra’ clauses. This option has mostly been researched
in the CSP community, under the names Symmetry breaking
during search - SBDS [5], [14], [15], [7] and Symmetry
Breaking by Dominance Detection - SBDD [13]. In the SAT
community this route was first explored via the Symmetrical
Learning Scheme (SLS) [6], which adds new clauses during
the search based on learned clauses and a pre-computed set of
symmetry ‘generators’. SLS was later improved by Symmetry
Propagation (SP) [9], which only adds such extra clauses if
they lead to further (immediate) propagations, and several
years later by Symmetric Explanation Learning (SEL) [10],
which is integrated within BCP (it takes the reason clause of
the propagation as the base for adding e-clauses). According
to [10], SEL is the only one of those that is competitive
with modern static symmetry breaking. Finally, [25] has a
similar scheme in which e-clauses are only added if the
learned clause has a low LBD. In [10] those methods were
jointly called dynamic symmetry handling, to emphasize that

1Such a graph is constructed from a CNF by introducing a vertex for
each literal and each clause, connecting opposite literals with an edge, and
connecting the literals to the clauses that they are part of. The clauses’ nodes
have one color, and the literals’ nodes have a different color.

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 29 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-5205-3580
https://orcid.org/0000-0001-9169-3751
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_29
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_29
https://creativecommons.org/licenses/by/4.0/

unlike static symmetry breaking they are based on an analysis
during the search (hence ‘dynamic’), and that they do not
break symmetry, as they do not remove solutions. We find this
name inadequate, however, because symmetry does not need
to be ‘handled’. A more proper name is dynamic symmetry
exploitation, which is the name we will use in the rest of
this article. Although static symmetry breaking and dynamic
symmetry exploitation are based on the same data – the
symmetries in the formula – they are not compatible. One
cannot use dynamic symmetry exploitation if the symmetries
it relies on are broken by added predicates.

Dynamic symmetry exploitation was also studied for the
case of almost symmetric formulas (also called ‘weak sym-
metry’) [19], [7], formalized as follows. Let

φ ≡ φ1 ∪ φ2 , (1)

where here we equate formulas φ,φ1, φ2 with sets of clauses.
Let σ be a literal map of φ such that

σ(φ2) ≡ φ2 . (2)

This reflects a common scenario, where a few clauses –
marked here by φ1 – disrupt the symmetries in the formula.
The main method that was suggested in these references is to
add e-clauses based on φ2. That is, once a clause c is learned
from φ2 alone, add σ(c) as well.

In this article we observe that the requirement of symmetry
as used by all of those prior works on dynamic symmetry
exploitation is a sufficient, yet not a necessary condition for
adding e-clauses. We will need the following definitions for
explaining this claim.

Definition 1 (The refined colored incidence graph): The
refined version of a colored incidence graph assigns separate
colors to clauses of different arity.

We will denote this graph by G, assuming the underlying
formula is clear from the context (it can also include learned
clauses).

Definition 2 (The subgraph induced by a resolution se-
quence): Given a resolution sequence c1, . . . , cn, its corre-
sponding induced subgraph in G is comprised of the subgraphs
induced by these clauses, and the edges between opposite
literals that were resolved in the sequence.

Now, consider such a resolution sequence c1, . . . , cn that
was used for learning a clause c (c itself is not part of the
sequence), and its corresponding induced subgraph g. Consider
also another subgraph g′ of G that is color-isomorphic to g.
It is not hard to see that g′ reflects another possible resolution
sequence in the formula, ending with a different clause, which
we can add as an e-clause. This criterion is ad-hoc and does
not require automorphism of the original formula or some
pre-defined part of it as in almost-symmetries. In fact, it
can be seen as an application of the SR-II inference rule
suggested by Krishnamurthy in [18] already in 1985 (there
was no indication, however, how a solver may exploit that
rule in [18]). In some types of formulas, finding e-clauses
based on this reasoning is computationally cheap, and can
lead to improvements in the overall run-time of the solver. The

important point is that this technique can be applied even when
there is no mapping σ such that σ(φ) ≡ φ, which implies that
this technique can derive e-clauses that cannot be derived by
the above-mentioned symmetry exploitation techniques.

In fact, this idea was implicitly used in the past by the
second author [24] for adding e-clauses in the case of bounded-
model checking problems, and by Say et al. for adding such
clauses in the case of optimizing a planning process with
neural networks [23]. Both references reported performance
gains. In this article we give a general view that encompasses
also these two references, and show that the potential for such
clauses is present in many other types of formulas.

Example 1: Let φ be comprised of the following clauses:

(1 2 3) (-1 -2 -3) (2 3 4) (-2 -3 -4)
(3 4 5) (-3 -4 -5) (4 5 6) (-4 -5 -6)
(5 6 7) (-5 -6 -7) (1 3 5) (-1 -3 -5)
(2 4 6) (-2 -4 -6) (3 5 7) (-3 -5 -7)
(1 4 7) (-1 -4 -7)

(3)

It happens to be the Van der Waerden formula (3,3; 7). We
will describe this type of formulas later, in section III-A.

Symmetry breaking, as emitted by BREAKID, discovers the
two mappings below (these are also called ‘generators’). To
get to the full set of possible mappings one needs to also
consider their compositions.

σ1 : [1 7] [2 6] [3 5]
σ2 : [1 -1] [2 -2] [3 -3] ... [7 -7] (4)

This representation is called ‘cycle form’, and should be
interpreted as follows: in each line, every literal appears at
most once; it should be replaced with the literal that comes
next in the brackets, and if it is the last one then with the
first literal in the brackets. In this example σ1 implies that
simultaneously swapping literals 1 and 7, 2 and 6, 3 and 5
(and correspondingly, their negated versions, -1 and -7, etc.)
results in the same formula. Readers familiar with Van der
Waerden formulas may notice that this symmetry corresponds
to a reversal of the indices, i.e., the first variable becomes
last, the second one becomes second to last, etc, and that
σ2 corresponds to a swap of the colors. In such formulas,
regardless of their length, these are the only two possible
symmetries.

Now suppose that we learn a new conflict clause c =
(1 2 -5 6), via the following resolution sequence:

(1 2 3), (-3 -4 -5), (2 4 6) . (5)

We can therefore add two e-clauses corresponding to the two
generators:

σ1(1 2 -5 6) = (7 6 -3 2) σ2(1 2 -5 6) = (-1 -2 5 -6) .
(6)

However, more e-clauses can be derived based on this conflict
clause. We need to find a subgraph of G that is color-
isomorphic to the one representing the sequence (5). Going
back to our example, it is indeed not hard to see that (2 3
4), (-4 -5 -6), (3 5 7), all of which are clauses in φ, give

205

-6-5-4-3-2

1 2 3 4 5 6 7

-1 -7 -6-5-4-3-2

1 2 3 4 5 6 7

-1 -7

Fig. 1. Two isomorphic subgraphs of the same refined colored incidence
graph corresponding to (3). The literals are nodes with a separate color than
the clause nodes. All the clause nodes in this example are of the same arity,
hence they have the same color.

us just that – see Fig. 1. Applying the same resolution steps
yields a new e-clause (2 3 -6 7), which cannot be deduced
by any composition of σ1, σ2, simply because our inference is
not based on the original CNF’s symmetry, rather it is inferred
dynamically from the resolution process.

Since the subgraph isomorphism problem is NP-complete,
we only focus on cases in which it can be indirectly inferred
from analyzing the high-level structure of the original problem
and controlling (or knowing) how it is encoded. Specifically,
in such problems we derive a mapping between the literals,
and adapt the solver to use this information in order to derive
new e-clauses. Our implementation of this technique shows
average overall improvement in terms of run-time.

To summarize, our contributions in this article are:
1) We show several problem domains in which this known

principle can be exploited by the SAT solver for improv-
ing performance. So far it has only been used in bounded
model checking and in neural network verification;

2) We show how this technique is superior to, and can be
seen as an extension of, dynamic symmetry;

3) We show how to modify the SAT-solver in order to
implement this technique, and suggest several techniques
for filtering e-clauses (i.e., decide which ones to keep, in
light of possibly having too many of them) and deletion
of such clauses;

4) We present experimental results that show certain per-
formance improvements (around 50% reduction in run
time) due to this technique with domains in which it has
not been used before.

Although any paper that mentions an open mathematical prob-
lem such as Van der Warden numbers raises the expectation
that it was able to solve it (i.e., find a new Van der Waerden
number), this is not a result that can be found here: we only
use it as one of several examples of problem domains in which
the high-level structure can be used for improving run-time.

We continue in the next section by describing the method
in detail. In Sec. III we will demonstrate how to apply it with
several famous problems.

II. FINDING ADDITIONAL E-CLAUSES

Let us recap. Symmetry over φ is a propositionally-
consistent map σ : lits(φ) ↦→ lits(φ) such that σ(φ) ≡ φ. In
this situation we can add symmetry-breaking constraints, and
also use dynamic symmetry exploitation by adding e-clauses,
but not both.

Almost symmetries refer to a situation where we have a
formula φ ≡ φ1 ∪ φ2 and a propositionally-consistent map

σ : lits(φ2) ↦→ lits(φ2) such that σ(φ2) ≡ φ2. Here we
cannot add symmetry-breaking constraints because of the φ1

clauses, but we can still use dynamic symmetry exploitation
by adding e-clauses that are based on φ2.

We now generalize almost symmetries as follows. Let

φ ≡ φ1 ∪ φ2 ∪ φ3 , (7)

where φ,φ1, . . . are sets of clauses, possibly overlapping. Let
σ : lits(φ2) ↦→ lits(φ3) be a literal map such that

σ(φ2) ≡ φ3 . (8)

Our central claim is:
Proposition 1: Let c be a conflict clause that was learned

from φ2’s clauses, i.e., φ2 |= c. Then φ and φ∪σ(c) have the
same solutions.

Proof: Consider the resolution process by which c was
inferred from φ2. The same resolution process can be applied
to σ(φ2), and the result will be σ(c). Hence σ(φ2) |= σ(c),
and because of (8) we have φ3 |= σ(c). Therefore, φ |= σ(c)
and we can add the e-clause σ(c) to φ without removing
solutions.

The following table summarizes the discussion so far.

Symmetry Almost symmetry e-clauses

Formula: φ φ1 ∪ φ2 φ1 ∪ φ2 ∪ φ3

Requires: σ(φ) ≡ φ σ(φ2) ≡ φ2 σ(φ2) ≡ φ3

For a given formula φ, the question is how to define φ2, φ3

and the corresponding mapping σ that satisfy (8). As we will
see in the next section, for certain types of formulas it can
be done in such a way that e-clauses can be added in linear
time. In fact it can be done in multiple ways, i.e., many such
mappings exist, and we can use all of them.

III. EXAMPLES

We will show here two example problems that received
attention in the SAT community in recent years, and in
which e-clauses can be added efficiently : Van der Waerden
numbers, and Boolean Pythagorean triples. The long version of
this article [1] includes additional examples: Bounded model
checking, SAT-based Planning, a combinatorial problem called
‘Sweep’, and the anti-bandwidth problem.

A. Van der Waerden numbers (2 colors)

We begin with the following definition:
Definition 3: The Van der Waerden number W (j, k) is the

smallest integer n such that every 2-coloring of 1..n has a
monochromatic arithmetic progression of length j of color 1,
or of length k of color 2.

For example, the following coloring proves that W (3, 3) >
8, since there is no arithmetic progression of size 3 of either
color:

.

However, there is no such coloring for n = 9, hence
W (3, 3) = 9.

206

There is relatively little symmetry in such formulas. An
obvious one is the symmetry between the colors, when j = k.
Another type of symmetry is reversal (reading the sequence
from the end). Reconsidering Example 1, σ1, σ2 of (4) break
these two symmetries.

Given j, k and n, encoding the decision problem whether
W (j, k) > n with CNF is simple. Define n variables xi for
1 ≤ i ≤ n, indicating whether location i is assigned the color
‘1’. The constraints on the arithmetic progression are given by

{(xi ∨ xi+d ∨ · · · ∨ xi+(j−1)d) | i ∈ [1, n− (j − 1)d], d ≥ 1}⋃︁
{(x̄i ∨ x̄i+d ∨ · · · ∨ x̄i+(j−1)d) | i ∈ [1, n− (k − 1)d], d ≥ 1} ,

(9)
as was described, e.g., by Knuth in [17]. From here on we
will use integers as representatives of literals.

Example 2: Consider the case of j = k = 3, n = 10. When
a variable i is assigned true, it represents the decision to assign
slot i the color ‘1’, and ‘0‘ otherwise. Then no 3 slots...

• ... with gap 1 are all ‘0’: (1 2 3) (2 3 4) ... (8 9 10)
• ... with gap 2 are all ‘0’: (1 3 5) (2 4 6) ... (6 8 10)
• ... with gap 3 are all ‘0’: (1 4 7) (2 5 8) ... (4 7 10)
• ... with gap 4 are all ‘0’: (1 5 9) (2 6 10)

The same constraints, but with negated literals, are now added
for the color ‘1’. For example, for gap 1, add (–1,–2, –3) ...
(-8, -9, -10), etc.

The clauses as defined in (9) have what we call a gliding
symmetry2. This means that the same clause is replicated in
the formula while shifting the variable index by a constant up
to some bound, for example (1 2 3) is in φ, but also (2 3
4)...(8 9 10). Similarly (-1 -2 -3) is replicated with a negative
constant. For a clause c, let ciz denote the clause attained by
taking i steps towards zero, and similarly let cin denote the
clause attained by taking i steps away from zero, i.e., towards
n or −n. For example (3 4 5)1z = (2 3 4) and (1 2 3)1n =
(2 3 4). As another example, this time focusing on the negative
constraints, (-1 -3 -5)1n = (-3 -5 -7)1z = (-2 -4 -6).

For each clause c ∈ φ, we save the gliding bounds [i, j],
where i, j are the maximal integers such that ciz, c

j
n ∈ φ.

For example, for the clause c = (2 3 4) of Example 2, we
save the pair [1, 6], because we can ‘glide’ by up to one step
towards zero and by up to six steps towards n = 10 (giving
us, respectively, (1 2 3) and (8 9 10)). As another example,
the pair for the clause (-4 -5 -6) is [3,4], because we can glide
by up to three steps towards zero, and by up to four steps
towards −n = −10. Denote by c.z and c.n the two bounds
of a clause c, corresponding to i, j above, respectively.

So far we only considered the original clauses of the
problem. We now consider the question of what are the bounds
for the learned clauses. Let c1, . . . , cm be the antecedent
clauses of a new learned clause c. We compute the gliding
bounds of c as follows:

c.z = min(c1.z, . . . , cm.z) c.n = min(c1.n, . . . , cm.n) .
(10)

2Mathematicians use this term for describing a pattern that repeats itself
by an operation of shifting in one dimension in space, e.g., ♠ ♠ ♠ ♠ . . .

The rational of (10) is that we can only glide c towards zero (or
away from zero) as much as we can glide all of its antecedents
towards zero (or away from zero).

Given the gliding bounds of each clause, it is easy to use
Proposition 1 for learning new e-clauses. Using the terminol-
ogy of that proposition, the antecedents of c form φ2, and σ
is a mapping that applies ‘gliding’ to them. Each amount of
gliding is a separate mapping σ. The gliding bounds tell us
the amount by which gliding each clause results in a clause
that is still in φ – those new clauses are φ3 in the proposition.
In other words, those bounds define the mappings that we can
use for deriving new e-clauses.

Example 3: Suppose φ includes the following clauses and
respective bounds:

(3 6 10)[2, 0] (-7 -5 -3)[2, 2] (-7 -6 -5)[4, 2] (11)

from which the solver inferred via resolution the clause c =
(-7 -5 10). With (10) we compute the gliding bounds [2,0] for
c. This means that we have two mappings:

• σ1 maps each positive literal l to l−1 and negative literal
−l to −l + 1

• σ2 maps each positive literal l to l−2 and negative literal
−l to −l + 2,

i.e., a glide by one and two towards 0. So we add the e-clauses
σ1(c) = (-6 -4 9) and σ2(c) = (-5 -3 8). Indeed, if we apply
σ1 to the clauses in (11), we get three clauses in φ, from which
we can infer σ1(c):

σ1(3 6 10) = (2 5 9) σ1(-7 -5 -3) = (-6 -4 -2)
σ1(-7 -6 -5) = (-6 -5 -4)

Finally, we should compute the gliding bounds of the e-
clauses themselves, because they may participate in further
learning. For this, we shift the bounds of the conflict clause by
the same amount as dictated by the mapping σ, while recalling
that any step towards zero is a step away from n (or −n if it
is a negative literal), and vice a versa.

Example 4: Reconsider c of Example 3. Its bounds are [2,0].
We computed σ1(c) by gliding c towards zero by 1. Hence the
bounds of σ1(c) are [2−1,0+1] = [1,1].

B. Boolean Pythagorean triples

We conclude with an example that shows that e-clauses are
not necessarily tied to gliding symmetry.

Three positive integers a, b, c are called a Pythagorean triple
if they satisfy a2 + b2 = c2. The challenge is:

Definition 4: For a given n ∈ N , can 1..N be separated
into two sets, such that no set contains a Pythagorean triple?

As an example, for n = 17 if we choose the subset of
integers that is here marked with an underline: 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15 16 17, it proves that for n = 17 the
answer is yes.

The general question of whether there exists an n for
which the answer is negative was open for many years. The
celebrated result of Heule et al. [16] a few years ago proved,
with the help of a SAT solver, that the answer is positive.

207

The encoding of the problem in Def. 4 with CNF is very
simple: define n variables, where the Boolean values in the
satisfying assignment separate the values naturally to the two
requested sets. For example, the encoding for n = 17 is

(3 4 5) (-3 -4 -5) (5 12 13) (-5 -12 -13)
(6 8 10) (-6 -8 -10) (8 15 17) (-8 -15 -17)
(9 12 15) (-9 -12 -15)

Denote by φn this formula for a given n. In the discussion
that follows we will overload the multiplication and division
signs, ’·’ and ’/’ to operate on clauses and sets of clauses: the
operation is simply applied to each of the literals. For example,
2 · (3 4 5) = (6 8 10) and (6 8 10)/2 = (3 4 5).

We begin with two simple observations:
Observation 1: Pythagorean triples are closed under multi-

plication:

∀a, b, c, i ∈ N. a2 + b2 = c2 ⇒ (a · i)2 + (b · i)2 = (c · i)2 .

Observation 2: Let |d denote ‘divisible by d’. When applied
to a set of numbers, then it means that all the set’s members
are divisible by d. Then for all n,

(a b c) ∈ φn ∧ (a b c)|d ⇒ (a b c)
d

∈ φn . (12)

The second observation is simply the other side of the first
one (dividing rather than multiplying), but it also states that
the divided clause must be in φn. For example, if n = 80 then
(30 72 78) ∈ φ80, which implies that also (30 72 78)/2 = (15
36 39) ∈ φ80.

For each clause c, we define recursively

c.gcd =

⎧⎨⎩ gcd({l | l ∈ c}) c is original
gcd({ci.gcd | ci ∈ S}) c is inferred from

a clause set S
(13)

where gcd() is the greatest common divider function. Observe
that if c is original, then c.gcd is the greatest common divider
of its own variables, and otherwise of the variables in the
core of original clauses that derived it, which we will denote
by core(c). This recursive definition gives us an immediate
method to implement it in a SAT solver: the base case
corresponds to the original clauses, and the step to the learning
that is done during conflict analysis.

Given a conflict clause c, we can see that for i ∈
[1, bound(n)] (bound(n) will be defined shortly), we have

i · core(c)
c.gcd

⊆ φn . (14)

This is a direct result of the two observations above: From
Observation 2 we know that core(c)

c.gcd ⊆ φn, and from Obser-
vation 1 we know that any multiplication of this clause is
a Pythagorean triple. Whether it is part of φn depends on
the value of i, which brings us to the problem of computing
bound(n). To compute it, we need to know the largest variable

that participates in core(c). For each clause c, we define
recursively

c.maxvar =

⎧⎨⎩ max({l | l ∈ c}) c is original
max({ci.maxvar | ci ∈ S}) c is inferred

from a set S

Hence, for each clause c, c.maxvar denotes the largest
variable that appears in core(c). In (14) we considered clauses
i · core(c)

c.gcd . For these clauses to be part of φn, the following
relation should hold:

i · c.maxvar

c.gcd
≤ n .

Isolating i gives us the bound: bound(n) = n·c.gcd
c.maxvar . Finally,

observe the implication of (14): since i · core(c)
c.gcd ⊆ φn, then

φn |= i · c

c.gcd
, for i ∈ [1, bound(n)] . (15)

This means that i · c
c.gcd can be added safely as e-clauses

to φn, without removing solutions. In other words, using the
terminology of Sec. II, each i ∈ [1, bound(n)] defines us a
separate mapping for a conflict clause c:

σi(c) = i · c

c.gcd
. (16)

IV. IMPLEMENTATION DETAILS

Recall that according to (7) the formula may contain a non-
empty set of clauses φ1, that cannot participate in generating
e-clauses. In our implementation we mark those clauses at the
beginning (such clauses are expected to be given in a separate
input file), and then also each learned clause that one of its
antecedents is marked that way. For simplicity let us call these
clauses non-symmetric and the rest symmetric.

To keep track of these dependencies, we altered the solver.
This is a non trivial task because logical dependency be-
tween clauses is created in many different parts of a mod-
ern solver. In particular, our implementation is based on
MAPLE LCM DIST CHRONOBT [20] (we will abbreviate
its name to CHRONO from hereon), the winner of the SAT
competition in 2018, which in itself is built on top of multiple
generations of optimizations that were added to it over the
years, all the way up to MINISAT-2.2 [12]. In particular,
dependency is created during conflict analysis in the process
of learning a new clause, but also during clause minimization,
binary-resolution minimization, learnt-clause simplifications,
var elimination and propagation at decision level 03. We
maintain a single bit in the header of each clause that
determines whether it is symmetric or not. Since CHRONO,
like all MINISAT-based solvers, do not maintain unit clauses,
we maintain a separate list of variables that their value is
determined at level 0 based on non-symmetric clauses.

Next, we need to maintain problem-specific information that
is necessary for deriving e-clauses. For example, for Van der
Waerden formulas – see Secs. III-A – we need to keep for

3These are implemented in the following functions in CHRONO: analyze,
LitRedundant, binResMinimize, simplifyLearnt, eliminateVar, propagate

208

each clause its gliding bounds. For the Boolean Pythagorean
triples problem – see Sec. III-B – we maintain the greatest
common divider (gcd) of the literals in the clause and all
clauses that participated in deriving it, and the max variable
in those clauses. As in the case of the symmetry bit described
above, here too we need to update this information in every
location in which dependency is created.

Our implementation accumulates e-clauses and then adds
them to the clause database at the nearest restart. This is a
different strategy than the ones mentioned in the introduction
in the context of symmetric explanation learning [10] and
dynamic symmetry handling [10], [25], where such clauses are
added during BCP, hence affecting the current search branch
(we implemented both, and the results are rather similar, with
a small advantage to the technique described here). To reduce
side-effects, upon adding a new e-clause we do not increase
the counter of conflict clauses, since that counter affects
various other heuristics, such as the frequency of applying
simplifications and clause deletion.

The above-mentioned prior works describe various filtering
methods: adding clauses only if they conflict the current state
or lead to further propagation, or, in the case of [25], if the
conflict clause itself has a low LBD. Several filtering and
deletion strategies that we experimented with are described
in the long version of this article [1]. Briefly, the ones we
settled on as best in our experiments are (1) add an e-clause
only if up to 3 literals are not false under the current partial
assignment, and (2) do not add e-clauses larger than 20. As for
deletion strategies, we (1) gave a separate initial activity score
of 0.8 for e-clauses and (2) set the deletion ratio to 0.8, i.e.,
a more aggressive deletion comparing to the default of 0.5.
We left this deletion ratio also for the experiments without
e-clauses, for a fair comparison.

V. RESULTS

We implemented this method for Van der Waerden numbers
and Boolean Pythagorean triples. Since there is no standard
benchmark sets for these problems, we generated instances,
and took all of those that can be solved with at least one
configuration in less than 30 min., and with at least one
configuration in more than 1 min. For the Van der Waerden
problems, this resulted in 30 benchmarks (16 unsat, 14 sat).
The benchmarks, full tables of results, and the implementation
are available from [3]. We used the HBENCH benchmarking
system [2] to conduct the experiments and data collection.

In the results tables below, timed-out benchmarks contribute
the values they had at the timeout point to the various
columns, other than the par-2 column, where the timeout
is added twice, to be consistent with the ranking method of
the SAT competitions. Our goal was mostly to measure the
number of e-clauses that can be found based on isomorphic
subgraphs, beyond what can be found with dynamic symmetry
exploitation. We have evidence from multiple previous works,
e.g., [10], [25], [24] (see Sec. I), that such clauses can help in
reducing the run time. Our results below show not only that
indeed many more such clauses can be generated, but also that

when combined with the right filtering and deletion methods,
it reduces the run time on average.

The results for the Van der Waerden problems are summa-
rized in Table I, sorted by performance. The ‘-waerden’ flag
indicates that e-clauses are added as described in Sec. III-A.
The ‘-dyn-sym-exploit’ flag indicates that e-clauses based on
dynamic symmetry exploitation were added. ‘native’ means
that the solver was run in its default configuration other than
the deletion ratio – see Sec. IV. ‘static-sym-breaking’ indicates
that we solved the formula with static symmetry-breaking
constraints, as provided by BREAKID, while the solver is
in the same configuration as ‘native’. For these benchmarks
static symmetry breaking turns out to be better than dynamic
symmetry exploitation, based on the same data (even when
considering the unsat cases on their own).

On average each conflict clause learned while solving these
benchmarks results in over 20 e-clauses with the -waerden
flag (this clearly depends on the value of n), and less than
1 with the -dyn-sym-exploit. The latter is expected, since
BREAKID generates a single generator for these benchmarks
(see text after Def. 3). The top part of the table does not
reflect these numbers, however, because it refers to runs in
which we applied aggressive filtering as mentioned before.
With these filters, the number of e-clauses added is typically
less than 5% of the total number of clauses. Hence the
potential for e-clauses is large, and perhaps future research
into filtering techniques will be able to exploit this unused
potential. The overhead of generating the e-clauses is marginal
(the ‘Overhead’ column). The overhead of running BREAKID,
a necessary step for applying both -dynamic-symmetry and -
symmetry-breaking, was a few seconds and not included in
the ‘Time’ column.

We can see a run-time reduction of 42% comparing to a
native run for the case of Van der Waerden formulas, and of
55% for the case of Pythagorean triples. In both cases the
technique as described in III-A is better than adding e-clauses
based on data derived from static symmetry, and better than
combining these two sources of data. Cactus plots for both
families appear in Figs. 2 and 3.

We also checked how active the e-clauses are in deriving
new clauses. For this measure we define as e-clauses, recur-
sively, the set of clauses that we add directly and the clauses
that were learned based on at least one e-clause premise.
Activity of clauses is updated in the solver in the usual way,
based on their participation in deriving other clauses. Since
clause deletion is based on this activity, the ratio between the
average number of ‘live’ clauses (i.e., that were not deleted)
and the total number of learned clauses is an indication of how
active they are. This ratio for e-clauses and normal conflict
clauses appear in the last two columns of the table. It is
surprising to see that the e-clauses are more active, especially
since we initiate the activity score of e-clauses with a lower
value in comparison to the value given to conflict clauses.

For the Boolean Pythagorean triples problem, we generated
21 satisfiable instances (the first unsatisfiable instance takes
weeks to solve — see [16]) with the same selection criteria

209

Configuration Timed- Time Time Conflicts e-clauses Over- Active Active
out (par-2) head -E- -C-

-waerden 0 111.2 111.2 1,079,719 30568 6 0.017 0.015
-static-sym-breaking 1 149.8 211.2 2110472 0 0
(native) 1 190.4 251.7 2,112,666 0 0 0.011
-waerden -dyn-sym-exploit 2 198.5 317.7 1,963,104 50618 10 0.014 0.008
-dyn-sym-exploit 3 233.2 418.6 2,477,840 6,729 3 0.011 0.008

-waerden 6 476.5 841.9 750,453 16,556,216 29 0.013 0.013
-dyn-sym-exploit 1 119.8 181.3 1,248,573 1,290,402 13 0.008 0.011

TABLE I
AVERAGE RESULTS FOR THE VAN DER WAERDEN PROBLEM, OVER 30 BENCHMARKS. TIME IS IN SECONDS. THE LAST TWO ROWS REFER TO RUNS

WITHOUT ANY FILTERING OF THE E-CLAUSES.

0 5 10 15 20 25 30

0

500

1,000

1,500

2,000

Solved instances

Ti
m

e

-waerden

-static-sym-breaking

native

-waerden -dyn-sym-exploit

-dyn-sym-exploit

Fig. 2. Results for the Van der Waerden benchmarks.

0 5 10 15 20

0

500

1,000

1,500

2,000

Solved instances

Ti
m

e

-pythagorean

-pythagorean -dyn-sym-exploit

-static-sym-breaking

-dyn-sym-exploit

-native

Fig. 3. Results for the Pythagorean-triples benchmarks.

as described above. The results appear in Table II, also in
ascending performance order. Here the native solver turns out
to be improved-upon in each of the configurations, including
static symmetry breaking.

VI. CONCLUSIONS AND FUTURE WORK

We presented a general condition for adding what we
call e-clauses, right after conflict analysis. We showed how
this technique generalizes ‘symmetry’ and ‘almost symmetry’,
and that indeed this method can add far more clauses than
dynamic symmetry exploitation and related methods that are
solely based on such symmetries. We showed several known
problems for which this is relevant, and mentioned cases in
which it was already done in the past with empirical success.

There are three lines of future work that we consider
important. First, it is important to classify additional problems
as having the property that they are amenable to adding e-
clauses, and check whether it can assist in accelerating their
solving. Second, we foresee a dedicated SAT solver that
maintains and reasons about clause generators. That is, instead
of adding many e-clauses as normal clauses, just keep the
base learned clause with its bounds. It can be faster than the
alternative of adding all e-clauses and does not suffer from the
necessity to delete most of them. In a sense, this way the e-
clauses are generated lazily, on demand, and then immediately
erased. There are many implementation details that need to be
developed for this. For example, one can add the generator
to the watch list of all the literals that would have watched
one of its generated e-clauses. In BCP, that literal tells us
how to apply the unit implication rule to the generator. The
reason clause can be maintained as a pair of a reference to the
generator and an instantiation index. Many other details still
need to be worked out.

A third direction, is to control the BCP order, such that
it works first on ‘normal’ clauses and only if it terminates
without a conflict, continue to propagate through the e-clauses,
based on the assumption that the latter are less likely to cause
a conflict at the current branch. One can also envision a SAT
solver that splits BCP on normal and e-clauses between two
threads. A possible high-level architecture is one in which
the main thread, T , works on ‘normal’ clauses and then on
e-clauses, and the other, Te, in the other direction. The first
that finds a conflict terminates the other, or, alternatively, the
solver chooses the better conflict clause based on its LBD and
backtracking level.

210

Configuration Timed- Time Time Conflicts e-clauses Over- Active Active
out (par-2) head -E- -C-

-pythagorean 1 360.1 446.5 1,973,404 60303.3 0.2 0.006 0.006
-pythagorean -dyn-sym-exploit 3 419.5 676.6 1,864,767 55264.4 36.0 0.007 0.006
-static-sym-breaking 4 474.1 821.4 3,132,118 0 0
-dyn-sym-exploit 3 579.1 837.4 2,558,436 388.4 50.5 0.004 0.007
(native) 3 795.6 1053.7 3,901,308 0 0 0.007

-pythagorean 4 578.0 1008.9 3,045,218.4 214,993.7 0.4 0.004 0.054
-dyn-sym-exploit 9 931.7 1714.1 1,813,843.8 3,541,747.0 568.9 0.005 0.007

TABLE II
RESULTS FOR THE BOOLEAN PYTHAGOREAN TRIPLES PROBLEM, OVER 21 BENCHMARKS. THE BOTTOM TWO CONFIGURATIONS ARE WITHOUT

FILTERING.

REFERENCES

[1] Exploiting isomorphic subgraphs in SAT (long). https://arxiv.org/abs/
2103.10267.

[2] Hbench. https://strichman.net.technion.ac.il/hbench/.
[3] Statistics. https://technionmail-my.

sharepoint.com/:f:/g/personal/ofers technion ac il/
ElPLTu98GFNGidn8MHqydHYBzKLkJe1WFKS0-g8s78wV0w?e=
l7Id5A.

[4] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah.
Solving difficult instances of boolean satisfiability in the presence of
symmetry. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
22(9):1117–1137, 2003.

[5] Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-
based search. Constraints An Int. J., 7(3-4):333–349, 2002.

[6] B. Benhamou, T. Nabhani, R. Ostrowski, and M. R. Saidi. Enhancing
clause learning by symmetry in sat solvers. In 2010 22nd IEEE
International Conference on Tools with Artificial Intelligence, volume 1,
pages 329–335, 2010.

[7] Geoffrey Chu, Maria Garcia de la Banda, Christopher Mears, and Peter J.
Stuckey. Symmetries, almost symmetries, and lazy clause generation.
Constraints An Int. J., 19(4):434–462, 2014.

[8] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and
Amitabha Roy. Symmetry-breaking predicates for search problems.
In Luigia Carlucci Aiello, Jon Doyle, and Stuart C. Shapiro, editors,
Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning (KR’96), Cambridge, Mas-
sachusetts, USA, November 5-8, 1996, pages 148–159. Morgan Kauf-
mann, 1996.

[9] J. Devriendt, B. Bogaerts, B. d. Cat, M. Denecker, and C. Mears.
Symmetry propagation: Improved dynamic symmetry breaking in sat.
In 2012 IEEE 24th International Conference on Tools with Artificial
Intelligence, volume 1, pages 49–56, 2012.

[10] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric
explanation learning: Effective dynamic symmetry handling for SAT.
In Serge Gaspers and Toby Walsh, editors, Theory and Applications of
Satisfiability Testing - SAT 2017, Proceedings, volume 10491 of LNCS,
pages 83–100. Springer, 2017.

[11] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker.
Improved static symmetry breaking for SAT. In Nadia Creignou and
Daniel Le Berre, editors, Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France,
July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 104–122. Springer, 2016.

[12] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications
of Satisfiability Testing (SAT), volume 2919 of LNCS, pages 502–518.
Springer, 2003.

[13] Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry
breaking. In Toby Walsh, editor, Principles and Practice of Constraint
Programming - CP 2001, 7th International Conference, CP 2001,
Paphos, Cyprus, November 26 - December 1, 2001, Proceedings, volume
2239 of Lecture Notes in Computer Science, pages 93–107. Springer,
2001.

[14] Ian P. Gent, Warwick Harvey, and Tom Kelsey. Groups and constraints:
Symmetry breaking during search. In Pascal Van Hentenryck, editor,
Principles and Practice of Constraint Programming - CP 2002, 8th

International Conference, CP 2002, Ithaca, NY, USA, September 9-13,
2002, Proceedings, volume 2470 of Lecture Notes in Computer Science,
pages 415–430. Springer, 2002.

[15] Ian P. Gent and Barbara M. Smith. Symmetry breaking in constraint
programming. In Werner Horn, editor, ECAI 2000, Proceedings of the
14th European Conference on Artificial Intelligence, Berlin, Germany,
August 20-25, 2000, pages 599–603. IOS Press, 2000.

[16] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving
and verifying the boolean pythagorean triples problem via cube-and-
conquer. In Nadia Creignou and Daniel Le Berre, editors, Theory and
Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume
9710 of Lecture Notes in Computer Science, pages 228–245. Springer,
2016.

[17] Donald Knuth. The Art of Computer Programming: Satisfiability,
volume 4b, Fascicle 6. 2015.

[18] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta
Informatica, 22(3):253–275, 1985.

[19] Roland Martin. The challenge of exploiting weak symmetries. In Brahim
Hnich, Mats Carlsson, Fran(c)ois Fages, and Francesca Rossi, editors,
Recent Advances in Constraints, Joint ERCIM/CoLogNET International
Workshop on Constraint Solving and Constraint Logic Programming,
CSCLP 2005, Uppsala, Sweden, June 20-22, 2005, Revised Selected
and Invited Papers, volume 3978 of Lecture Notes in Computer Science,
pages 149–163. Springer, 2005.

[20] Alexander Nadel and Vadim Ryvchin. Chronological backtracking. In
Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929
of Lecture Notes in Computer Science, pages 111–121. Springer, 2018.

[21] Jean-Francois Puget. On the satisfiability of symmetrical constrained
satisfaction problems. In Henryk Jan Komorowski and Zbigniew W.
Ras, editors, Methodologies for Intelligent Systems, 7th International
Symposium, ISMIS ’93, Trondheim, Norway, June 15-18, 1993, Proceed-
ings, volume 689 of Lecture Notes in Computer Science, pages 350–361.
Springer, 1993.

[22] Karem Sakallah. Symmetry and Satisfiability, chapter 10, pages 289–
338. IOS press, 2009.

[23] Buser Say, Jo Devriendt, Jakob Nordström, and Peter J. Stuckey.
Theoretical and experimental results for planning with learned binarized
neural network transition models. In Helmut Simonis, editor, Principles
and Practice of Constraint Programming - 26th International Con-
ference, CP 2020, Louvain-la-Neuve, Belgium, September 7-11, 2020,
Proceedings, volume 12333 of Lecture Notes in Computer Science,
pages 917–934. Springer, 2020.

[24] Ofer Shtrichman. Tuning SAT checkers for bounded model checking.
In E.A. Emerson and A.P. Sistla, editors, Proc. 12th Intl. Conference on
Computer Aided Verification (CAV’00), LNCS. Springer-Verlag, 2000.

[25] Rodrigue Konan Tchinda and Clémentin Tayou Djamégni. Enhancing
static symmetry breaking with dynamic symmetry handling in CDCL
SAT solvers. Int. J. Artif. Intell. Tools, 28(3):1950011:1–1950011:32,
2019.

211

https://arxiv.org/abs/2103.10267
https://arxiv.org/abs/2103.10267
https://strichman.net.technion.ac.il/hbench/
https://technionmail-my.sharepoint.com/:f:/g/personal/ofers_technion_ac_il/ElPLTu98GFNGidn8MHqydHYBzKLkJe1WFKS0-g8s78wV0w?e=l7Id5A
https://technionmail-my.sharepoint.com/:f:/g/personal/ofers_technion_ac_il/ElPLTu98GFNGidn8MHqydHYBzKLkJe1WFKS0-g8s78wV0w?e=l7Id5A
https://technionmail-my.sharepoint.com/:f:/g/personal/ofers_technion_ac_il/ElPLTu98GFNGidn8MHqydHYBzKLkJe1WFKS0-g8s78wV0w?e=l7Id5A
https://technionmail-my.sharepoint.com/:f:/g/personal/ofers_technion_ac_il/ElPLTu98GFNGidn8MHqydHYBzKLkJe1WFKS0-g8s78wV0w?e=l7Id5A

Formal Methods in Computer-Aided Design 2021

On Decomposition of Maximal Satisfiable Subsets
Jaroslav Bendı́k

Max Planck Institute for Software Systems
Kaiserslautern, Germany

xbendik@mpi-sws.org

Abstract—In many areas of computer science, we are given an
unsatisfiable formula F in CNF, i.e., a set of clauses, with the
goal to analyze the unsatisfiability. A kind of such analysis is to
identify Minimal Correction Subsets (MCSes) of F , i.e., minimal
subsets of clauses that need to be removed from F to make it
satisfiable. Equivalently, one might identify the complements of
MCSes, i.e., Maximal Satisfiable Subsets (MSSes) of F . The more
MSSes (MCSes) of F are identified, the better insight into the un-
satisfiability can be obtained. Hence, there were proposed many
algorithms for complete MSS (MCS) enumeration. Unfortunately,
the number of MSSes can be exponential w.r.t. |F |, which often
makes the complete enumeration practically intractable.

In this work, we attempt to cope with the intractability of
complete MSS enumeration by initiating the study on MSS
decomposition. In particular, we propose several techniques that
often allows for decomposing the input formula F into several
subformulas. Subsequently, we explicitly enumerate all MSSes
of the subformulas, and then combine those MSSes to form
MSSes of the original formula F . An extensive empirical study
demonstrates that due to the MSS decomposition, the number of
MSSes that need to be explicitly identified is often exponentially
smaller than the total number of MSSes. Consequently, we
are able to improve upon a scalability of contemporary MSS
enumeration approaches by many orders of magnitude.

I. INTRODUCTION

Boolean formulas in the Conjunctive Normal Form (CNF),
wherein we are given a set F “ tc1, . . . , cnu of Boolean
clauses, have been widely adopted as a suitable representation
language to model the behaviour of systems and properties. In
case we are given an unsatisfiable CNF formula F , the goal
is usually to analyze the unsatisfiability. To perform such an
analysis, two concepts are often used: a Minimal Unsatisfiable
Subset (MUS) of F , and a Minimal Correction Subset (MCS)
of F . Intuitively, an MUS represents a minimal reason for
the unsatisfiability, whereas an MCS is a minimal subset of
clauses that need to be removed from F to make it satisfiable.
A dual notion to an MCS is that of a Maximal Satisfiable
Subset (MSS), i.e., a satisfiable subset M of F such that for
every clause c P F zM the set MYtcu is unsatisfiable. It holds
that every MSS is a complement of an MCS of F and vice
versa, i.e., MSSes and MCSes represent the same information.

MCSes (MSSes) find many practical applications in various
areas of computer science. For instance, in the context of
belief update and argumentation, MCSes are used during an
update of the belief in the presence of an incoming contra-
dictory belief [16], [21]. Similarly, in the field of diagnosis
of constraint systems [5], [37], [49], MCSes represent the
constraints that need to be relaxed for the system to be conflict-
free. Another application of MSSes arises in the context of

the maximum satisfiability problem (MaxSAT), since MSSes
with the maximum cardinality correspond to the solutions of
MaxSAT. Yet other applications of MCSes can be found, e.g.,
during model based diagnosis [7], ontology debugging, or
axiom pinpointing [1].

Often, it is the case that finding just a single MCS is suffi-
cient. However, in many applications, the task of enumerating
several or even all MCSes (MSSes) is crucial for properly
understanding the underlying sources of the unsatisfiability.
For example, enumeration of minimal correction subsets is
essential in software fault localization [30]. In the context of
MaxSAT solving, a restricted MSS enumeration is effective
in approximately solving the problem if finding the exact
solution is intractable [41]. In the domain of diagnosis, there
have been proposed many diagnosis metrics that are based
on complete enumeration and counting of MSSes and MCSes
(see, e.g., [26], [52]). Moreover, there are several computa-
tional problems, such as enumeration of minimal unsatisfiable
subsets [37], prime implicants [28], and maximal and minimal
models [39], that can be reduced to MSS enumeration.

In the past decades, there have been proposed many ap-
proaches for enumeration of MSSes (see e.g., [5], [9], [11],
[22], [35], [39], [44], [51]). However, the complete MSS
enumeration is still often practically intractable [11]. One of
the reasons is that the identification of the individual MSSes
naturally subsumes checking several subsets of F for satisfi-
ability, and these checks are very expensive (NP-complete).
Another issue is that there can be in general exponentially
many MSSes of F w.r.t. the number |F | of clauses of F .

In spirit, the intractability of complete MSS enumeration
is very similar to the intractability that was dealt with in
the context of the Boolean model counting problem. That
is, given a Boolean formula H , count all models (satisfying
assignments) of H . The earliest approaches for model counting
were based on a complete model enumeration, however, since
the number of models can be exponential w.r.t. the number
of variables of H , the complete model enumeration is of-
ten practically intractable. Fortunately, due to an extensive
research in the past decades (e.g., [6], [43], [50], [53]), the
model counting problem is often practically feasible even
for formulas with exponentially many models. A substantial
ingredient of contemporary model counters is decomposition;
in particular, the counters are often able to decompose the
input formula H into several independent sub-formulas, then
count models of the sub-formulas, and multiply the sub-counts
to get the model count for the whole H . At this point, one

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 30 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-9784-3028
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_30
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_30
https://creativecommons.org/licenses/by/4.0/

might wonder whether it is possibly to perform some kind of
a decomposition in the context of MSS enumeration?

In this paper, we initiate the study on the problem of MSS
decomposition, and provide an affirmative answer to the above
question. In particular, we propose two decomposition tech-
niques that are applicable to some kinds of formulas. The first
technique attempts to directly decompose the input formula
F into several independent components (i.e., disjoint subsets
of clauses) based on literals in the individual clauses. Due
to the decomposition, we can first identify all MSSes of the
individual components (using any existing MSS enumerator),
and then form the MSSes of F by just cheaply composing the
MSSes of the components. Note that the sum of the MSSes
in the individual components can be exponentially smaller
than the total number of MSSes of F that we obtain from
the composition. The second technique is applicable when the
input formula F is not directly decomposable. In such a case,
we first attempt to identify a suitable cut K for F , i.e., a
subset K of F such that the formula F zK can be directly
decomposed. In this case, we can divide the MSSes of F into
two groups: 1) MSSes that are subsets of F zK, and 2) the
remaining MSSes of F . The former group can be decomposed
and solved via the first decomposition technique, whereas the
latter group can be identified via any existing MSS enumerator.

Based on the two decomposition techniques, we build a
novel MSS enumeration algorithm and experimentally com-
pare it with other contemporary MSS enumeration tools. Out
of 1491 benchmarks, the best contemporary approach can
solve only 415 benchmarks, whereas our approach solves
788 benchmarks. Moreover, whereas contemporary approaches
scale only to instances with at most 108 MSSes, our approach
can handle even benchmarks with 1022 MSSes.

Outline. The rest of the paper is organized as follows.
Section II introduces preliminaries and Section III discusses
related work. The two decomposition techniques are intro-
duced in Section IV, and our MSS enumeration algorithm is
presented in Section V. Section VI provides results of our ex-
perimental evaluation. Finally, Section VII discusses practical
limitations of our approach, and Section VIII concludes.

II. PRELIMINARIES

Standard definitions for propositional (Boolean) logic are
assumed. A Boolean formula F is built over a set VarspF q
of Boolean variables. A literal l is either a variable x P

VarspF q or its negation x, and LitspF q denotes the set
of all literals used in F . A clause c “ tl1, . . . , lku is a set
of literals. A Boolean formula in conjunctive normal form
F “ tc1, . . . , cnu, shortly a CNF formula, is a set of clauses.

Given a CNF formula F , a valuation π of VarspF q is a
mapping π : VarspF q Ñ t1, 0u. The valuation π satisfies a
clause c P F iff there exists a variable x such that x P c and
πpxq “ 1 or x P c and πpxq “ 0. Moreover, π satisfies F
if it satisfies every clause c P F ; such a valuation π is called
a model of F . Finally, F is satisfiable if it has a model, and
otherwise, F is unsatisfiable.

0000

1000010000100001

110010100110100101010011

1110110110110111

1111

Fig. 1: Illustration of PpF q from the Example 1. We denote
individual subsets of F as bit-vectors, e.g., tc1, c3u is written
as 1010. The subsets with a dashed border are the unsatisfiable
subsets, and the others are satisfiable subsets. The MUSes and
MSSes are filled with a background color.

Throughout the whole paper, we use F “ tc1, . . . , cnu
to denote the input unsatisfiable CNF formula of interest.
Moreover, we write just formula instead of CNF formula.
Finally, given a set X , we write PpXq to denote the power-set
of X , and |X| to denote the cardinality of X .

Definition 1 (MSS). A set N , N Ď F , is a maximal satisfiable
subset (MSS) of F iff N is satisfiable and for every c P F zN
the set N Y tcu is unsatisfiable.

Definition 2 (MCS). A set N , N Ď F , is a minimal correction
subset (MCS) of F iff F zN is satisfiable and for every c P N
the set F zpNztcuq is unsatisfiable. Equivalently, N is an MCS
of F iff F zN is an MSS of F .

Definition 3 (MUS). A set N , N Ď F , is a minimal
unsatisfiable subset (MUS) of F iff N is unsatisfiable and
for every c P N the set Nztcu is satisfiable.

Note that the maximality (minimality) concept used here is
a set maximality (minimality), and not a maximum (minimum)
cardinality as, e.g., in the MaxSAT problem. Consequently,
there can be MSSes (MUSes) with different cardinalities,
and in general, there can be up to Op2|F |q MSSes (MUSes)
of F (intuitively, there are exponentially many pair-wise
incomparable subsets of F (w.r.t. the subset inclusion) and
all of them can be MSSes (MUSes)). Given a formula N ,
we write MSSN , MCSN , and MUSN , to denote the set of all
MSSes, MCSes, and MUSes of N , respectively. Moreover,
given a subset K of N , we write MSSKN to denote the set of
all MSSes of N that contain at least a single clause from K,
i.e., MSSKN “ tM P MSSN |M XK ‰ Hu.

Example 1. We illustrate the concepts on a simple ex-
ample, depicted in Figure 1. Assume that F “ tc1 “

tx1u, c2 “ t x1u, c3 “ tx2u, c4 “ t x1, x2uu. There are
two MUSes: MUSF “ ttc1, c2u, tc1, c3, c4uu, three MSSes:
MSSF “ ttc1, c4u, tc1, c3u, tc2, c3, c4uu, and three MCSes:
MCSF “ ttc2, c3u, tc2, c4u, tc1uu.

By the definition, MCSes are exactly the complements of
MSSes, and hence finding MSSes is the same as finding
MCSes. Both these concepts are used in the literature, since in
some situations, it is more suitable to talk about corrections,

213

and in other situations about maximal satisfiability. In the rest
of the paper, we will stick just to the notion of MSSes and
focus on the following problem:

Problem 1. Given an unsatisfiable CNF formula F , identify
the set MSSF of all MSSes of F .

When searching for MSSes of a given formula N , it is often
possible to reduce the search-space via the concepts of autark
variables and lean kernel. A set A Ď VarspNq is an autark set
for N iff there exists a valuation of A such that every clause of
N that uses a variable from A is satisfied by the valuation [42].
Note that a union of two autark sets is also an autark set, and
hence there exists a unique maximum autark set of N [31],
[32]. The lean kernel of N is the set of all clauses of N that
do not contain any variable from the maximum autark set. Let
L be the lean kernel of N . It is well-known that the set NzL
is a subset of every MSS of N (see, e.g., [14], [31], [32]).
Furthermore, the following observation holds1:

Observation 1. Let N be a formula and L its lean kernel.
Then MSSN “ tpNzLq YM |M P MSSLu.

Proof. Let A be the autarky set that corresponds to L, and let
π be a valuation of A that satisfies NzL.
Ě: Given M P MSSL, we show that pNzLq YM P MSSN .

First, note that pNzLqYM is satisfiable: since AXVarspMq “
H, we can combine π with a model π1 of M to get a model
of pNzLq YM . Second, by contradiction, assume that there
is a clause c P LzM such that pNzLqYM Ytcu has a model
φ (i.e., pNzLq YM R MSSN). However, such φ is necessarily
also a model of M Y tcu which contradicts that M P MSSL.
Ď: Given M 1 P MSSN , we show that M “ M 1zpNzLq P

MSSL. Since M 1 Ě M and M 1 is satisfiable, then M is also
satisfiable. Now, by contradiction, assume that M R MSSL,
i.e., there exists c P LzM such that M Y tcu is satisfiable
with a model φ. However, since VarspM Y tcuq X A “ H,
we can combine φ with π to get a model of M 1 Y tcu which
contradicts that M 1 P MSSN .

In other words, instead of searching for MSSes of the whole
N , we can just search for MSSes of the lean kernel of N . If
the lean kernel is relatively small, then working just with the
kernel can bring a significant runtime and memory improve-
ment.2 There have been proposed several efficient algorithms
for finding maximum autarky sets and the corresponding lean
kernels (see, e.g., [33], [40]).

III. RELATED WORK

The problem of MSS (MCS) enumeration was extensively
studied in the past decades and many various techniques for
the complete enumeration were proposed, e.g., [5], [11], [22],

1We believe that this observation is also well-known in the community,
however, we did not find any work that explicitly formulates and proves it.

2Note that we have seen many industrial benchmarks where the lean kernel
is indeed relatively small. However, there are also many industrial benchmarks
where the lean kernel is the whole formula; in such cases, the extraction of
the lean kernel is not useful.

[35], [36], [39], [44], [46]–[48], [51]. Below, we just briefly
describe the work-flow of contemporary approaches (for a
more detailed overview, please refer to [8]).

Contemporary MSS enumeration approaches gradually ex-
plore the power-set of F ; explored subsets are those whose
satisfiability is already determined by the algorithm, and
unexplored are the other ones. When finding each subsequent
MSS M , an MSS enumeration algorithm needs to ensure two
things: 1) that M is so far unexplored, and 2) that M is indeed
an MSS. Both these tasks are usually carried out via several
calls to a SAT solver, and these SAT solver queries are the
most time-consuming part of the computation. Despite the
fact that extracting just a single MSS is in FPNP

rlogs [29]
(i.e., requiring log |F | calls to a SAT solver), contemporary
MSS enumerators usually need to perform just around 1-5
SAT solver calls per MSS (see [11]). Yet, in cases where the
number of MSSes is relatively large (or even exponential), the
overall number of SAT solver calls is still too high, which
makes the complete enumeration practically intractable.

Alternatively, one can identify all MCSes (MSSes) by
exploiting the so-called minimal hitting set duality [17], [49]
between MCSes and MUSes. The duality states that every
M 1 P MCSF is a minimal hitting set of MUSF . Hence, one can
first identify the set MUSF via an MUS enumeration approach
(e.g., [3]–[5], [9], [10], [12], [18], [24], [25], [35], [37], [44],
[46], [51]), and then compute the minimal hitting sets of
MUSF to get all MCSes of F . However, due to potentially
exponentially many MUSes w.r.t. |F |, the complete MUS
enumeration is also often practically intractable.

Recently, we have initiated a study [14] on the problem of
counting the number |MSSF | of MSSes of a given formula F .
In particular, we proposed the first MSS counting technique
that does not rely on a complete explicit MSS enumeration.
Briefly, given a formula F , we defined two Boolean formulas
W and R such that |MSSF | “ MW ´MR, where MW and MR

are the number of models of the two formulas, respectively.
Therefore, we were able to determine the MSS count via two
calls to a model counting tool. Crucially, contemporary model
counters often need to explicitly identify just a fraction of the
models, i.e., the model-counter somehow decomposes the task
of identifying/counting MSSes. However, this decomposition
is performed on the level of the model counting, whereas in
this work, we propose a decomposition scheme that works
natively on the structure of MSSes.

Finally, let us note that there were proposed several single
MSS extractors, e.g. [2], [20], [23], [41], that are often used
as subroutines of contemporary MSS enumerators. Also, there
have been proposed several caching techniques, e.g. [47], [48],
that can be used to speed up MSS enumerators.

IV. DECOMPOSITION OF MSSES

In this section, we provide several observations and propose
several techniques that can be used to decompose the MSS
enumeration problem into multiple easier sub-problems. Sub-
sequently, in Section V, we utilize these techniques to build
an efficient MSS enumeration algorithm.

214

Definition 4 (Decomposition Graph). Given a formula N , the
decomposition graph of N , denoted GpNq, is an undirected
graph with:
‚ vertices N (a vertex per clause),
‚ and edges E Ď ttc1, c2u|c1, c2 P Nu such that tc1, c2u P
E iff there exists l P c1 with l P c2.

Definition 5 (Decomposition). Given a formula N , the de-
composition of N , denoted DpNq, is the set of connected
components of GpNq (i.e., c1, c2 P N belong to the same
component iff there exists a path between c1 and c2 in GpNq).

Our crucial observation here is that if |DpNq| ą 1, then
the problem of finding MSSes of N can be solved as follows.
First, we identify the MSSes of the individual components
in DpNq. Second, we compose the MSSes of the individual
components via a compositional operator \ into MSSes of the
whole N . The compositional operator and our compositional
observation is formalized as follows.

Definition 6 (\). Let Ω “ tM1, . . . ,Mpu be a collection
of sets of formulas. By \pΩq, we denote the set of formulas
\pΩq “ tM1 Y ¨ ¨ ¨ YMp |M1 PM1 ^ ¨ ¨ ¨ ^Mp PMpu.

Proposition 1. Given a formula N , it holds that MSSN “

\ptMSSC |C P DpNquq.

Proof. Let DpNq “ tC1, . . . , Cpu and assume a set M “

M1 Y ¨ ¨ ¨ YMp such that M1 P MSSC1 ^ ¨ ¨ ¨ ^Mp P MSSCp .
Ě: Assuming M P \ptMSSC |C P DpNquq, we show M P

MSSN . Let π1, . . . , πp be models of M1, . . . ,Mp, respectively.
W.l.o.g, assume that for every 1 ď k ď p and every literal l P
LitspMkq such that l R LitspMkq, it holds that πk satisfies
l. By Definition 4, there are no two distinct Mi, Mj with
clauses ci PMi, cj PMj such that there exists a literal l P ci
with l P cj . Consequently, for every two πi and πj it holds
that they agree on common variables. Hence, we can compose
π1, . . . , πp to form a model of M . To see that M is an MSS
of N , assume by contradiction a clause c P NzM such that
M Y tcu is satisfiable. However, this means that there exists
1 ď k ď p such that c P Ck and MkYtcu is satisfiable, which
contradicts that Mk is an MSS of Ck.
Ď: Assuming M P MSSN , we show M P \ptMSSC |C P

DpNquq. Since M is satisfiable, then all individual
M1, . . . ,Mp are also satisfiable. Now, by contradiction, as-
sume an Mi that is not an MSS of Ci, i.e., there exists
a clause c P CizMi such that Mi Y tcu has a model
πi. Furthermore, let π1, . . . , πi´1, πi`1, . . . πp be models of
M1, . . . ,Mi´1,Mi`1, . . .Mp. W.l.o.g, assume that for every
1 ď k ď p and every literal l P LitspCkq such that
 l R LitspCkq, it holds that πk satisfies l. Same as in Ě:
above, we can compose π1, . . . , πp to form a model of MYtcu
which contradicts that M is an MSS of N .

Example 2. Let N “ tc1 “ tx1u, c2 “ t x1u, c3 “ tx2u,
c4 “ t x2u, c5 “ t x1, x2u, c6 “ ty1u, c7 “ t y1u, c8 “
ty2u, c9 “ t y1, y2uu. Here, DpNq “ tC1, C2u, where
C1 “ tc1, c2, c3, c4, c5u and C2 “ tc6, c7, c8, c9u. MSSC1 “

ttc2, c3, c5u, tc2, c4, c5u, tc1, c4, c5u, tc1, c3uu and MSSC2
“

ttc7, c8, c9u, tc6, c8u, tc6, c9uu. Thus, the whole N has 12
MSSes.

As witnessed in Example 2, due to Proposition 1, we
can substantially reduce the number of MSSes that need
to be explicitly identified to obtain the whole set MSSN .
Theoretically, it might be even the case that we need to
explicitly identify just logarithmically many MSSes w.r.t.
|MSSN | (assume that N contains log2 |MSSN | components with
2 MSSes per component). However, from the practical point
of view, how often is it the case that we can actually achieve
such a reduction? And, moreover, what if |DpNq| “ 1, i.e.,
when Proposition 1 cannot be applied? Can we still do some
decomposition when |DpNq| “ 1? We provide an affirmative
answer to this question by finding decomposition cuts for N .

Definition 7 (decomposition cut). Given a formula N such
that |DpNq| “ 1, a set K Ĺ N is a decomposition cut for N
iff |DpNzKq| ě 2.

Note that decomposition cuts for a formula N correspond
to graph cuts in the decomposition graph GpNq. Our crucial
observation about decomposition cuts is stated in Proposition 2
and Corollary 1.

Proposition 2. Let N be a formula and K its subset. Then
MSSN “ MSSKN Y tM P MSSNzK | @M

1 P MSSKN .M ĆM 1u.

Proof. Let us by MSSKN denote the set of all MSSes of N that
do not contain any clause from K. Clearly, MSSM “ MSSKN Y

MSSKN . To prove Proposition 2, we show that MSSKN “ tM P

MSSNzK | @M
1 P MSSKN .M ĆM 1u.

Ď: Assume M P MSSKN , hence for all c P pNzMq the
set M Y tcu is unsatisfiable, and hence M P MSSpNzKq.
Furthermore, since M is an MSS of N , there cannot exist
any M 1 P MSSKN with M ĹM 1.
Ě: Given M P MSSNzK such that @M 1 P MSSKN .M Ć M 1,

we show M P MSSKN . By contradiction, assume that M R

MSSKN , i.e., there exists c P NzM such that M Y tcu is
satisfiable. Since M P MSSNzK , then c P K, however, that
means that there exists M 1 P MSSKN such that M 1 ĚM Ytcu.

Corollary 1. Let N be a formula and K Ĺ N a decomposition
cut for N . Then MSSN “ MSSKN Y tM P \ptMSSC |C P

DpNzKquq | @M 1 P MSSKN .M ĆM 1u.

Proof. A direct consequence of Propositions 1 and 2.

Finally, let us note that graph structures similar to the de-
composition graph have been already used in several MUS and
MSS related studies (see e.g. the work on model rotation [54]
or MUS counting [13], [15]).

V. DECOMPOSITION-BASED MSS ENUMERATION

In this section, we present a novel MSS enumeration al-
gorithm that is based on the MSS decomposition observations
introduced in the previous section. Moreover, we exploit the
concept of the lean kernel which was introduced in Section II.

215

A. Main Procedure

The main procedure of our algorithm is shown in Algo-
rithm 1. The input is a formula F and the output is the set
MSSF of all MSSes F . The computation starts by calling a
procedure getKernelpF q that identifies the lean kernel L of
F . Based on Observation 1, we can now restrict ourselves
just to searching for MSSes of L and then enlarge the MSSes
of L to MSSes of the whole F . To find MSSes of L,
we first use a procedure getComponentspLq that determines
the decomposition DpLq of L. Subsequently, we iteratively
identify all MSSes of the individual components. In particular,
each component N P DpLq is first checked for satisfiability
via a SAT solver (denoted isSATpNq). If N is satisfiable, then
N is the only MSS of N . Otherwise, we use the procedure
processComponentpN q to identify all MSSes of N . We store
the sets of MSSes of individual components into an auxiliary
set LMSSparts . After processing all the components, we
exploit Proposition 1 and build the MSSes MSSL of L by
composing the MSSes of the individual components (stored
in LMSSparts). Finally, based on Observation 1, we form the
set MSSF of all MSSes of F by adding the complement F zL
of the lean kernel L to the individual MSSes of L.

To implement the procedure getKernelpF q that identifies a
lean kernel of a given formula F , we employ an approach pro-
posed in [40]. To implement the procedure getComponentspLq
that finds the decomposition DpLq of L, we build the decom-
position graph GpLq and identify its connected components
(any graph algorithm for finding connected components can be
used). Finally, the procedure processComponentpN q is more
involved and it is described in the following subsection.

B. Processing a Component

The procedure processComponentpN q (Algorithm 2) starts
by computing the lean kernel I of N . Then, we identify
a decomposition cut K for I via a procedure findCutpIq.
Subsequently, following Corollary 1, we identify all MSSes
of I .

In particular, first, we employ an existing MSS enumeration
algorithm, denoted getMSSespI,Kq, to identify the set MSSKI
of all MSSes of I that contain at least a single clause from
K. Subsequently, we use the procedure getComponentspIzKq
to obtain the decomposition DpIzKq of IzK. Then, we
iteratively identify all MSSes of individual components P P

DpIzKq and store the sets of the MSSes into an auxiliary set
IKMSSparts . Once we process all the components, we can
form the MSSes of IzK as \pIKMSSpartsq (Proposition 1).
Consequently, following Corollary 1, we can obtain MSSI by
combining MSSKI and \pIKMSSpartsq (line 8). Finally, to
obtain the MSSes of the input set N , we enlarge individual
MSSes from MSSI by the set NzI (Observation 1).

The procedure findCutpIq is described in the following
subsection. To conclude this subsection, we explain how to
implement the procedure getMSSespA,Bq that identifies all
MSS of a formula A that contain at least a single clause from a
set B. When A “ B (i.e., we look for all MSSes of A (line 7)),

we can implement getMSSespA,Bq by an arbitrary existing
MSS enumeration algorithm. In the other case, when B Ĺ A,
the situation is more complicated. We are not aware of any
existing MSS enumeration tool that would directly allow the
user to specify sets A and B and then identify the MSSes of
A that contain at least a single clause from B. However, there
exist several MSS enumeration algorithms, e.g., [11], [39], that
allow the user to specify a subset B1 Ĺ A of hard clauses and
then identify all MSSes of A that contain all clauses in B1.
We observe that we can reduce the former task to the latter:

Proposition 3. Let A and B be formulas such that B Ĺ A.
Furthermore, let A1 “ A Y tcBu where cB “

Ť

bPB b. Then
MSSBA “ tMztcBu |M P MSS

tcBu
A1 u.

Proof. Ď: If MztcBu P MSSBA , then there exists a clause c P
M X B, and since MztcBu is satisfiable and c Ď cB , then
also M is satisfiable. Now, by contradiction, assume that M
is not an MSS of MSSA, i.e., there exists d P AzM such that
M Y tdu is satisfiable, hence pM Y tduqztcBu is satisfiable
(which contradicts that MztcBu P MSSBA).
Ě: If M P MSS

tcBu
A1 , then there necessarily exists a clause

c Ď cB such that c P B X M . Furthermore, since M is
satisfiable, then MztcBu is also satisfiable. Now, by contradic-
tion, assume that MztcBu R MSSBA , i.e., there exists a clause
d P AzpMztcBuq such that pMztcBuq Y tdu has a model π.
Since c Ď cB , then π also satisfies M Ytdu which contradicts
that M P MSS

tcBu
A1 .

Informally, the task of finding MSSes of A that contain at
least a single clause from B can be reduced to the task of
finding MSSes of A1 that contain the hard clause cB . Namely,
in our implementation, we employ the contemporary MSS
enumeration tool RIME [11] to carry out getMSSespA,Bq.

Finally, let us note that instead of using an external MSS
enumerator to implement getMSSespA,Bq, we could possibly
make a recursive call of processComponentp. . .q (with some
minor modifications) to get the MSSes. That is, we could
recursively decompose the input formula into smaller and
smaller parts. The reason why we do not do that is explained
later in Observation 2. Briefly, every usable cut requires
existence of two disjoint MUSes in the formula, and based
on our empirical experience, industrial benchmarks usually do
not contain many disjoint MUSes.

C. Finding a Suitable Decomposition Cut

Recall that finding a decomposition cut K for I with
|DpIq| “ 1 equals to finding a graph cut in the decomposition
graph GpIq. Hence, we could use any existing algorithm for
finding cuts in a graph to find K. However, here we need to
find a suitable decomposition cut. In the following, we will
first describe three properties of a suitable decomposition cut:
Minimality, Balance, and Necessity. Subsequently, we describe
how to find a decomposition cut with such properties.

For the ease of the presentation, assume that we identify a
decomposition cut K for I such that |DpIzKq| “ 2, and let us

216

Algorithm 1: DecExactpF q

1 LÐ getKernelpF q
2 DpLq Ð getComponentspLq
3 LMSSparts ÐH

4 for N P DpLq do
5 if isSATpNq then
6 LMSSparts Ð LMSSparts Y ttNuu
7 else
8 LMSSparts Ð

LMSSparts Y tprocessComponentpN qu

9 MSSL Ð \pLMSSpartsq
10 return tpF zLq YM |M P MSSLu

Algorithm 2: processComponentpN q

1 I Ð getKernelpNq
2 K Ð findCutpIq
3 MSSKI Ð getMSSespI,Kq
4 DpIzKq Ð getComponentspIzKq
5 IKMSSparts ÐH

6 for P P DpIzKq do
7 IKMSSparts Ð IKMSSparts YtgetMSSespP, P qu

8 MSSI Ð MSSKI Y tM P \pIKMSSpartsq | @M 1 P

MSSKI .M ĆM 1u

9 return tpNzIq YM |M P MSSIu

by C1 and C2 denote the two components of DpIzKq. Hence,
in Algorithm 2, it holds that IKMSSparts “ tMSSC1

, MSSC2
u.

Minimality Recall that in Algorithm 2, line 8, we build
the set MSSI as MSSKI Y MSSKI , where MSSKI “ tM P

\ptMSSC1 , MSSC2uq | @M
1 P MSSKI .M Ć M 1u. Note that

whereas the set MSSKI is computed via an external explicit
MSS enumerator, i.e., relatively expensively, the set MSSKI
is computed via the decomposition, i.e., relatively cheaply.
Consequently, we should attempt to find a decomposition cut
K such that |MSSKI | is relatively small (compared to |MSSKI |).
Now, observe that since MSSKI contains the MSSes of I that
include at least a single clause from K, it holds that the smaller
|K| is, the smaller is the maximum possible cardinality of
MSSKI . Consequently, we should minimize |K|.

Balance By Proposition 1, |\ptMSSC1
, MSSC2

uq| “ |MSSC1
|ˆ

|MSSC2
|. Observe that to maximize |\ptMSSC1

, MSSC2
uq| while

minimizing the number |MSSC1
| ` |MSSC2

| of MSSes that are
needed to build \ptMSSC1 , MSSC2uq, we should ideally find
a decomposition cut K such that |MSSC1 | and |MSSC2 | are
roughly equal. However, since we do not know in advance
what are the MSSes of I , we cannot (cheaply) find a decom-
position cut that balances |MSSC1

| and |MSSC2
|. Instead, we

will just try to find a decomposition cut such that |C1| and
|C2| are roughly equal (and thus the maximal possible number
of MSSes in C1 and C2 is roughly equal).

Necessity Note in order to ensure that |\ptMSSC1 , MSSC2uq| ą

|MSSC1 | ` |MSSC2 |, it has to hold that |MSSC1 | ą 1 and
|MSSC2

| ą 1. Furthermore, observe that:

Observation 2. Given a formula X , it holds that |MSSX | ą 1
iff X is unsatisfiable.

Therefore, for a suitable decomposition cut K, it should
hold that both the components C1 and C2 are unsatisfiable.
All the above three conditions can be straightforwardly gen-
eralized for a cut K that yields more than two components.

To find a decomposition cut K with the above three proper-
ties, we build a weighted partial MaxSAT (WPM) [34] instance
and solve it with a MaxSAT solver. In WPM, we are given a
tuple pH, S, w : SÑ N`q, where H is a set of hard clauses, S
is a set of soft clauses, and w is a weight function that assigns
to every soft clause a positive weight. A solution of the WPM
is a valuation π of VarspHY Sq such that π satisfies all hard
clauses and maximizes the sum of the weights of satisfied soft
clauses.

In our case, we build H Y S using two sets of Boolean
variables: P “ tp1, . . . , p|I|u and Q “ tq1, . . . , q|I|u. Note
that every valuation π of P Y Q corresponds to the subsets
πP,I and πQ,I of I defined as πP,I “ tci P I |πppiq “ 1u
and πQ,I “ tci P I |πpqiq “ 1u. Furthermore, we write πK
to denote the set IzpπP,I YπQ,Iq. We define a WPM instance
pH, S, w : S Ñ N`q in such a way that for every one of its
solutions π it holds that: 1) πK is a decomposition cut for
I , and 2) the clauses in πP,I and πQ,I are disconnected in
GpIzπKq, i.e., they witness that πK is a decomposition cut for
I . To ease the presentation, we express H and S below as plain
propositional formulas using the standard Boolean connectives
of conjunction p^q, disjunction (_) and implication (Ñ). One
can use the Tseitin transformation to convert the formulas to
sets of clauses.

The formula (hard clauses) H is divided into three sub-
formulas, H “ cut ^ unsat ^ minimal. The formula cut

(Equation 1) expresses that πK is a decomposition cut, and
encodes this property via two sub-formulas: disj and discn.
The formula disj expresses that πP,I X πQ,I “ H, whereas
discn encodes that there are no two clauses ci P πP,I and
cj P πQ,I such that there exists a literal l P ci with l P cj
(i.e. that ci and cj are connected in GpπKq). Consequently,
the clauses from πP,I and πQ,I do not belong to a same
component of GpIzπKq, and hence, by Definition 7, πK is
a decomposition cut for I . Note that cut does not enforce
that |DpIzπKq| “ 2, i.e., πQ,I and/or πP,I can be fragmented
into multiple components in DpIzπKq.

cut “ disj^ discn, where

disj “ p
ľ

ciPI

 pi _ qiq, and

discn “
ľ

ciPI

`

ľ

lPci

`

ľ

cjPtcjPI | lPcju

 pi _ qj
˘˘

(1)

The formula unsat (Equation 2) attempts to encode that
both πP,I and πQ,I are unsatisfiable, i.e., to fulfil the Necessity

217

condition. To ensure this property, we first attempt to identify
a pair of disjoint MUSes of I , denoted by M1 and M2.
Equation 2 expresses that πP,I Ě M1 and πQ,I Ě M2, and
hence πP,I and πQ,I are unsatisfiable. To find M1 and M2,
we enumerate a sequence X1, X2, ... of MUSes of I using an
MUS enumerator, and for each MUS Xz we check whether
IzXz is unsatisfiable. If there is such an MUS Xz , we use
Xz as M1, and we shrink IzXz to the MUS M2 via a single
MUS extractor. We enumerate only a subset of MUSes of I
(limited via a user-definable time limit), and hence, we might
fail to identify disjoint MUSes even if there are some. Also,
it might be the case that I does not contain disjoint MUSes.
In such cases, we set unsat to 1 (True), i.e, we do not ensure
satisfaction of the Necessity condition.

unsat “ p
ľ

ciPM1

piq ^ p
ľ

ciPM2

qiq (2)

The formula minimal (Equation 3) targets the Minimality
condition. We express that for every c P πK the set πKztcu
is not a decomposition cut for I . Note that the minimality is
the minimality in the subset inclusion sense, and not in the
cardinality sense. The formula states that every clause c P πK
is connected (in GpIzπKq) to a clause in πP,I and to a clause
in πQ,I . Consequently, adding c to πP,I (πQ,I), i.e., flipping
the assignment πppiq (πpqiq) to 1, would violate the formula
discn.

minimal “
ľ

ciPI

p pi ^ qiq Ñ

`

p
ł

lPci

p
ł

cjPtcjPI | lu

piqq ^ p
ł

lPci

p
ł

cjPtcjPI | lu

qiqq
˘

(3)

Finally, the soft formula (clauses) S “ S1^S2 is divided into
two sub-formulas. S1 (Equation 4) expresses that every c P I
belongs either to πP,I or to πQ,I , i.e., that πK is empty. The
weight assigned to the clauses of S1 is 3 ¨ |I|, which ensures
that every solution π of the WPM minimizes |πK |. Hence, S1
further strengthens the Minimality condition. S2 (Equation 5)
attempts to fulfil the Balance condition. In particular, for every
ci P I , we add two soft clauses, pi and qi, and with an equal
probability (0.5) we randomly set the weights wppiq “ 1 and
wpqiq “ 2 or vice versa. Intuitively, the formula disj enforces
that at most one of pi and qi holds, and the weights for S2
attempt to randomly push ci either towards πP,I or πQ,I .

S1 “
ľ

ciPI

ppi _ qiq (4)

S2 “ p
ľ

ciPI

piq ^ p
ľ

ciPI

qiq (5)

Finally, let us note even if by solving the WPM we obtain
a decomposition cut K such that | \ ptMSSC |C P DpIzKquq|
is very large, there is no guarantee that |tM P \ptMSSC |C P
DpIzKquq | @M 1 P MSSKI .M Ć M 1u| ą 0, i.e., the decom-
position might not be helpful. Therefore, the three conditions

on finding a suitable decomposition cut should be seen as
heuristics.

D. Towards Partial MSS Enumeration

Few words are in order concerning the practical tractability
of running Algorithm 2. As discussed above, the lean kernel
I of the input formula N can possibly contain exponentially
many MSSes. Hence the MSS enumeration might be beyond
the reach of contemporary MSS enumerators (which usually
perform around 1-5 SAT solver calls per MSS [8]). To cope
with this intractability, we decompose I into several compo-
nents, and we hope that the MSSes count for the individual
components will be relatively small and thus tractable for a
contemporary MSS enumerator. However, note that if there
is a component which is still intractable for a contemporary
enumerator (calls of getMSSesp. . .q, lines 3 and 7), then
Algorithm 2 does not terminate in a reasonable time.

Here, we propose a slight modification of Algorithm 2
that deals with such an intractability. When running
getMSSespA,Bq, we instruct the underlying MSS enumerator
to return at most k MSSes of A, where k can be specified by
the user of our algorithm. Consequently, if k is reasonably
small, the calls of getMSSespA,Bq become tractable and
Algorithm 2 terminates. After such a modification, the sets
MSSKI and IKMSSparts might be incomplete, and thus the set
MSSI formed on line 8 can be also incomplete (and hence also
the overall set of MSSes returned by Algorithm 1). However,
besides the incompleteness, the set MSSI might not be sound,
i.e., it can contain elements that are not MSSes of I .

In particular, we add to MSSI every M P \pIKMSSpartsq
such that @M 1 P MSSKI .M Ć M 1. Provided that MSSKI is
complete, passing the check @M 1 P MSSKI .M Ć M 1 ensures
that M is an MSS of I (Proposition 2). However, if MSSKI is
incomplete, then 1) every M that does not pass the check is not
an MSS of I , and 2) every M that does pass the check can be
an MSS of I . Thus, in the case when MSSKI is incomplete, we
first check for every M whether it satisfies @M 1 P MSSKI .M Ć

M 1, and if yes, then we also verify that M is an MSS of
I using a SAT solver. Such a verification can be performed
using a single call of a SAT solver [14] (we check whether
M ^ p

Ž

cPIzM cq is satisfiable).

VI. EXPERIMENTAL EVALUATION

We have implemented our novel approach for MSS/MCS
enumeration in a python-based tool using the MSS enumerator
RIME [11] to implement the procedure getMSSes, the library
PySAT [27] for maintaining CNF formulas, Minisat [19]
(accessed via PySAT) as a SAT solver, and UWrMaxSat [45]
as a MaxSAT solver. The tool is available at:

https://github.com/jar-ben/MSSDecomposition
Here we provide results of our experimental evaluation.

We write DecExact to denote the complete MSS enumeration
approach as described in Algorithms 1 and 2, and DecApprox
to denote the partial MSS enumeration version as described
in Section V-D. For DecApprox, we set the parameter k to
100000, i.e., every call of getMSSes identifies at most 100000

218

https://github.com/jar-ben/MSSDecomposition

MSSes. Moreover, we evaluate three contemporary MSS/MCS
enumeration algorithms: MARCO3 [36], FLINT4 [44], and
RIME5 [11]. In all cases, we used the original implementations
of the algorithms with their best (default) settings.

As benchmarks, we used a collection of 1491 Boolean CNF
formulas that were used in several recent MSS or MUS related
studies. Out of the 1491 formulas, 1200 instances6 are ran-
domly generated formulas that were first used in [38], and the
remaining 291 benchmarks were taken from the MUS track of
the SAT Competition 20217. The former benchmarks contain
from 100 to 1000 clauses, use from 50 to 996 variables, and
have from 2 to at least 1022 MSSes (the highest MSS count
revealed in our evaluation). The latter benchmarks contain
from 70 to 16 million clauses, use from 26 to 4.4 million
variables, and have from 2 to at least 108 MSSes. We run
all experiments on an AMD EPYC 7371 16-Core Processor,
1 TB memory machine running Debian Linux. We used 20
GB memory limit and 3600 seconds (1 hour) time limit per
benchmark.

A. Research Questions

We focus on answering the following research questions.
RQ1: Our first research question simply asks: Can our novel

MSS enumeration technique complete the enumeration for
more benchmarks than the contemporary approaches?

RQ2: As discussed above, the proposed MSS decomposition
technique can, in a theory, exponentially reduce the num-
ber of MSSes that need to be explicitly identified. Hence,
our novel approach might be able to handle benchmarks
with a very large number of MSSes. Our second RQ is
thus: what is the scalability of the evaluated algorithms
w.r.t. the number of MSSes in the individual benchmarks?

RQ3: Finally, we also examine the manifestation of the MSS
decomposition in our approach. Our third RQ is: what
is the ratio between the number of explicitly identified
MSSes and the total number of identified MSSes for the
individual benchmarks.

B. RQ1: Number of Solved Benchmarks

In Figure 2, we show the number of benchmarks for which
individual algorithms finished their computation (within the
time limit). In particular, a point with coordinate rx, ys means
that there are x benchmarks that were finished by the algorithm
in at most y seconds. FLINT, RIME, and MARCO were able
to identify all MSSes only for 364, 376, and 415 bench-
marks, respectively. On the other hand, DecExact identified all
MSSes for 788 benchmarks, i.e., solving two times as many
benchmarks as its competitors. Finally, DecApprox finished the
computation for 1240 benchmarks, however, in many cases, it
identified only a portion of all MSSes (due to the limit of

3https://sun.iwu.edu/„mliffito/marco/
4The implementation of FLINT was kindly provided to us by its author,

Nina Narodytska.
5https://github.com/jar-ben/rime
6https://github.com/luojie-sklsde/MUS Random Benchmarks
7http://www.satcompetition.org/

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 200 400 600 800 1000 1200el
ap

se
d

tim
e

in
 s

ec
on

ds

solved benchmarks

FLINT
MARCO

RIME
DecExact

DecApprox

Fig. 2: Number of solved benchmarks.

 1
 100000
 1x1010

 1x1015

 1x1020

 1x1025

 200 400 600 800 1000 1200 1400

nu
m

be
r

of
 id

en
tif

ie
d

M
SS

es
number of benchmarks

FLINT
MARCO

RIME
DecExact

DecApprox

Fig. 3: Scalability w.r.t. the MSS Count

100000 MSS per getMSSes call). In particular, DecApprox
identified all MSSes for 742 benchmarks, and at least some
MSSes for 498 benchmarks.

We observed that the tractability of the benchmarks highly
correlates with their size (number of clauses). In particular,
there are only 16 benchmarks that contain more than 10000
clauses and were solved by at least one of the tools (excluding
the incomplete tool DecApprox). Moreover, FLINT, RIME,
and MARCO scale better w.r.t. this criterion than DecExact
since there are 10 benchmarks that contain more than 500000
clauses (but only up to 20000 MSSes) and were solved by
these tools. On the other hand, the largest benchmark solved
by DecExact contains only 13236 clauses. We further discuss
this bottleneck of our approach in Section VII.

C. RQ2: Scalability W.R.T. the MSS Count

In Figure 3, we compare the scalability of the evaluated
algorithms w.r.t. the number of MSSes in the input formulas. In
particular, a point with coordinates rx, ys denotes that there are
x benchmarks where the corresponding algorithm identified
fewer than y MSSes. You can see that MARCO and RIME
were able to identify at most only around 106 MSSes. FLINT
performed slightly better w.r.t. this criterion since for some
benchmarks, it identified around 108 MSSes. On contrary, both
DecExact and DecApprox were able to identify up to 1022

MSSes in a benchmark. This witnesses that the use our MSS
decomposition techniques allow us to substantially improve
the scalability of existing approaches.

219

https://sun.iwu.edu/~mliffito/marco/
https://github.com/jar-ben/rime
https://github.com/luojie-sklsde/MUS_Random_Benchmarks
http://www.satcompetition.org/

 1
 100000
 1x1010
 1x1015
 1x1020
 1x1025

 200 400 600 800 1000 1200

tc
/e

x

number of benchmarks

DecExact
DecApprox

Fig. 4: The ratio between the total number of MSSes and the
number of explicitly identified MSSes.

D. RQ3: Number of Explicitly Identified MSSes

Finally, the third research question concerns just our two
algorithms, DecExact and DecApprox. Given a formula F , we
examine the ratio tc

ex , where tc is the total number of identified
MSSes of F (i.e., |MSSF | and an under-approximation of
|MSSF | for DecExact and DecApprox, respectively) and ex is
the number of MSSes identified via the calls of getMSSes. A
point with coordinates rx, ys in Figure 4 denotes that for the
corresponding algorithm, there are x benchmarks where the
ratio was at least y. Note that we show the ratio only for the
788 and 1240 benchmarks where DecExact and DecApprox
finished the computation.

Recall that getMSSes is implemented via an explicit MSS
enumerator, i.e., it identifies individual MSSes one by one
using sequence of SAT solver calls, i.e., identification of these
MSSes is the most expensive part of our algorithm(s). On the
other hand, the tc MSSes are identified extremely cheaply
since they are built by just composing the MSSes identified
via getMSSes. Therefore, the ratio tc

ex actually represents the
(maximum possible) speed-up of the MSS enumeration when
using DecExact and DecApprox compared to using the explicit
enumerators FLINT, MARCO, and RIME.

VII. LIMITATIONS AND PRACTICAL APPLICABILITY

Even though our novel approaches, DecExact and
DecApprox, solved in our evaluation substantially more bench-
marks than contemporary MSS enumerators, the practical
efficiency of our approaches remains to be unclear. Here, we
discuss two main bottlenecks of our approaches and propose
ways how to deal with them.

The first bottleneck of our MSS decomposition technique
is its reliance on a MaxSAT solver (which is used to find a
suitable cut). The size of the formula cut (Equation 1) depends
on the number |F | of clauses in the input formula F . Hence,
for larger input formulas F , solving the MaxSAT problem for
cut easily becomes practically intractable. A possible way
how to deal with this limitation is to use just an approximate
MaxSAT solver. In particular, recall that our approach for
finding a suitable cut via the formula cut is just a heuristic,
i.e., there is no guarantee that it will indeed find a suitable
cut. Using an approximate MaxSAT solver instead of an exact
one might increase the scalability of our approach w.r.t. |F |.

The second bottleneck of our MSS decomposition technique
was stated in Observation 2. In particular, recall there exists

a usable cut for a given formula F only if F contains a
disjoint pair of MUSes. Based on our empirical experience,
there are many applications where the input formula does
not contain a disjoint pair of MUSes and hence our approach
cannot be applied. Yet, we have also witnessed many industrial
benchmarks where disjoint MUSes naturally appear (for in-
stance, there is a SAT encoding of the graph coloring problem
where disjoint MUSes correspond to disjoint non-colorable
subgraphs). Hence, one might initially check whether the input
formula F contains disjoint MUSes and employ our approach
only if it is the case.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we focused on the problem of enumeration
of Maximal Satisfiable Subsets of a given CNF formula F .
Despite the fact that the enumeration problem was extensively
studied in the past decades, contemporary enumerators are still
often unable to finish the computation within a reasonable time
limit. The problem is that there can be up to exponentially
many MSSes w.r.t. |F | and contemporary approaches usually
need to perform a sequence of SAT solver queries to obtain
individual MSSes. To combat the combinatorial explosion, we
proposed a novel MSS enumeration approach that decomposes
F into several smaller sub-formulas, identifies their MSSes,
and then compose the MSSes of the sub-formulas to form
MSSes of the whole F . Our experimental evaluation witnessed
that the decomposition in some cases allows us to identify ex-
ponentially more MSSes than other contemporary approaches.
Yet, as described in Section VII, the class of benchmarks
where our approach can be applied is limited.

We see several directions for future work. A crucial in-
gredient of our algorithm is the ability to identify a suit-
able decomposition cut K. The approach for finding K we
proposed seems to be quite good, i.e., indeed allowing for
a decomposition. However, we believe that there might be
even better approaches how to find a suitable decomposition
cut. Another direction for future work would be to improve
upon the partial MSS enumeration approach (DecApprox). In
particular, instead of limiting the number of MSSes returned
by getMSSes, one might try to either interleave or parallelize
the computation of MSSes of individual components and
compose the MSSes on-the-fly. Finally, since our approach
is applicable only to a specific class of benchmarks, it might
be worth building a portfolio approach.

ACKNOWLEDGEMENT

This research was funded in part by the Deutsche
Forschungsgemeinschaft project 389792660-TRR 248 and by
the European Research Council under the Grant Agreement
610150 (ERC Synergy Grant ImPACT).

REFERENCES

[1] M. Fareed Arif, Carlos Mencı́a, and João Marques-Silva. Efficient axiom
pinpointing with EL2MCS. In KI, volume 9324 of LNCS, pages 225–
233. Springer, 2015.

[2] Fahiem Bacchus, Jessica Davies, Maria Tsimpoukelli, and George
Katsirelos. Relaxation search: A simple way of managing optional
clauses. In AAAI, pages 835–841. AAAI Press, 2014.

220

[3] Fahiem Bacchus and George Katsirelos. Using minimal correction sets
to more efficiently compute minimal unsatisfiable sets. In CAV (2),
volume 9207 of LNCS, pages 70–86. Springer, 2015.

[4] Fahiem Bacchus and George Katsirelos. Finding a collection of MUSes
incrementally. In CPAIOR, volume 9676 of LNCS, pages 35–44.
Springer, 2016.

[5] James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable
subsets of constraints using hitting set dualization. In PADL, pages
174–186. Springer, 2005.

[6] Roberto J Bayardo Jr and Joseph Daniel Pehoushek. Counting models
using connected components. In AAAI/IAAI, pages 157–162, 2000.

[7] Rachel Ben-Eliyahu and Rina Dechter. On computing minimal models.
In AAAI, pages 2–8. AAAI Press / The MIT Press, 1993.

[8] Jaroslav Bendı́k. Minimal Sets over a Monotone Predicate: Enumeration
and Counting. PhD thesis, Masaryk University, 2021.

[9] Jaroslav Bendı́k, Nikola Beneš, Ivana Černá, and Jiřı́ Barnat. Tunable
online MUS/MSS enumeration. In FSTTCS, volume 65 of LIPIcs, pages
50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[10] Jaroslav Bendı́k and Ivana Černá. Replication-guided enumeration of
minimal unsatisfiable subsets. In CP, volume 12333 of LNCS, pages
37–54. Springer, 2020.

[11] Jaroslav Bendı́k and Ivana Černá. Rotation based MSS/MCS enumera-
tion. In LPAR, volume 73 of EPiC Series in Computing, pages 120–137.
EasyChair, 2020.

[12] Jaroslav Bendı́k, Ivana Černá, and Nikola Beneš. Recursive online
enumeration of all minimal unsatisfiable subsets. In ATVA, volume
11138 of LNCS, pages 143–159. Springer, 2018.

[13] Jaroslav Bendı́k and Kuldeep S. Meel. Approximate counting of minimal
unsatisfiable subsets. In CAV (1), volume 12224 of LNCS, pages 439–
462. Springer, 2020.

[14] Jaroslav Bendı́k and Kuldeep S. Meel. Counting maximal satisfiable
subsets. In AAAI, pages 3651–3660. AAAI Press, 2021.

[15] Jaroslav Bendı́k and Kuldeep S Meel. Counting minimal unsatisfiable
subsets. In CAV, pages 313–336. Springer, 2021.

[16] Philippe Besnard, Éric Grégoire, and Jean-Marie JM Lagniez. On
computing maximal subsets of clauses that must be satisfiable with
possibly mutually-contradictory assumptive contexts. In Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[17] Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artif.
Intell., 32(1):97–130, 1987.

[18] Maria J. Garcı́a de la Banda, Peter J. Stuckey, and Jeremy Wazny.
Finding all minimal unsatisfiable subsets. In PPDP, pages 32–43. ACM,
2003.

[19] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT,
volume 2919 of LNCS, pages 502–518. Springer, 2003.

[20] Alexander Felfernig, Monika Schubert, and Christoph Zehentner. An
efficient diagnosis algorithm for inconsistent constraint sets. AI EDAM,
26(1):53–62, 2012.

[21] Eduardo L. Fermé and Sven Ove Hansson. AGM 25 years - twenty-five
years of research in belief change. J. Philos. Log., 40(2):295–331, 2011.

[22] Éric Grégoire, Yacine Izza, and Jean-Marie Lagniez. Boosting mcses
enumeration. In IJCAI, pages 1309–1315. ijcai.org, 2018.

[23] Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure. An exper-
imentally efficient method for (MSS, CoMSS) partitioning. In AAAI,
pages 2666–2673. AAAI Press, 2014.

[24] Benjamin Han and Shie-Jue Lee. Deriving minimal conflict sets by
cs-trees with mark set in diagnosis from first principles. IEEE Trans.
Systems, Man, and Cybernetics, Part B, 29(2):281–286, 1999.

[25] Aimin Hou. A theory of measurement in diagnosis from first principles.
AI, 65(2):281–328, 1994.

[26] Anthony Hunter and Sébastien Konieczny. Measuring inconsistency
through minimal inconsistent sets. In KR, pages 358–366. AAAI Press,
2008.

[27] Alexey Ignatiev, António Morgado, and João Marques-Silva. Pysat: A
python toolkit for prototyping with SAT oracles. In SAT, volume 10929
of LNCS, pages 428–437. Springer, 2018.

[28] Saı̈d Jabbour, João Marques-Silva, Lakhdar Sais, and Yakoub Salhi.
Enumerating prime implicants of propositional formulae in conjunctive
normal form. In JELIA, volume 8761 of LNCS, pages 152–165. Springer,
2014.

[29] Mikoláš Janota and Joao Marques-Silva. On the query complexity of
selecting minimal sets for monotone predicates. Artificial Intelligence,
233:73–83, 2016.

[30] Manu Jose and Rupak Majumdar. Cause clue clauses: error localization
using maximum satisfiability. In PLDI, pages 437–446. ACM, 2011.

[31] Hans Kleine Büning and Oliver Kullmann. Minimal unsatisfiability and
autarkies. In Handbook of Satisfiability, volume 185 of FAIA, pages
339–401. IOS Press, 2009.

[32] Oliver Kullmann. Investigations on autark assignments. Discrete Applied
Mathematics, 107(1-3):99–137, 2000.

[33] Oliver Kullmann and João Marques-Silva. Computing maximal autarkies
with few and simple oracle queries. In SAT, volume 9340 of LNCS,
pages 138–155. Springer, 2015.

[34] Chu Min Li and Felip Manyà. Maxsat, hard and soft constraints.
In Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 613–631. IOS Press, 2009.

[35] Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Finding
multiple MUSes quickly. In CPAIOR, volume 7874 of LNCS, pages
160–175. Springer, 2013.

[36] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and João Marques-
Silva. Fast, flexible MUS enumeration. Constraints, 21(2):223–250,
2016.

[37] Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing
minimal unsatisfiable subsets of constraints. JAR, 40(1):1–33, 2008.

[38] Shaofan Liu and Jie Luo. FMUS2: An efficient algorithm to compute
minimal unsatisfiable subsets. In AISC, volume 11110 of LNCS, pages
104–118. Springer, 2018.

[39] João Marques-Silva, Federico Heras, Mikolás Janota, Alessandro Previti,
and Anton Belov. On computing minimal correction subsets. In IJCAI,
pages 615–622. IJCAI/AAAI, 2013.

[40] João Marques-Silva, Alexey Ignatiev, António Morgado, Vasco M.
Manquinho, and Inês Lynce. Efficient autarkies. In ECAI, volume 263
of FAIA, pages 603–608. IOS Press, 2014.

[41] Carlos Mencı́a, Alessandro Previti, and João Marques-Silva. Literal-
based MCS extraction. In IJCAI, pages 1973–1979. AAAI Press, 2015.

[42] Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less
than 2n steps. Discrete Applied Mathematics, 10(3):287–295, 1985.

[43] Christian Muise, Sheila A McIlraith, J Christopher Beck, and Eric I Hsu.
D sharp: fast d-dnnf compilation with sharpsat. In Canadian Conference
on Artificial Intelligence, pages 356–361. Springer, 2012.

[44] Nina Narodytska, Nikolaj Bjørner, Maria-Cristina Marinescu, and Mooly
Sagiv. Core-guided minimal correction set and core enumeration. In
IJCAI, pages 1353–1361. ijcai.org, 2018.

[45] Marek Piotrów. Uwrmaxsat: Efficient solver for maxsat and pseudo-
boolean problems. In ICTAI, pages 132–136. IEEE, 2020.

[46] Alessandro Previti and João Marques-Silva. Partial MUS enumeration.
In AAAI. AAAI Press, 2013.

[47] Alessandro Previti, Carlos Mencı́a, Matti Järvisalo, and João Marques-
Silva. Improving MCS enumeration via caching. In SAT, volume 10491
of LNCS, pages 184–194. Springer, 2017.

[48] Alessandro Previti, Carlos Mencı́a, Matti Järvisalo, and João Marques-
Silva. Premise set caching for enumerating minimal correction subsets.
In AAAI, pages 6633–6640. AAAI Press, 2018.

[49] Raymond Reiter. A theory of diagnosis from first principles. Artif.
Intell., 32(1):57–95, 1987.

[50] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel.
GANAK: A scalable probabilistic exact model counter. In IJCAI, pages
1169–1176. ijcai.org, 2019.

[51] Roni Tzvi Stern, Meir Kalech, Alexander Feldman, and Gregory M.
Provan. Exploring the duality in conflict-directed model-based diagnosis.
In AAAI. AAAI Press, 2012.

[52] Matthias Thimm. On the evaluation of inconsistency measures. Mea-
suring Inconsistency in Information, 73, 2018.

[53] Marc Thurley. sharpsat–counting models with advanced component
caching and implicit bcp. In International Conference on Theory and
Applications of Satisfiability Testing, pages 424–429. Springer, 2006.

[54] Siert Wieringa. Understanding, improving and parallelizing MUS finding
using model rotation. In CP, volume 7514 of Lecture Notes in Computer
Science, pages 672–687. Springer, 2012.

221

Formal Methods in Computer-Aided Design 2021

Designing Samplers is Easy: The Boon of Testers
Priyanka Golia

Indian Institute of Technology Kanpur
National University of Singapore

Mate Soos
National University of Singapore

Sourav Chakraborty
Indian Statistical Institute, Kolkata

Kuldeep S. Meel
National University of Singapore

Abstract—Given a formula ϕ, the problem of uniform sampling
seeks to sample solutions of ϕ uniformly at random. Uniform
sampling is a fundamental problem with a wide variety of ap-
plications. The computational intractability of uniform sampling
has led to the development of several samplers that heavily rely
on heuristics and are not accompanied by theoretical analysis
of their distribution. Recently, Chakraborty and Meel (2019)
designed the first scalable sampling tester, Barbarik, based on
a grey-box sampling technique for testing if the distribution,
according to which the given sampler is sampling, is close to
the uniform or far from uniform. While the theoretical analysis
of Barbarik provides only unconditional soundness guarantees,
the empirical evaluation of Barbarik did show its success in
determining that some of the off-the-shelf samplers were far from
a uniform sampler.

The availability of Barbarik has the potential to spur de-
velopment of samplers techniques such that developers can
design sampling methods that can be accepted by Barbarik
even though these samplers may not be amenable to a detailed
mathematical analysis. In this paper, we present the realization
of this aforementioned promise. Based on the flexibility offered
by CryptoMiniSat, we design a sampler CMSGen that promises
the achievement of sweet spot of the quality of distributions and
runtime performance. In particular, CMSGen achieves significant
runtime performance improvement over the existing samplers.
We conduct two case studies, and demonstrate that the usage of
CMSGen leads to significant runtime improvements in the context
of combinatorial testing and functional synthesis.

A salient strength of our work is the simplicity of CMSGen,
which stands in contrast to complicated algorithmic schemes
developed in the past that fail to attain the desired quality of
distributions with practical runtime performance.

I. INTRODUCTION

Given a formula ϕ, the problem of uniform sampling
seeks to sample solutions of ϕ uniformly at random. Uniform
sampling has emerged as an essential technique in the con-
text of constrained-random simulation [33], constraint-based
fuzzing [5], [19], [22], configuration testing [13], [23], bug
synthesis [36], and the like. For example, in the context of
constrained-random simulation, uniform sampling is employed
to generate test cases that satisfy the set of constraints encod-
ing domain knowledge from sources such as designers, end-
users, and the like.

The widespread applications of uniform sampling have led
to several algorithmic proposals over the years with varying
theoretical guarantees and empirical scalability. Chakraborty,
Meel, and Vardi introduced the first practical almost-uniform
sampler, UniGen [11], [12], which has since been improved

to UniGen3 [9], [39]. Recently, Sharma et al. proposed a
knowledge compilation-based approach [37], called KUS, that
can perform uniform sampling. While UniGen3 and KUS can
scale to hundreds of thousands of variables for some problems,
their performance still falls short of the desired scale for some
real-world instances. The need for scalability has led to the
development of several tools that seek to achieve scalability
at the cost of theoretical guarantees. The underlying techniques
for such tools cover a broad spectrum ranging from adapted
BDD-based techniques [26], random seeding of DPLL-based
SAT solvers [32], Markov Chain Monte Carlo-based (MCMC)
methods [24], [43], interval propagation and belief networks-
based methods [14], [20], MaxSAT-based techniques [16].

The lack of guarantees for various samplers leads their
designers to illustrate the quality of samples generated via
computation of statistics for generated distributions over a
small set of benchmarks. Such demonstrations, however, do
not generalize to many classes of benchmarks, and it is often
the case that subsequent studies tend to demonstrate cases
where previously proposed samplers generate distributions
far away from uniform. While the theoretical guarantees of
uniformity can be viewed as a holy grail, much of the
software engineering progress owes to the development of
testing methodologies. These methodologies employed both to
validate the system and find bugs by the developers themselves
in the form of test-driven development (TDD) and to build
trust with the end-users; all without requiring the developers
to supply a formal proof of correctness.

A major contributing factor to the dramatic improvement
in the robustness and scalability of SAT solvers has been the
development of the DRAT proof format and associated proof
checker drat-trim [44]. The availability of drat-trim allows
SAT solver developers to find bugs that would be hard to
discover owing to the complex architecture of state-of-the-art
SAT solvers. While the problem of checking whether a given
formula is UNSAT is merely Co-NP, the problem of testing
whether a sampler is a uniform requires Ω(2n) samples given
black-box access to the sampler [3], [8], where n is the number
of variables.

Recently, Chakraborty and Meel proposed the first scal-
able sampler test framework, Barbarik [8]. This framework
distinguishes whether the distribution generated by the given
sampler is ε-close to uniform (Accept) or η-far from uniform
(Reject), while the number of samples required depends only

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 31 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_31
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_31
https://creativecommons.org/licenses/by/4.0/

on ε and η, and is independent of n. The core idea of the
Barbarik is to reduce testing of uniformity over the entire
solution space of ϕ to the testing of uniformity over solutions
space of another formula, ϕ̂ constructed over two randomly
chosen solutions of ϕ (observe that ϕ̂ → ϕ). The subroutine
to construct ϕ̂ is called Kernel. The analysis of Barbarik states
that if Barbarik Rejects a sampler, the distribution generated
by sampler is indeed (probabilistically) far from uniform, but
if Barbarik Accepts a sampler, the sampler’s distribution is
close to uniform under the assumption of non-adversality with
respect to Kernel. Informally, the non-adversality assumption
with respect to Kernel dictates that given ϕ, the conditional
distribution of the sampler over the solutions of ϕ̂ is same as
the distribution of the sampler with ϕ̂ as input. Note that this
allows some samplers to behave in an adversarial manner, i.e.,
such samplers may not generate uniform distribution over ϕ,
however may generate uniform distributions for ϕ̂. In such a
case, causing Barbarik will return Accept for such samplers.
At this point, it is worth remarking that given the strong lower
bounds on black-box testing, the usage of such an assumption
is a practical necessity.

Empirically, Barbarik was able to return Reject for all
the state of the art samplers without rigorous mathematical
analysis certifying (almost)-uniformity of the generated dis-
tributions. In particular, Barbarik was demonstrated to Accept
UniGen3 while rejecting the state of the art samplers STS [18]
and QuickSampler [16]. It is worth noting that the three
samplers, UniGen3, QuickSampler, and STS, were found to be
statistically indistinguishable by the usage of simple metrics
such as KL-divergence [27] after a small number of samples.

The availability of Barbarik, however, has potential to allow
development of samplers, whose algorithmic frameworks may
not be amenable to mathematical analysis but can be accepted
by Barbarik. The primary contribution of this paper is realiza-
tion of the promise of Barbarik via development of a new state
of the art sampler, CMSGen. In particular, we make following
contributions:

A. CMSGen: A State of the Art Sampler

1) We design a new sampler, CMSGen, by modifying the
existing state-of-the-art Conflict-Driven Clause Learning
(CDCL) SAT solver CryptoMiniSat1 [41].

2) Since understanding the behavior of CDCL itself is an
open problem, we can not provide an unconditional
analysis of the distribution produced by CMSGen. We
rely on the availability of Barbarik, and observe that
surprisingly, Barbarik returns Accept for all the bench-
marks. Barbarik’s failure to Reject CMSGen stands in
sharp contrast to its ability to Reject other samplers
without guarantees, such as QuickSampler. Furthermore,
we perform empirical comparisons of runtime perfor-
mance via-a-vis UniGen3, the state-of-the-art sampler
with theoretical guarantees. We observe that CMSGen

1Available at https://github.com/msoos/cryptominisat

significantly improves upon UniGen3 in terms of runtime
performance.

B. Case Studies: Combinatorial Testing and Functional Syn-
thesis

3) At this point, one may wonder whether there are practical
applications of CMSGen. We next focus on applications
that are beyond the reach of UniGen3, and for such
cases, one has to rely on the heuristics-based samplers. In
particular, we perform two case studies: (1) combinatorial
testing, and (2) functional synthesis; two problems with
a long history of sustained interest in formal methods
and software engineering community. For both the case
studies, we observe that the usage of CMSGen leads to
significant performance improvements in comparison to
usage of other competing samplers UniGen3 and Quick-
Sampler.

It is worth remarking that a salient strength of CMSGen is
the simplicity of its design. We find it exciting that a sampler
with such a simple design could outperform sophisticated
state of the art samplers. Based on our empirical analysis,
one would remark that CMSGen aims to achieve the sweet
spot of scalability and uniformity. In particular, CMSGen
is significantly more scalable than samplers with guarantees
and, at the time, achieves distributions of higher quality
than samplers without guarantees. The runtime performance
combined with the quality of distribution as certified by
Barbarik makes CMSGen the ideal choice for applications
such as combinatorial testing and functional synthesis where
scalability and quality of distribution are equally crucial.

The rest of the paper is organized as follows: In Section II,
we present the formal definitions and also present a brief
description of the sampler verifier Barbarik. In Section III
we present the new sampler CMSGen and in Section IV we
present the evaluation of CMSGen both by comparing its
runtime performance with other samplers and also its perfor-
mance against Barbarik. Then in Section V we demonstrate
the usefulness of CMSGen with two case studies on problems
of fundamental importance to formal methods community:
functional synthesis and combinatorial testing. Finally, we
conclude in Section VI.

II. NOTATION AND BACKGROUND

A literal is a Boolean variable or its negation. Let ϕ be
a Boolean formula in conjunctive normal form (CNF), and
let X be the set of variables appearing in ϕ. The set X
is called the support of ϕ, denoted by Supp(ϕ). Given an
array a, a[i : j] represents the sub-array consists of all the
elements of a between indices i and j. A satisfying assignment
or witness, denoted by σ, is an assignment of truth values
to variables in its support such that ϕ evaluates to true. A
satisfying assignment is also represented as a set of literals. For
S ⊆ Supp(ϕ), we use σ↓S to indicate the projection of σ over
the set of variables S. We denote the set of all witnesses of ϕ
as sol(ϕ). For notational convenience, whenever the formula

223

https://github.com/msoos/cryptominisat

ϕ and/or the set S ⊆ Supp(ϕ) is clear from the context, we
omit mentioning them.

A. Samplers

Definition 1: Given a Boolean formula ϕ, a CNF-sampler
(or simply sampler) G of ϕ is a probabilistic algorithm that
generates a random element in sol(ϕ). We will assume that a
sampler takes as input a CNF-formula ϕ, a set S ⊆ Supp(ϕ)
and an integer k. It generates k elements σ1, . . . , σk from
sol(ϕ) and outputs σ1↓S , . . . , σk↓S . When the integer k and
the set S ⊆ Supp(ϕ) is clear from the context (or is not
important) we will drop them and use G(ϕ) or G(ϕ, S) to
denote the sampler.

We use pG(ϕ, σ) (or pG(ϕ, σ, S)) to denote the probability
that G(ϕ, ·, ·) (or G(ϕ, S, ·)) generates σ (or σ↓S). And, we use
DG(ϕ) (and DG(ϕ,S)) to denote the distribution induced by G
over the set sol(ϕ) (and sol(ϕ)↓S). For a set T ⊆ sol(ϕ), we
use DG(ϕ)↓ T to denote the distribution DG(ϕ) conditioned on
set T .

Definition 2: Given a Boolean formula ϕ, A uniform sam-
pler Gu(ϕ) is a sampler that given ϕ guarantees

∀y ∈ sol(ϕ),Pr [Gu(ϕ) = y] = 1/|sol(ϕ)|, (1)

Definition 3: Given a Boolean formula ϕ and tolerance pa-
rameter ε, GAAU (ϕ, ε) is an additive almost-uniform generator
(AAU) if the following holds:

∀y ∈ sol(ϕ),
1− ε
|sol(ϕ)|

≤ Pr
[
GAAU (ϕ, ε) = y

]
≤ 1 + ε

|sol(ϕ)|
(2)

A sampler is allowed to occasionally “fail” in the sense that
no element may be returned even if sol(ϕ) is non-empty. The
failure probability for such generators must be bounded by a
constant strictly less than 1.

Definition 4: Given a Boolean formula ϕ and an intolerance
parameter η an generator G(ϕ, .) is η-far from uniform gen-
erator if the `1-distance (or, twice the variation distance) of
DG(ϕ) from uniform is at least η. That is,∑

x∈sol(ϕ)

∣∣∣∣pG(ϕ,x) − 1

|sol(ϕ)|

∣∣∣∣ ≥ η
B. Sampler Tester

Given a sampler G, one would like to test if the sampler is
indeed correct. Or in other words, one would like to test the
following:

1) Does the sampler always output a satisfying assignment?
2) On any CNF-formula ϕ, is G(ϕ) an additive almost-

uniform generator?
While the first point is very easy to test, testing the second

point is quite challenging. Standard verification techniques
or black box sampling techniques would need exponential
time/samples and thus are very inefficient.

Chakraborty and Meel [8] designed the tester Barbarik that
would accept if the sampler is an additive almost-uniform
generator on any input and reject if the sampler is far from
a uniform generator on some input under certain assumptions

discussed below. The idea of Barbarik comes from the world
of property testing, where the sample complexity for testing
whether a distribution is a uniform is studied. While it was
known from classical sample complexity [3] that an exponen-
tial number of samples are required to distinguish a uniform
distribution from a distribution that is η-from uniform, in [7] it
was observed that if given access to conditional samples only
a constant number of samples suffice. Conditional samples
from a distribution D means for a subset T of the domain
Ω, drawing samples from the conditional distribution D|T .
The algorithm for checking whether a given distribution D
over domain Ω is uniform or η-far from uniform, consists of
following steps:

1) Draw one sample σ1 according to the distribution D.
2) Draw one sample σ2 according to the uniform distribution

over Ω.
3) Check if the distribution D|T is uniform or “far”-from

uniform, where T = {σ1, σ2}.
The last point of the above algorithm can be performed

using only a constant number of conditional samples. It can
also be shown that the above algorithm, with non-trivial
probability, will Accept if D is uniform and Reject if D is η-
far from uniform, by repeating this algorithm a certain number
of times, one can boost the success probability.

While the algorithm is theoretically interesting, applying it
to design a sampler test framework required several hurdles to
cross. Firstly, for Step 2 of the algorithm, one needs to run a
uniform sampler. This is not too much of a hurdle as one can
use a non-efficient uniform sampler, since the sampler tester
is only to be used a few times to certify if a sampler is good.

The second problem is that the algorithms, as such, could
only distinguish between a uniform distribution, and a dis-
tribution “far” from a uniform distribution, while a sample
tester should also Accept samplers that are “close” to uniform
samplers (and not necessarily just uniform samplers).

Finally, the main concern was how to obtain conditional
samples. In [8] this was achieved by constructing a new
formula ϕ̂ on a larger number of variables such that the
satisfying assignments of ϕ̂ restricted to the original set of
variables is either σ1 and σ2. In fact if S = Supp(ϕ), then

Pr
σ∼U(sol(ϕ̂))

[σ↓S = σ1] = Pr
σ∼U(sol(ϕ̂))

[σ↓S = σ2] =
1

2

where U(sol(ϕ̂) denotes uniform distribution over sol(ϕ̂) The
new formula ϕ̂ is obtained from ϕ by using a subroutine
Kernel that uses the chain formula technique from [10].

The goal of the construction of ϕ̂ is such that the following
two conditions are satisfied:

1) If the sampler G(ϕ) was ε-additive almost-uniform gen-
erator then the distribution DG(ϕ̂,S) is “close” to the
uniform distribution on the set {σ1, σ2}.

2) If the sampler G(ϕ) was η-far from the uniform sampler
in the `1 distance then the distribution DG(ϕ̂,S) is “far”
from the uniform distribution on the set {σ1, σ2}.

Now, if the sampler G is additive almost-uniform generator
on any input ϕ the first condition would be satisfied. But

224

for the second condition to hold some more assumptions
are necessary. This assumption is called the non-adversarial
assumption in [8].

Definition 5: The non-adversarial sampler assump-
tion states that if (ϕ̂, Ŝ) is the output obtained from
Kernel(ϕ, S, σ1, σ2, N) then
• S ⊆ Ŝ
• the output of G(ϕ̂, S,N) is N independent samples

from the conditional distribution DG(ϕ,S)|T , where T =
{σ1, σ2}.

Thus Barbarik has the following guarantees.
Theorem 1: Given a sampler G, tolerance parameter ε,

intolerance parameter η and correctness parameter δ,
1) If for all ϕ, G(ϕ) is ε-additive almost-uniform generator

then Barbarik will Accept with probability (1− δ).
2) If for some ϕ the sampler G(ϕ) is η-far from the uniform

sampler in the `1 distance and the sampler satisfies the
non-adversarial sampler assumption then Barbarik will
Reject with probability (1− δ).

For the implementation, the subroutine Kernel is designed
in an attempt to fool the sampler into satisfying the non-
adversarial assumption. The idea being that the new CNF-
formula ϕ̂ would be “hard” to distinguish from ϕ and hence
one would expect

pG(ϕ̂, σ1, S) =
pG(ϕ, σ1, S)

pG(ϕ, σ1, S) + pG(ϕ, σ2, S)

C. Experimental Setup

All our experiments were conducted on a high-performance
computer cluster with each node consisting of a E5−2690 v3
CPU with 24 cores and 96GB of RAM, with a memory limit
set to 4GB per core.

III. FROM CryptoMiniSat TO CMSGen

The naive technique to design a sampler is to pick a random
assignment of variables, check if it satisfies the CNF formula,
and, if so, output the assignment as a witness; otherwise, pick
another random assignment and start over again. Using an
unbiased random coin for the assignments, it is trivial to see
that the technique leads to a uniform sampler. Such a proposal
is, however, very inefficient as with a very high probability,
every picked assignment is likely not to satisfy the formula.

One way to make such a sampler into an efficient one is by
not starting with a complete assignment but build the partial
assignment up the variable by variable, set all variables that
are implied by the current partial assignment, and if a partial
assignment is incorrect, record and learn from the failure. The
concept of learning from failure is captured by the well-known
conflict-driven clause-learning (CDCL) framework used by
most state-of-the-art SAT solvers. We refer the reader to Chap-
ter 4 of [4] for a detailed exposition on CDCL. We present
an extension that seeks to combine the CDCL framework
with randomization in the choice of partial assignments in
Algorithm 1, called UniformLikeWitness. UniformLikeWitness
is essentially a randomized variation on the CDCL framework,

with a randomized heuristic for what variable to assign next,
a randomized heuristic for variable polarities, and without
restarts.

Algorithm 1 UniformLikeWitness(F, seed)

1: while true do
2: x← pick an unassigned variable at random
3: assigns[x]← pick 0 or 1 uniformly at random
4: conflict, assigns← perform unit propagation
5: if assigns is full then return assigns

6: if conflict is found then
7: back lvl, conf clause← Conflict-Analysis [32]
8: if conf clause is empty then return NULL
9: Update assigns as per back lvl

10: F ← F ∪ conf clause
11: if F is too large then
12: Perform Learnt Clause Deletion [2]

One major problem of the above process is that the sampler,
just like an SAT solver, may get stuck in the corner of the
space where there are no satisfying solutions. Once stuck, it
can take much time to record the relevant conflicts before it can
escape this part of the search space. In modern SAT solvers,
such an escaping is enabled by performing restarts. The idea
of a restart is to stop the current search procedure, keeping
conflict clause and heuristic data such as polarities, variable
activities in the line, but otherwise starting afresh, resetting
the assignment state. The idea of performing a restart is to
reduce the chance of getting stuck in a non-fruitful part of the
search space. Performing regular, frequent restarts is a core
component of all state-of-the-art SAT solvers.
CMSGen 2 is a sampler that exploits the flexi-

bility CryptoMiniSat to implement the behaviour of
UniformLikeWitness. We use the restart policy based on the
number of conflicts, i.e., we perform a restart after the pre-
determined number of conflicts, which is set to 100. Hence,
the final set of options passed to CryptoMiniSat turn off
the features unrelated to CDCL (such as bounded variable
elimination [17], local search [6], or symmetry breaking [15]),
and set the options that control variable branching and polarity
picking to match Algorithm 1, and set the restart interval to
100. Note that while it is possible that other CDCL SAT
solvers could be adjusted to generate samples as well as
CMSGen, the newer and more performant glucose-based SAT
solvers [2] tend to be highly tuned without any command-line
options to change or turn off heuristics.

We would like to emphasize that we do not claim that
CMSGen is expected to generate uniform distributions over
all the formulas as it is possible to construct worst case
scenarios where CMSGen would not work well. At this point,
it is worthwhile to note that, to the best of our knowledge,
the current techniques are insufficient to analyse the kind of
formulas for which UniformLikeWitness would behave like

2CMSGen is available at https://github.com/meelgroup/cmsgen

225

https://github.com/meelgroup/cmsgen

a uniform sampler given their limitations to understand the
behaviour of CDCL itself. Traditionally, the proposal of a new
sampler is accompanied by theoretical analysis, but in our
case, we seek to rely on the testing framework of Barbarik
to analyse the behavior of CMSGen.

IV. THE POWER OF CMSGen

As mentioned above, instead of taking a conventional route
focusing on the theoretical analysis of CMSGen, we seek
to employ Barbarik to test whether CMSGen is a uniform
sampler or not. In addition, we seek to understand the runtime
behavior of CMSGen in comparison to other state of the art
techniques. We conducted an extensive evaluation of diverse
public domain benchmarks employed in prior studies [8], [40].

A comment on the choice of benchmarks for the two studies:
For the first study, we selected the same 50 benchmarks that
were employed in the evaluation of Barbarik so as to situate the
results with prior context [8]. Since Barbarik needs to sample
up to 1.835× 103 solutions, the choice of benchmarks in [8]
was restricted to instances for which generating samples is
easy. On the other hand, these benchmarks are not meaningful
for runtime performance comparison as all the tools finish on
them very quickly. To this end, we relied on 70 benchmarks
employed in prior sampling studies [38], [39] for runtime
performance comparison.

The objective of our evaluation was two-fold:
RQ1 To understand the behavior of Barbarik in terms of the

frequency of outputs Accept and Reject with CMSGen
as sampler under test.

RQ2 To evaluate the runtime performance of CMSGen vis-a-
vis the state of the art sampler with guarantees of almost-
uniformity, UniGen3.

In summary, we observe that Barbarik, somewhat surpris-
ingly, returns Accept for CMSGen and UniGen3 on all the
50 instances while returning Reject for all the 50 instances
for QuickSampler [16], and for 36 instances for STS [18],
the state-of-the-art samplers without guarantees. At the same
time, comparison in terms of runtime for over 70 benchmarks
arising from different application domains, we observe that
CMSGen is significantly faster than UniGen3.

A. Testing CMSGen with Barbarik

For experimentation evaluations with Barbarik, we used the
default parameters suggested by the authors: In particular,
we set tolerance parameter ε, intolerance parameter η, and
confidence δ to be 0.3, 1.8, and 0.1 respectively. For our
chosen parameters, the number of samples required to return
Accept for a given sampler under test is 1.836 × 103, and
to maintain consistency with evaluation setup of Barbarik, we
selected benchmarks (50 in total) that were used in evaluation
of QuickSampler and UniGen3 for which Barbarik terminates
within 2 hours. To test uniformity of distributions generated
by CMSGen and other samplers, we employed Barbarik aug-
mented with SPUR [1] as the underlying uniform sampler.
We present the results of our evaluation in Table I, where the
four columns present results corresponding to QuickSampler,

TABLE I: Analysis of different samplers with Barbarik over 50
benchmarks. Parameters ε : 0.3, η : 1.8, δ : 0.1, and samples
required to return Accept 1.836× 103.

QuickSampler STS UniGen3 CMSGen

Accept 0 14 50 50
Reject 50 36 0 0

STS, UniGen3, and CMSGen respectively. The first and second
rows indicate the number of instances for which Barbarik
returned Accept and Reject respectively. We first note that
while Barbarik returned Reject for QuickSampler and STS
for the 50 and 36 instances respectively, it returned Accept for
both CMSGen and UniGen3 for all the instances. It is worth
highlighting that UniGen3 provides guarantees of almost-
uniformity.

Remark 1: At this point, it is worth highlighting that we
arrived at the choice of parameters of CMSGen, such as when
to restart via an iterative process where we would run Barbarik
for the given choice of parameters and change them based on
the number of instances rejected by Barbarik. In this context,
it is rather encouraging that such an iterative process led us to
design a sampler, CMSGen, which could not be distinguished
from UniGen3 by Barbarik while significantly improving upon
UniGen3 in terms of runtime performance. This highlights the
advantages of a TDD-style design approach.

B. Runtime Comparison

Upon observing that Barbarik returns Accept for all the 50
instances for both CMSGen and UniGen3, a natural question is
whether the runtime performance of CMSGen is comparable
to that of UniGen3. To this end, we compared CMSGen with
UniGen3, STS and QuickSampler on 70 benchmark instances
arising from a wide range of application areas of uniform
sampling, such as probabilistic reasoning, Bounded Model
Checking [37], [40]; these instances had been previously
employed in empirical studies focused on the comparison of
sampling techniques [38], [39].

For each of the instances, we invoke each of the sampler
to generate 1000 solutions within a timeout of 7200 seconds.
Figure 1 shows the cactus plot for CMSGen, UniGen3, STS
and QuickSampler. We present the number of benchmarks on
the x-axis and the time taken on the y-axis. A point (x, y)
implies that for a x benchmark, the sampler took less than or
equal to y seconds to generate 1000 solutions of x. With a
timeout of 7200 seconds, UniGen3 and CMSGen were able to
sample 1000 solutions of 51 and 52 benchmarks respectively,
whereas STS and QuickSampler generated samples for merely
37 and 33 instances respectively. Figure 1 clearly shows that
for all the benchmarks that were sampled 1000 times by both
UniGen3 and CMSGen, CMSGen outperformed UniGen3 with
a geometric speedup of over 420×.

Table II represent the runtime performance for QuickSam-
pler, STS, UniGen3 and CMSGen for a representative set of 20
benchmarks. As shown in Table II, there are instances (18 out
of 70) for which UniGen3 is able to samples 1000 solutions

226

0 10 20 30 40 50 60 70
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000
R

un
tim

e
CMSGen
UniGen3
STS
QuickSampler

Fig. 1: Cactus plot showing runtime performance of UniGen3,
STS, QuickSampler and CMSGen to generate 1000 samples.
Timeout: 7200s

TABLE II: Runtime performance of different samplers to
generate 1000 solutions for a representative set of benchmarks.
Timeout (TO): 7200s.

Benchmarks QuickSampler STS UniGen3 CMSGen

or-70-5-5-UC-20 0.07 36.39 3173.45 0.29
or-60-20-10-UC-20 0.07 43.53 4065.0 0.31
or-100-20-8-UC-40 0.09 51.25 2152.01 0.4

tire-2 1.09 226.01 TO 0.48
or-50-10-7-UC-10 0.06 33.28 2196.98 0.95

b12 2 linear TO 1214.73 1520.01 2.08
b14 2 linear TO 926.18 1220.01 2.18
squaring41 TO 5595.0 6002.0 2.8
squaring60 TO TO TO 4.52

s15850a 15 7 359.37 TO 675.33 5.58
b12 even2 linear TO TO TO 15.52
isolateRightmost TO TO 432.73 21.66

modexp8-5-4 TO TO 6122.0 550.9
modexp8-6-4 TO TO TO 1034.27
modexp8-6-3 TO TO 6624.0 1079.82
modexp8-6-8 TO TO TO 1173.64

prod-20 TO TO 1274.42 TO
04B-1 TO 5598.0 2410.61 TO
06B-1 TO 6449.0 2835.64 TO

hash-10-7 TO TO 5610.0 TO

whereas CMSGen could not sample. Similarly, there are 19
instances for which CMSGen is able to samples solutions but
UniGen3 could not.

V. CASE STUDIES: FUNCTIONAL SYNTHESIS AND
COMBINATORIAL TESTING

Having established that the quality of distribution generated
by CMSGen is significantly better than QuickSampler, one
wonders about the practical utility of CMSGen. The significant
gap between runtime performance of CMSGen and UniGen3
argues for the usage of CMSGen in applications where the
quality and runtime performance of samplers are key deter-
mining factors.

To this end, we focused on two such application domains:
Combinatorial testing and Boolean functional synthesis. The

state of the art techniques for each of these domains crucially
rely on underlying uniform samplers; in fact the sampler
QuickSampler was proposed in the context of combinatorial
testing. For each of these case studies, we substitute the three
samplers CMSGen, QuickSampler, and UniGen in the state
of the art techniques, and analyse their performance on the
resulting tool.

A. Combinatorial Testing

Combinatorial testing is considered as a powerful paradigm
for testing configurable software. The primary task of a test
generator is the generation of a test suite that maximizes t-wise
coverage. t-wise coverage is measured as the fraction of feature
combinations appearing in the test set out of the possible valid
feature combinations. Uniform sampling is considered one of
the promising approach to have higher t-wise coverage [31],
[34], [35]. Therefore, a natural question is whether CMSGen
can serve as a good test suite generator. To this end, we
performed a comparative study of CMSGen vis-a-vis UniGen3,
STS and QuickSampler on the set of 110 publicly available
benchmarks that have been employed in prior comparative
studies of sampling techniques in the context of combinatorial
testing [25], [29], [35]3.It is worth emphasizing that UniGen3,
STS and QuickSampler are viewed as a state of the art test
suite generation techniques in the presence of constraints as
witnessed by empirical study by Plazar et al. [35].

In our comparative study of sampling techniques of their
efficiency in achieving higher t-wise coverage, we focus on
the case of t = 2 as is standard in the most empirical studies
in combinatorial testing. To this end, for every benchmark,
we generate 1000 samples from each of the four samplers:
CMSGen, STS, QuickSampler, and UniGen3. We used a
timeout of 3600 seconds for sampling. UniGen3 is, however,
unable to sample for all but six benchmarks. Therefore, we
exclude UniGen3 from further analysis.

1 20 40 60 80 100 120
Benchmarks

30

40

50

60

70

80

90

100

Co
ve

ra
ge

 %

CMSGen STS QuickSampler

Fig. 2: Plot to show 2-wise coverage% for 110 benchmarks
with 1000 samples. Sampling timeout: 3600s.

3Benchmarks are available at https://zenodo.org/record/4022395

227

https://zenodo.org/record/4022395

TABLE III: Analysis for 2-wise coverage with QuickSampler, STS, and CMSGen.

Benchmark # Feature
Combinations

QuickSampler STS CMSGen

combination
observed Coverage # combination

observed Coverage # combination
observed Coverage

busybox 1 28 0 1965023 513565 0.26 1849127 0.94 1964962 1.0
ecos-icse11 2910229 898195 0.31 2104721 0.72 2910078 1.0

financial 917150 392381 0.43 649279 0.71 876356 0.96
buildroot 621270 278254 0.45 613184 0.99 621252 1.0

vads 2896324 1360422 0.47 2348489 0.81 2895931 1.0
mpc50 2719748 1354164 0.5 2078077 0.76 2719508 1.0

XSEngine 2974825 1498239 0.5 2383688 0.8 2974448 1.0
ocelot 2986129 1519047 0.51 2344079 0.78 2986002 1.0

dreamcast 2908040 1523501 0.52 2253050 0.77 2907734 1.0
refidt334 3022264 1557688 0.52 2356854 0.78 3021978 1.0

integrator arm7 2957100 1566676 0.53 2275664 0.77 2956958 1.0
pc i82559 2977432 1582402 0.53 2384286 0.8 2977280 1.0

p2106 2887921 1544728 0.53 2282100 0.79 2887653 1.0
skmb91302 2755776 1451902 0.53 2133950 0.77 2755538 1.0

cma28x 2694432 1419911 0.53 2156230 0.8 2694257 1.0
ipaq 2897450 1576622 0.54 2305020 0.8 2897153 1.0
axtls 16212 9381 0.58 15264 0.94 16212 1.0

uClinux 3013528 1751212 0.58 3013456 1.0 3013528 1.0
toybox 256494 180332 0.7 246484 0.96 256494 1.0

FM-3.6.1-refined 3151 2518 0.8 3075 0.98 3151.0 1.0

Figure 2 shows the experimental results with STS, Quick-
Sampler and CMSGen. We present the number of benchmarks
on the x-axis and pair-wise coverage % on the y-axis. A
point (x, y) implies that x benchmarks had y% pair-wise
coverage. Benchmarks are ordered in the decreasing order
of coverage achieved with the samples produced by STS.
Figure 2 shows that almost all the benchmarks had nearly
100% pair-coverage with samples generated by CMSGen, on
the other hand, the average pair-wise coverage with samples
from QuickSampler and STS is 51.5% and 80.15%. One
should view the significant performance improvement due
to CMSGen over QuickSampler in light of the fact that the
primary motivation behind the proposal of QuickSampler was
to achieve higher coverage.

Table III represents the analysis for 2-wise coverage with
CMSGen, STS and QuickSampler for representative 20 bench-
marks. In table III, Column 2 present the possible valid
feature combinations. Column 3, 5 and 7 present the feature
combinations appearing in test set generated by QuickSampler,
STS and CMSGen respectively, and Column 4,6 and 8 is for
the corresponding coverage. As shown in Table III, the test set
generated with CMSGen is able to cover all possible feature
combinations for all the benchmarks.

B. Boolean Functional Synthesis

Given a formula ∃Y F (X,Y), the problem of Boolean
functional synthesis seeks to compute a function ϕ such that
∃Y F (X,Y) ≡ F (X,ϕ(X)). Typically, we view F as a speci-
fication and ϕ as the function that implements the specification
ϕ. Boolean functional synthesis is a fundamental problem with
wide variety of applications ranging from logic synthesis [28],
cryptography [30], program synthesis [42], and the like. For
example, Boolean functional synthesis encompasses program
synthesis, where ϕ can be viewed as the desired program.

Consequently, there has been a sustained interest in the design
of efficient algorithmic techniques for Boolean functional
synthesis. The current state of the art approach, Manthan,
was proposed recently and builds on the advances in sampling
techniques, automated reasoning, and machine learning [21].
Manthan was demonstrated to solve 70 more benchmarks than
the next best technique. In this regard, Manthan serves as a
good test-bed to compare different sampling techniques.

0 50 100 150 200 250 300 350 400
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
QuickSampler
STS
UniGen3

Fig. 3: Cactus plot to show the impact of different sampler
on functional synthesis engine, Manthan. Timeout: 7200s

We sought to compare CMSGen vis-a-vis UniGen3, STS
and QuickSampler in their impact on the performance of
Manthan. We set the timeout of 3600 seconds for the sampling
phase of Manthan. To this end, we augment the sampling step
of Manthan with the corresponding samplers. We perform the
empirical analysis of the same 609 benchmarks4 that were
employed in the analysis of Manthan [21]. We present a

4Benchmarks are available at https://zenodo.org/record/3892859

228

https://zenodo.org/record/3892859

summary of our analysis in the form of cactus plot in Figure 3:
the number of instances are shown on the x-axis and the
time taken on the y-axis; a point (x, y) implies that Manthan
augmented with the corresponding sampler took less than or
equal to y seconds to solve x instances.

Table IV shows the time taken to synthesize Boolean
functions with samples generated from different samplers for
a representative set of 20 benchmarks.

Few observations are in order:
1) Manthan augmented with UniGen3 could solve only 118

instances due to UniGen3’s inability to sample for all but
220 instances. Similarly, Manthan with STS could solve
only 157 instances.

2) Manthan augmented with CMSGen solves 345 instances
while Manthan augmented with QuickSampler could
solve only 275 instances.

TABLE IV: Runtime analysis of Manthan with QuickSampler,
STS, UniGen3, and CMSGen. Timeout (TO): 7200s.

Benchmarks QuickSampler STS UniGen3 CMSGen

kenflashp02 9.55 1367.12 573.69 26.77
kenoopp1 25.96 1852.07 TO 28.88

bobsynth00neg 114.66 3621.66 TO 74.06
bobtuint04neg 58.62 3636.39 1276.1 109.29

small-swap1-fix-4 TO TO TO 148.15
pdtpmsrotate32 TO TO TO 279.6

exquery query42 254.17 TO TO 281.5
GuidanceService2 529.16 TO TO 290.71

subtraction256 699.09 3836.48 TO 321.35
IssueServiceImpl 1567.23 TO TO 424.77
query55 query42 6488.93 TO TO 766.98
rankfunc48 s 64 TO TO TO 775.42
sortnetsort7.006 732.42 TO TO 785.13

LoginService TO TO TO 1108.0
query30 query42 1134.6 TO TO 1126.53
ethernet-fixpoint-4 TO TO TO 1752.18
query44 query26 TO TO TO 2037.54
small-equiv-fix-8 TO TO TO 2231.22

pi-fixpoint-2 535.74 3674.9 TO 2373.72
sortnetsort9.010 3795.4 TO TO 4414.56

Therefore, in conclusion, Manthan augmented with
CMSGen solves significantly more instances than Manthan
augmented with UniGen3, STS, or QuickSampler.

VI. CONCLUSION

Motivated by the availability of Barbarik, a tester for
samplers, we sought to design a sampler for which Barbarik
would return Accept. We succeeded in our task by a simple
but careful tweaking of the existing state-of-the-art SAT solver,
CryptoMiniSat. Our resulting sampler CMSGen is not only
accepted by Barbarik but achieves better runtime performance
than state-of-the-art samplers with theoretical guarantees. We
then show that the resulting sampler, CMSGen, can signif-
icantly improve the performance of applications that utilize
samplers. It is perhaps worth reiterating that we view the
simplicity of CMSGen as its salient strength. The simplicity of
CMSGen stands in stark contrast to complicated algorithmic
schemes developed in the past that fail to attain the desired
quality of distributions with practical runtime performance.

We now turn our attention back to Remark 1; the design
of CMSGen was an iterative process with Barbarik in loop. A
natural direction of future work would be the development
of a tester that provides a quantitative analysis instead of
a qualitative answer of Accept or Reject to measure the
quality of samplers. The significant runtime improvements in
the context of functional synthesis and combinatorial testing
due to CMSGen motivate us to study the impact of CMSGen
in other application domains; to this end, we will release
CMSGen open-source upon publication of our manuscript.

Acknowledgments: This work was supported in part by
National Research Foundation Singapore under its NRF Fel-
lowship Programme [NRF-NRFFAI1-2019-0004] and AI Sin-
gapore Programme [AISG-RP-2018-005], and NUS ODPRT
Grant [R-252-000-685-13]. The computational work for this
article was performed on resources of the National Supercom-
puting Centre, Singapore: https://www.nscc.sg

REFERENCES

[1] D. Achlioptas, Z. S. Hammoudeh, and P. Theodoropoulos, “Fast sam-
pling of perfectly uniform satisfying assignments,” in Proc. of SAT, 2018.

[2] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in Proc. of IJCAI, 2009.

[3] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, “The complexity of
approximating the entropy,” Proc. SIAM Journal on Computing, 2005.

[4] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS
press, 2009, vol. 185.

[5] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” Proc. of ACM SIGSAC, 2016.

[6] S. Cai, C. Luo, and K. Su, “CCAnr: A configuration checking based local
search solver for non-random satisfiability,” in SAT 2015, ser. LNCS,
M. Heule and S. A. Weaver, Eds., vol. 9340. Springer, 2015, pp. 1–8.

[7] S. Chakraborty, E. Fischer, Y. Goldhirsh, and A. Matsliah, “On the power
of conditional samples in distribution testing,” Proc. of SIAM Journal
on Computing, 2016.

[8] S. Chakraborty and K. S. Meel, “On testing of uniform samplers,” in
Proc. of AAAI, 2019.

[9] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y.
Vardi, “On parallel scalable uniform SAT witness generation,” in Proc.
of TACAS, 2015.

[10] S. Chakraborty, D. Fried, K. S. Meel, and M. Y. Vardi, “From weighted
to unweighted model counting,” in Proc. of AAAI, 2015.

[11] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable and nearly
uniform generator of sat witnesses,” in Proc. of CAV, 2013.

[12] ——, “Balancing scalability and uniformity in SAT witness generator,”
in Proc. of DAC, 2014.

[13] L. A. Clarke, “A program testing system,” in Proc. of ACM, 1976.
[14] R. Dechter, K. Kask, E. Bin, R. Emek et al., “Generating random

solutions for constraint satisfaction problems,” in Proc. of AAAI, 2002.
[15] J. Devriendt and B. Bogaerts, “BreakID: Static symmetry breaking for

ASP (system description),” CoRR, vol. abs/1608.08447, 2016.
[16] R. Dutra, K. Laeufer, J. Bachrach, and K. Sen, “Efficient sampling of

SAT solutions for testing,” in Proc. of ICSE, 2018.
[17] N. Eén and A. Biere, “Effective preprocessing in SAT through variable

and clause elimination,” in SAT 2005, ser. LNCS, F. Bacchus and
T. Walsh, Eds., vol. 3569. Springer, pp. 61–75.

[18] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman, “Uniform solution
sampling using a constraint solver as an oracle,” in Proc. of UAI, 2012.

[19] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proc. of ESEC/FSE, 2011.

[20] V. Gogate and R. Dechter, “A new algorithm for sampling CSP solutions
uniformly at random,” in Proc. of CP, 2006.

[21] P. Golia, S. Roy, and K. S. Meel, “Manthan: A data-driven approach for
Boolean function synthesis,” in Proc. of CAV, 2020.

[22] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in
Proc. of USENIX Security 12, 2012.

[23] J. C. King, “Symbolic execution and program testing,” Comm. ACM,
1976.

229

https://www.nscc.sg

[24] N. Kitchen, “Markov chain monte carlo stimulus generation for con-
strained random simulation,” Ph.D. dissertation, UC Berkeley, 2010.

[25] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, and I. Schaefer, “Is
there a mismatch between real-world feature models and product-line
research?” in Proc. of ESEC/FSE, 2017.

[26] J. H. Kukula and T. R. Shiple, “Building circuits from relations,” in
Proc. of CAV, 2000.

[27] S. Kullback and R. A. Leibler, “On information and sufficiency,” Proc.
of Ann. Math. Statist., 1951.

[28] V. Kuncak, M. Mayer, R. Piskac, and P. Suter, “Complete functional
synthesis,” 2010.

[29] J. H. Liang, V. Ganesh, K. Czarnecki, and V. Raman, “Sat-based analysis
of large real-world feature models is easy,” in Proc. of sPLC, 2015.

[30] F. Massacci and L. Marraro, “Logical cryptanalysis as a SAT problem,”
Journal of Automated Reasoning, 2000.

[31] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,” in
Prof. of ICSE, 2016.

[32] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient SAT solver,” in Proc. of DAC, 2001.

[33] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. s Marcu, and
G. Shurek, “Constraint-based random stimuli generation for hardware
verification,” Proc. of AI magazine, 2007.

[34] J. Oh, P. Gazzillo, and D. Batory, “t-wise coverage by uniform sam-
pling,” in Proc. of SPLC, 2019.

[35] Q. Plazar, M. Acher, G. Perrouin, X. Devroey, and M. Cordy, “Uniform
sampling of sat solutions for configurable systems: Are we there yet?”
in Proc. of ICST, 2019.

[36] S. Roy, A. Pandey, B. Dolan-Gavitt, and Y. Hu, “Bug synthesis:
Challenging bug-finding tools with deep faults,” in Proc. of ESEC/FSE,
2018.

[37] S. Sharma, R. Gupta, S. Roy, and K. S. Meel, “Knowledge compilation
meets uniform sampling.” in Proc. of LPAR, 2018.

[38] ——, “Knowledge compilation meets uniform sampling.” in Proc. of
LPAR, 2018.

[39] M. Soos, S. Gocht, and K. S. Meel, “Tinted, detached, and lazy CNF-
XOR solving and its applications to counting and sampling,” in Proc.
of CAV, 2020.

[40] M. Soos and K. S. Meel, “Bird: Engineering an efficient CNF-XOR sat
solver and its applications to approximate model counting,” in Proc. of
the AAAI, 2019.

[41] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT solvers to
cryptographic problems,” in Proc. of SAT, 2009.

[42] S. Srivastava, S. Gulwani, and J. S. Foster, “Template-based program
verification and program synthesis,” STTT, 2013.

[43] W. Wei and B. Selman, “A new approach to model counting,” in Proc.
of SAT, 2005.

[44] N. Wetzler, M. J. H. Heule, and W. A. Hunt, “DRAT-trim: Efficient
checking and trimming using expressive clausal proofs,” in Proc. of
SAT, 2014.

230

Formal Methods in Computer-Aided Design 2021

SAT-Inspired Eliminations for Superposition
Petar Vukmirović1 , Jasmin Blanchette1,2 , Marijn J.H. Heule3

1Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
2Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

3Carnegie Mellon University, Pittsburgh, Pennsylvania, United States

Abstract—Optimized SAT solvers not only preprocess the
clause set, they also transform it during solving as inprocessing.
Some preprocessing techniques have been generalized to first-
order logic with equality. In this paper, we port inprocessing
techniques to work with superposition, a leading first-order proof
calculus, and we strengthen known preprocessing techniques.
Specifically, we look into elimination of hidden literals, variables
(predicates), and blocked clauses. Our evaluation using the
Zipperposition prover confirms that the new techniques usefully
supplement the existing superposition machinery.

I. INTRODUCTION

Automated reasoning tools have become much more pow-
erful in the last few decades thanks to procedures such as
conflict-driven clause learning (CDCL) [1] for propositional
logic and superposition [2] for first-order logic with equality.
However, the effectiveness of these procedures crucially de-
pends on how the input problem is represented as a clause set.
The clause set can be optimized beforehand (preprocessing)
or during the execution of the procedure (inprocessing). In
this paper, we lift several preprocessing and inprocessing
techniques from propositional logic to clausal first-order logic
and demonstrate their usefulness in a superposition prover.

For many years, SAT solvers have used inexpensive clause
simplification techniques such as hidden literal and hidden
tautology elimination [3], [4] and failed literal detection [5,
Sect. 1.6]. We generalize these techniques to first-order logic
with equality (Sect. III). Since the generalization involves
reasoning about infinite sets of literals, we propose restrictions
to make them usable.

Variable elimination, based on Davis–Putnam resolution [6],
has been studied in the context of both propositional logic
[7], [8] and quantified Boolean formulas (QBFs) [9]. The
basic idea is to resolve all clauses with negative occurrences
of a propositional variable (i.e., a nullary predicate symbol)
against clauses with positive occurrences and delete the parent
clauses. Eén and Biere [10] refined the technique to identify a
subset of clauses that effectively define a variable and use it to
further optimize the clause set. This latter technique, variable
elimination by substitution, has been an important preprocessor
component in many SAT solvers since its introduction in 2004.

Specializing second-order quantifier elimination [11], [12],
Khasidashvili and Korovin [13] adapted variable elimination to
preprocess first-order problems, yielding a technique we call
singular predicate elimination. We extend their work along
two axes (Sect. IV): We generalize Eén and Biere’s refinement

to first-order logic, resulting in defined predicate elimination,
and explain how both types of predicate elimination can be
used during the proof search as inprocessing.

The last technique we study is blocked clause elimination
(Sect. V). It is used in both SAT [14] and QBF solvers [15].
Its generalization to first-order logic has produced good results
when used as a preprocessor, especially on satisfiable problems
[16]. We explore more ways to use blocked clause elimination
on satisfiable problems, including using it to establish equi-
satisfiability with an empty clause set or as an inprocessing
rule. Unfortunately, we find that its use as inprocessing can
compromise the refutational completeness of superposition.

All techniques are implemented in the Zipperposition prover
(Sect. VI), allowing us to ascertain their usefulness (Sect. VII).
The best configuration solves 160 additional problems on
benchmarks consisting of all 13 495 first-order TPTP theorems
[17]. The raw experimental data are publicly available.1 More
details, including all the proofs, can be found in a technical
report [18].

II. PRELIMINARIES

A. Clausal First-Order Logic

Our setting is many-sorted, or many-typed, first-order logic
[19] with interpreted equality and a distinguished type (or
sort) o. Each variable x is assigned a non-Boolean type, and
each symbol f is assigned a tuple (τ1, . . . , τn, τ) where n≥ 0, τi
are non-Boolean types, and τ is the result type. We distinguish
between predicate symbols, with o as the result type, and
function symbols. Nullary function symbols are called con-
stants. Terms are either variables x or well-typed applications
f(t1, . . . , tn), or f if n = 0. A term is ground if it contains
no variables. We assume standard definitions and notations
for positions, subterms, and contexts [20]. We abbreviate a
vector (a1, . . . ,an) to a⃗n or a⃗, and write f i(s) for the i-fold
application of an unary symbol f (e.g., f3(x) = f(f(f(x)))).

An atom is an equation s≈ t corresponding to an unordered
pair {s, t}. A literal is an equation s≈ t or a disequation s ̸≈
t. For every predicate symbol p, p(s⃗) abbreviates p(s⃗)≈⊤,
and ¬p(s⃗) abbreviates p(s⃗) ̸≈⊤, where ⊤ is a distinguished
constant of type o. We distinguish between predicate literals
(¬)p(s⃗) and functional literals s≈ t, where s and t are not of
type o. Given a literal L, we overload notation and write ¬L
to denote its complement. A clause C is a multiset of literals,

1https://doi.org/10.5281/zenodo.4552499

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 32 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-7049-6847
https://orcid.org/0000-0002-8367-0936
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.5281/zenodo.4552499
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_32
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_32
https://creativecommons.org/licenses/by/4.0/

written as L1 ∨ ·· · ∨ Ln and interpreted disjunctively. Clauses
are often defined as sets of literals, but superposition needs
multisets; with multisets, an instance Cσ always has the same
number of literals as C, a most convenient property. Given
a clause set N, N↓2 denotes the subset of its binary clauses:
N↓2 = {L1 ∨ L2 | L1 ∨ L2 ∈ N}.

B. Superposition Provers

Superposition [2] is a calculus for clausal first-order logic
that extends ordered resolution [21] with equality reasoning. It
is refutationally complete: Given a finite, unsatisfiable clause
set, it will eventually derive the empty clause. It is parameter-
ized by a selection function that influences which of a clause’s
literals are eligible as the target of inferences. Moreover, it is
compatible with the standard redundancy criterion, which can
be used to delete a clause C while preserving completeness of
the calculus.

The redundancy criterion relies on an order ≻ that compares
terms, literals, or clauses. The order is used to determine
whether clauses can be deleted. If N is ground, C can be
deleted if it is entailed by ≺-smaller clauses in N. This
definition is lifted to nonground sets N. The criterion can be
used to delete a clause that is subsumed by another clause
(e.g., p(a)∨ q by p(x)) or to simplify a clause C into C′, which
amounts to adding C′ and then deleting C as redundant with re-
spect to N∪{C′}. Subsumption and simplification are the main
inprocessing mechanisms available to superposition provers.
Some provers also implement clause splitting [22]–[24].

Superposition provers saturate the input problem with re-
spect to the calculus’s inference rules using the given clause
procedure [25], [26]. It partitions the proof state into a passive
set P and an active set A . All clauses start in P . At each
iteration of the procedure’s main loop, the prover chooses a
clause C from P , simplifies it, and moves it to A . Then all
inferences between C and active clauses are performed. The
resulting clauses are again simplified and put in P .

III. HIDDEN-LITERAL-BASED ELIMINATION

In propositional logic, binary clauses from a clause set N
can be used to efficiently discover literals L,L′ for which the
implication L′ −■→ L is entailed by N’s binary clauses—i.e.,
N↓2 |= L′ −■→ L. Heule et al. [4] introduced the concept of
hidden literals to capture such implications.

Definition 1: Given a propositional literal L and a proposi-
tional clause set N, the set of propositional hidden literals
for L and N is HLp(L,N) = {L′ | L′ ↪→∗p L} \ {L}, where
↪→p is defined such that ¬L1 ↪→p L2 whenever L1 ∨ L2 ∈ N.
Moreover, HLp(L1 ∨ ·· · ∨ Ln,N) =

⋃︁n
i=1 HLp(Li,N).

Heule et al. used a fixpoint computation, but our definition
based on the reflexive transitive closure is equivalent. Intu-
itively, a hidden literal can be added to or removed from a
clause without affecting its semantics in models of N. By
eliminating hidden literals from C, we simplify it. By adding
hidden literals to C, we might get a tautology C′ (i.e., a valid
clause: |=C′), meaning that N↓2 |=C, thereby enabling us to
delete C. Note that HLp(L,N) is finite for a finite N.

Definition 2: Given L′ ∨ L ∨ C ∈ N, if L′ ∈ HLp(L,N),
hidden literal elimination (HLE) replaces N by (N \{L′ ∨ L ∨
C})∪{L ∨ C}. Given C ∈ N, {L1, . . . ,Ln} = HLp(C,N), and
C′ = C ∨ L1 ∨ ·· · ∨ Ln, if C′ is a tautology, hidden tautology
elimination (HTE) replaces N by N \{C}.

Theorem 3: The result of applying HLE or HTE to a clause
set N is equivalent to N.

Proof: For HLE, if L′ ∈ HLp(L,N), N↓2 |= ¬L′ ∨ L. Then,
subsumption resolution yields shortened clause L ∨ C′ from
Definition 2. For HTE, it can be shown that N′ |=C if and only
if C ∨ L′, where L′ ∈HLp(C,N). By transitivity of equivalence,
we get the desired result.

We generalize hidden literals to first-order logic with equal-
ity by considering substitutivity of variables as well as con-
gruence of equality.

Definition 4: Given a literal L and a clause set N, the set
of hidden literals for L and N is HL(L,N) = {L′ | L′ ↪→∗ L}\
{L}, where ↪→ is defined so that (1) ¬L′σ ↪→ Lσ if L′ ∨
L ∈ N and σ is a substitution; (2) s≈ t ↪→ u[s]≈ u[t] for all
terms s, t and contexts u[]; and (3) u[s] ̸≈u[t] ↪→ s ̸≈ t for all
terms s, t and contexts u[]. Moreover, HL(L1 ∨ ·· · ∨ Ln,N) =⋃︁n

i=1 HL(Li,N).

The generalized definition also enjoys the key property that
L′ ∈ HL(L,N) implies N↓2 |= L′ −■→ L. However, HL(L,N)
may be infinite even for predicate literals; for example,
p(f i(x)) ∈ HL(p(x),{p(x) ∨ ¬p(f(x))}) for every i.

Based on Definition 4, we can generalize hidden literal
elimination and support a related technique:

L′ ∨ L ∨C
HLE

L ∨C
if L′ ∈ HL(L,N)

L ∨C
FLE

C
if L′,¬L′ ∈ HL(¬L,N)

Double lines denote simplification rules: When the premises
appear in the clause set, the prover can use the redundancy
criterion to replace them by the conclusions. The second
rule is called failed literal elimination, inspired by the SAT
technique of asserting ¬L if L is a failed literal [5]. It is
easy to see that rule HLE is sound. From L′ ∈ HL(L,N) we
have N |= L′ −■→ L (i.e., ¬L′ ∨ L). Performing subsumption
resolution [21] between L′ ∨ L ∨ C and ¬L′ ∨ L yields the
conclusion, which is therefore entailed by N. For FLE, the
condition L′,¬L′ ∈ HL(¬L,N) means that N↓2 |= {¬L′ ∨
¬L, L′ ∨ ¬L} |= ¬L.

Example 5: Consider the clause set N = {p(x) ∨
¬p(f(x)), p(f(f(x))) ∨ a ≈ b} and the clause C = f(a) ̸≈
f(b) ∨ p(x). The first clause in N induces p(f(x)) ↪→ p(x),
p(f(f(x))) ↪→ p(f(x)), and hence p(f(f(x))) ↪→∗ p(x). Together
with the second clause in N, it can be used to derive
a ̸≈b ↪→∗ p(x). Finally, using rule (3) of Definition 4, we derive
f(a) ̸≈ f(b) ↪→∗ p(x)—that is, f(a) ̸≈ f(b) ∈ HL(p(x),N). This
allows us to remove C’s first literal using HLE.

232

Two special cases of HLE exploit equality congruence as
embodied by conditions (2) and (3) of Definition 4 without
requiring to compute the HL set:

s≈ t ∨ u[s]≈u[t] ∨C
CONGHLE+

u[s]≈u[t] ∨C

s ̸≈ t ∨ u[s] ̸≈u[t] ∨C
CONGHLE−

s ̸≈ t ∨C

Hidden literals can be combined with unit clauses L′ to
remove more literals:

L′ L ∨C
UNITHLE if L′σ ∈ HL(¬L,N)

L′ C

Given a unit clause L′ ∈ N, the rule uses it to discharge L′σ
in N |= L′σ−■→¬L. As a result, we have N |= ¬L, making it
possible to remove L from L ∨C.

Example 6: Consider the clause set N = {p(x) ∨
q(f(x)), ¬q(f(a)) ∨ f(b) ≈ g(c), f(x) ̸≈ g(y)} and the
clause C = ¬p(a) ∨ ¬q(b). The first clause in N induces
¬q(f(a)) ↪→ p(a), whereas the second one induces
f(b) ̸≈g(c) ↪→¬q(f(a)). Thus, we have f(b) ̸≈g(c) ↪→∗ p(a)—
that is, f(b) ̸≈ f(c)∈HL(p(a),N). By applying the substitution
{x ↦→ b, y ↦→ c} to the third clause in N, we can fulfill the
conditions of UNITHLE and remove C’s first literal.

Next, we generalize hidden tautologies to first-order logic.

Definition 7: A clause C is a hidden tautology for a clause
set N if there exists a finite set {L1, . . . ,Ln} ⊆ HL(C,N) such
that C ∨ L1 ∨ ·· · ∨ Ln is a tautology.

Example 8: In general, hidden tautologies are not redundant
and cannot be deleted during saturation. Consider the unsatis-
fiable set N = {¬a,¬b, a∨ c, b∨¬c}, the order a≺ b≺ c, and
the empty selection function. The only possible superposition
inference from N is between the last two clauses, yielding
the hidden tautology a ∨ b (after simplifying away ⊤ ̸≈⊤),
which is entailed by the larger clauses a ∨ c and b ∨ ¬c. If
this clause is removed, the prover could enter an infinite loop,
forever generating and deleting the hidden tautology.

To delete hidden tautologies during saturation, the prover
could check that all the relevant clause instances encountered
along the computation of HL are ≺-smaller than a given hid-
den tautology. However, this would be expensive and seldom
succeed, given that superposition creates lots of nonredundant
hidden tautologies. Instead, we propose to simplify hidden
tautologies using the following rules:

L ∨ L′ ∨C
HTR

L ∨ L′
if ¬L′ ∈ HL(L,N) and C ̸=⊥

L ∨C
FLR

L
if L′,¬L′ ∈ HL(L,N) and C ̸=⊥

We call these techniques hidden tautology reduction and
failed literal reduction, respectively. Both rules are sound. As
with hidden literals, unit clauses L′ can be exploited:

L′ L ∨C
UNITHTR if L′σ ∈ HL(L,N) and C ̸=⊥

L′ L

We give the simplification rules above the collective name of
hidden-literal-based elimination (HLBE). Yet another use of
hidden literals is for equivalent literal substitution [3]: If both
L′ ∈ HL(L,N) and L ∈ HL(L′,N), we can often simplify L′σ
to Lσ in N if L′σ≻ Lσ. We want to investigate this further.

Theorem 9: The rules HLE, FLE, CONGHLE+, CONG
HLE−, UNITHLE, HTR, FLR, and UNITHTR are sound
simplification rules.

IV. PREDICATE ELIMINATION

For propositional logic, variable elimination [10] is one
of the main preprocessing and inprocessing techniques. Fol-
lowing Gabbay and Ohlbach’s ideas [11], Khasidashvili and
Korovin [13] generalized variable elimination to first-order
logic with equality and demonstrated that it is effective as
a preprocessor. We propose an improvement that makes this
applicable in more cases and show that, with a minor restric-
tion, it can be integrated in a superposition prover without
compromising its refutational completeness.

A. Singular Predicates

Khasidashvili and Korovin’s preprocessing technique re-
moves singular predicates (which they call “non-self-
referential predicates”) from the problem using so-called flat
resolution.

Definition 10: A predicate symbol is called singular (or
“non-self-referential”) for a clause set N if it occurs at most
once in every clause contained in N.

Definition 11: Let C = p(s⃗n) ∨ C′ and D = ¬p(t⃗n) ∨ D′ be
clauses with no variables in common. The clause s1 ̸≈ t1 ∨
·· · ∨ sn ̸≈ tn ∨C′ ∨ D′ is a flat resolvent of C and D on p.

Given two (possibly identical) clause sets M,N, predicate
elimination iteratively replaces clauses from N containing
the symbol p with all flat resolvents against clauses in M.
Eventually, it yields a set with no occurrences of p.

Definition 12: Let M,N be clause sets and p be a singular
predicate for M. Let⇝ be the following relation on clause set
pairs and clause sets:

1) (M, {(¬)p(s⃗) ∨ C′}⊎N)⇝ (M, N′ ∪N) if N′ is the set
that consists of all clauses (up to variable renaming) that
are flat resolvents with (¬)p(s⃗) ∨ C′ on p and a clause
from M as premises. The premises’ variables are renamed
apart.

2) (M,N)⇝N if N has no occurrences of p.
The resolved set M⋊p N is the clause set N′ such that
(M,N)⇝∗ N′.

The relation⇝ is confluent up to variable renaming. Thanks
to the singularity constraint on M, it also terminates on

233

finite sets because the following ordinal measure decreases:
ν({D1, . . . ,Dn}) =ων(D1)⊕·· ·⊕ων(Dn), where ν(D) counts the
occurrences of p in D, ω is the first infinite ordinal, and ⊕
is the Hessenberg, or natural, sum, which is commutative.
For every transition (M,{C} ∪ N)⇝ (M,N′ ∪ N), we have
ν({C}) = ων(C) > ων(C)−1 · |N′|= ν(N′).

Next, it is useful to partition clause sets into subsets based
on the presence and polarity of a singular predicate.

Definition 13: Let N be a clause set and p be a singular
predicate for N. Let N+

p consist of all clauses of the form
p(s⃗) ∨ C′ ∈ N, let N−p consist of all clauses of the form
¬p(s⃗) ∨C′ ∈ N, let Np = N+

p ∪N−p , and let Np = N \Np.
Definition 14: Let N be a clause set and p be a singular

predicate for N. Singular predicate elimination (SPE) of p in
N replaces N by Np∪ (N+

p ⋊p N−p).
The result of SPE is satisfiable if and only if N is satisfiable

[13, Theorem 1], justifying SPE’s use in a preprocessor.
However, eliminating singular predicates aggressively can
dramatically increase the number of clauses. To prevent this,
Khasidashvili and Korovin suggested to replace N by N′ only
if λ(N′)≤ λ(N) and µ(N′)≤ µ(N), where λ(N) is the number
of literals in N and µ(N) is the sum for all clauses C ∈ N of
the square of the number of distinct variables in C.

Compared with what modern SAT solvers use, this criterion
is fairly restrictive. We relax it to make it possible to eliminate
more predicates, within reason. Let Ktol ∈N be a tolerance pa-
rameter. A predicate elimination step from N to N′ is allowed
if λ(N′) < λ(N)+Ktol or µ(N′) < µ(N) or |N′| < |N|+Ktol.

B. Defined Predicates
SPE is effective, but an important refinement has not yet

been adapted to first-order logic: variable elimination by
substitution. Eén and Biere [10] discovered that a propositional
variable x can be eliminated without computing all resolvents
if it is expressible as an equivalence x←→ φ, where φ, the
“gate,” is an arbitrary formula that does not reference x.
They partition a set N into a definition set G, essentially
the clausification of x←→ φ, and R = Np \G, the remaining
clauses containing p. To eliminate x from N while preserving
satisfiability, it suffices to resolve clauses from G against
clauses from R, effectively substituting φ for x in R. Crucially,
we do not need to resolve pairs of clauses from G or pairs of
clauses from R. We generalize this idea to first-order logic.

Definition 15: Let G be a clause set, p be a predicate symbol,
and x⃗ be distinct variables. The set G is a definition set for p
if (1) p is singular for G, (2) G consists of clauses of the form
(¬)p(x⃗)∨C′ (up to variable renaming), (3) the variables in C′

are all among x⃗, (4) all clauses in G+
p ⋊pG−p are tautologies,

and (5) E(c⃗) is unsatisfiable, where the environment E(x⃗)
consists of all subclauses C′ of any (¬)p(x⃗)∨C′ ∈ G and c⃗
is a tuple of distinct fresh constants substituted in for x⃗.

A definition set G corresponds intuitively to a definition by
cases in mathematics—e.g.,

p(x⃗) =
{︃
⊤ if φ(x⃗)
⊥ if ψ(x⃗)

Part (4) states that the case conditions are mutually exclusive
(e.g., ¬φ(x⃗)∨¬ψ(x⃗)), and part (5) states that they are exhaus-
tive (e.g., ∄c⃗. ¬φ(c⃗)∧¬ψ(c⃗)). Given a quantifier-free formula
p(x⃗)←→ φ(x⃗) with distinct variables x⃗ such that φ(x⃗) does
not contain p, any reasonable clausification algorithm would
produce a definition set for p.

Example 16: Given the formula p(x)←→ q(x)∧(r(x)∨ s(x)),
a standard clausification algorithm [27] produces {¬p(x) ∨
q(x), ¬p(x) ∨ r(x) ∨ s(x), p(x) ∨ ¬q(x) ∨ ¬r(x), p(x) ∨
¬q(x) ∨ ¬s(x)}, which qualifies as a definition set for p.

Definition sets generalize Eén and Biere’s gates. They can
be recognized syntactically for formulas such as p(x⃗) ←→⋁︁

i qi(si⃗) or p(x⃗)←→
⋀︁

i qi(si⃗), or semantically: Condition (4)
can be checked using the congruence closure algorithm, and
condition (5) amounts to a propositional unsatisfiability check.

The key result about propositional gates carries over to
definition sets.

Definition 17: Let N be a clause set, p be a predicate
symbol, G ⊆ N be a definition set for p, and R = Np \G.
Defined predicate elimination (DPE) of p in N replaces N by
Np∪ (Gp⋊p Rp).

Theorem 18: The result of applying DPE to a clause set N
is satisfiable if and only if N is satisfiable.

Since there will typically be at most only a few defined
predicates in the problem, it makes sense to fall back on SPE
when no definition is found.

Definition 19: Let N be a clause set and p be a predicate
symbol. If there exists a definition set G ⊆ N for p, portfolio
predicate elimination (PPE) on p in N replaces N with
Np∪(Gp⋊pRp), where R= Np \G. Otherwise, if p is singular
in N, it results in Np ∪ (N+

p ⋊p N−p). In all other cases, it is
not applicable.

C. Refutational Completeness

Hidden-literal-based techniques fit within the traditional
framework of saturation, because they delete or reduce a clause
based on the presence of other clauses. In contrast, predicate
elimination relies on the absence of clauses from the proof
state. We can still integrate it with superposition as follows:
At every kth iteration of the given clause procedure, perform
predicate elimination on A ∪P , and add all new clauses to P .

One may wonder whether such an approach preserves the
refutational completeness of the calculus. The answer is no.
To see why, consider the following binary splitting rule based
on Riazanov and Voronkov [22]:

C ∨ D
BS

p ∨C D ∨ ¬p

Provisos: C and D have no free variables in common, p is
fresh, and p is ≺-smaller than C and D. Since the conclu-
sions are smaller than the premise, the rule can be applied
aggressively as a simplification. But notice that the effect of

234

splitting can be undone by singular predicate elimination, pos-
sibly giving rise to loops BS,SPE,BS,SPE, This breaks
completeness.

Our solution is to curtail the entailment relation used by the
redundancy criterion to disallow splitting-like simplifications.
Weak entailment |=♭ is defined via an ad hoc nonclassical
logic so that {p ∨ C, ¬p ∨ C} ̸|=♭ {C} and yet |=♭ {p ∨ ¬p}.
More precisely, this logic is defined via an encoding: M |=♭ N
if and only if M♭ |= N♭, where p(t⃗)♭ = p(t⃗) ̸≈ ⊥, ¬p(t⃗)♭ =
p(t⃗) ̸≈⊤, and L♭ = L otherwise. Moreover, the type o may be
interpreted as any set of cardinality at least 2, and ⊥ must be
a distinguished symbol interpreted differently from ⊤.

The standard redundancy criterion Red♭ based on |=♭ sup-
ports all the familiar deletion and simplification techniques
except splitting. Using Red♭ not only prevents looping, but it
also enables the use of the given clause procedure, because
any redundant inference according to Red♭ remains redundant
after SPE or DPE. As usual, the devil is in the details, and the
details are in the report [18].

V. SATISFIABILITY BY CLAUSE ELIMINATION

The main approaches to show satisfiability of a first-order
problem are to produce either a finite Herbrand model or
a saturated clause set. Saturations rarely occur except for
very small problems or within decidable fragments. In this
section, we explore an alternative approach that establishes
satisfiability by iteratively removing clauses while preserving
unsatisfiability, until the clause set has been transformed
into the empty set. So far, this technique has been studied
only for QBF [28]. We show that blocked clause elimination
(BCE) can be used for this purpose. It can efficiently solve
some problems for which the saturated set would be infinite.
However, it can break the refutational completeness of
a saturation prover. We conclude with a procedure that
transforms a finite Herbrand model into a sequence of clause
elimination steps ending in the empty clause set, thereby
demonstrating the theoretical power of clause elimination.

Kiesl et al. [16] generalized blocked clause elimination to
first-order logic. Their generalization uses flat L-resolvents,
an extension of flat resolvents that resolves a single literal L
against m literals of the other clause.

Definition 20: Let C = L ∨C′ and D = L1 ∨ ·· · ∨ Lm ∨ D′,
where (1) m ≥ 1, (2) the literals Li are of opposite polarity
to L, (3) L’s atom is p(s⃗n), (4) Li’s atom is p(ti⃗) for each i,
and (5) C and D have no variables in common. The clause(︁⋁︁m

i=1
⋁︁n

j=1 s j ̸≈ ti j
)︁
∨C′ ∨ D′ is a flat L-resolvent of C and D.

Definition 21: A clause C = L ∨ C′ is (equality-)blocked
by L in a clause set N if all flat L-resolvents between C and
clauses in N \{C} are tautologies.

Removing a blocked clause from a set preserves unsatis-
fiability [16]. Kiesl et al. evaluated the effect of removing
all blocked clauses as a preprocessing step and found that it
increases prover’s success rate.

In fact, there exist satisfiable problems that cannot be
saturated in finitely many steps regardless of the calculus’s

parameters but that can be reduced to an empty, vacuously
satisfiable problem through blocked clause elimination.

Example 22: Consider the clause set N consisting of
C = p(x, x) and D = ¬p(y1,y3) ∨ p(y1,y2) ∨ p(y2,y3). Note
that if no literal is selected, all literals are eligible for
superposition. In particular, the superposition of p(x, x)
into D’s negative literal eventually needs to be performed
regardless of the chosen selection function or term order, with
the conclusion E1 = p(1, 2) ∨ p(2, 1). Then, superposition
of E1 into D yields E2 = p(1, 2) ∨ p(2, 3) ∨ p(3, 1).
Repeating this process yields infinitely many clauses
Ei = p(1, 2) ∨ ·· · ∨ p(i, i+1) ∨ p(i+1, 1) that cannot be
eliminated using standard redundancy-based techniques.

In the example above, the clause D is blocked by its
second or third literal. If we delete D, C becomes blocked
in turn. Deleting C leaves us with the empty set, which is
vacuously satisfiable. The example suggests that using BCE
during saturation might help focus the proof search. Indeed,
Kiesl et al. ended their investigations by asking whether BCE
can be used as an inprocessing technique in a saturation prover.
Unfortunately, in general the answer is no.

Example 23: Consider the unsatisfiable set N = {C1, . . . ,
C6}, where

C1 = ¬c ∨ e ∨ ¬a C2 = ¬c ∨ ¬e C3 = b ∨ c

C4 = ¬b ∨ ¬c C5 = a ∨ b C6 = c ∨ ¬b

Assume the simplification ordering a ≺ b ≺ c ≺ d ≺ e and
the selection function that chooses the last negative literal of
a clause as presented. Gray boxes indicate literals that can
take part in superposition inferences. Only two superposition
inferences are possible: from C3 into C4, yielding the tautology
C7 = b ∨ ¬b , and from C5 into C6, yielding C8 = a ∨ c .
Clause C7 is clearly redundant, whereas C8 is blocked by
its first literal. If we allow removing blocked clauses, the
prover enters a loop: C8 is repeatedly generated and deleted.
Thus, the prover will never generate the empty clause for this
unsatisfiable set.

As with hidden tautologies, removing blocked clauses
breaks the invariant of the given clause procedure that all
inferences between clauses in A are redundant. To see this,
assume the setting of Example 23, and let P = N and A = /0.
Assume C1,C2,C3 are moved to the active set. As there are
no possible inferences between them, the proof state becomes
A = {C1,C2,C3} and P = {C4,C5,C6}. After C4 is moved to
A , the conclusion C7 is computed, but it is not added to P as
it is redundant. Moving C5 to A produces no new conclusions,
but after C6 is moved, C8 is produced. However, if we allow
eliminating blocked clauses, it will not be added to P as it is
blocked. The prover then terminates with A = N and P = /0,
even though the original set N is unsatisfiable.

Although using BCE as inprocessing breaks the complete-
ness of superposition in general, it is conceivable that a
well-behaved fragment of BCE might exist. This could be
investigated further.

235

Not only can BCE prevent infinite saturation (Example 22),
but it can also be used to convert a finite Herbrand model
into a certificate of clause set satisfiability. The certificate uses
only blocked clause elimination and addition, in conjunction
with a transformation to reduce the clause set to an empty
set. This theoretical result explores the relationship between
Herbrand models and satisfiability certificates based on clause
elimination and addition. It is conceivable that it can form the
basis of an efficient way to certify Herbrand models.

In propositional logic, asymmetric literals can be added
to or removed from clauses, retaining the equivalence of the
resulting clause set with the original one. Kiesl and Suda [29]
described an extension of this technique to first-order logic.
Their definition of asymmetric literals can be relaxed to allow
the addition of more literals, but the resulting set is then only
equisatisfiable to the original one, not equivalent. This in turn
allows us to show that a problem is satisfiable by reducing it
to an empty problem, as is done in some SAT solvers.

For the rest of this section, we work with clausal first-
order logic without equality. We use Herbrand models as
canonical representatives of first-order models, recalling that
every satisfiable set has a Herbrand model [30, Sect. 5.4].

Definition 24: A literal L is a global asymmetric literal
(GAL) for a clause C and a clause set N if for every ground
instance Cσ of C, there exists a ground instance Dϱ ∨ L′ϱ of
D ∨ L′ ∈ N \{C} such that Dϱ⊆Cσ and ¬L′ϱ= Lσ.

Every asymmetric literal is GAL, but the converse does not
hold:

Example 25: Consider a clause C = p(x,y) and a clause
set N = {q ∨ p(a,a)}. Then, ¬q is not an asymmetric literal
for C and N, but it is a GAL for C and N.

Adding and removing GALs maintains preserves and re-
flects satisfiability:

Theorem 26: If L is a GAL for the clause C and the clause
set N, then the set (N \ {C})∪{C ∨ L} is satisfiable if and
only if N is satisfiable.

For first-order logic without equality, a clause L∨C is blocked
if all its L-resolvents are tautologies [16]. The L-resolvent
between L ∨C and ¬L1 ∨ ·· · ∨ ¬Ln ∨ D is (C ∨ D)σ, where
σ is the most general unifier of the literals L,L1, . . . ,Ln
[21]. Given a Herbrand model J of a problem, the following
procedure removes all clauses while preserving satisfiability:

1) Let q be a fresh predicate symbol. For each atom p(s⃗)
in the Herbrand universe: If J |= p(s⃗), add the clause
q ∨ p(s⃗); otherwise, add q ∨ ¬p(s⃗). Adding either clause
preserves satisfiability as both are blocked by q.

2) Since J is a model, for each ground instance Cσ, there
exists a clause q ∨ L with L ∈ Cσ. We can transform
C ∈ N into C ∨ ¬q, since ¬q is a GAL for C and N.

3) Consider the clause q ∨ L added by step 1. Since L is
ground and no clause q ∨ ¬L was added (since J is a
model), the only L-resolvents are against clauses added
by step 2. Since all of those clauses contain ¬q, the

resolvents are tautologies. Thus, each q ∨ L is blocked
and can be removed in turn.

4) The remaining clauses all contain the literal ¬q. They
can be removed by BCE as well.

The procedure is limited to the first-order logic without
equality, since step 3 is justified only if L is a predicate literal.
(Otherwise, L cannot block clause q ∨ L [16].) The procedure
also terminates only for finite Herbrand models.

Example 27: Consider the satisfiable clause set N = {r(x)∨
s(x), ¬r(a), ¬s(b)} and a Herbrand model J over {a,b, r,s}
such that r(b) and s(a) are the only true atoms in J. We
show how to remove all clauses in N using J by following
the procedure above.

Let NJ = {q ∨ ¬r(a), q ∨ r(b), q ∨ s(a), q ∨ ¬s(b)}. We
set N← N∪NJ. This preserves satisfiability since all clauses
in NJ are blocked. It is easy to check that ¬q is GAL for
every clause in N \NJ. The only substitutions that need to be
considered are {x ↦→ a} and {x ↦→ b} for r(x) ∨ s(x). So we
set N ← {¬q ∨ r(x) ∨ s(x), ¬q ∨ ¬r(a), ¬q ∨ ¬s(b)} ∪ NJ.
Clearly, all clauses in NJ are blocked, so we set N ← N \
NJ. All clauses remaining in N have a literal ¬q and can be
removed, leaving N empty as desired.

VI. IMPLEMENTATION

Hidden-literal-based, predicate, and blocked clause elimi-
nation all admit efficient implementations in a superposition
prover. In this section, we describe how to implement the
first two sets of techniques. For BCE, we refer to Kiesl et
al. [16]. All techniques are implemented in the Zipperposition
prover [31]. Zipperposition is designed for fast prototyping
of improvements to superposition, but it implements many of
the most successful heuristics from the E prover [32] and has
recently become quite competitive [33].

A. Hidden-Literal-Based Elimination

For HLBE, an efficient representation of HL(L,N) is cru-
cial. Because this set may be infinite, we underapproximate it
by restricting the length of the transitive chains via a parameter
Klen. Given the current clause set N, the finite map Imp[L′]
associates with each literal L′ a set of pairs (L,M) such that
L′ ↪→k L, where k≤ Klen and M is the multiset of clauses used
to derive L′ ↪→k L. Moreover, we consider only transitions
of type (1) (as per Definition 4). The following algorithm
maintains Imp dynamically, updating it as the prover derives
and deletes clauses. It depends on the global variable Imp and
the parameters Klen and Kimp.

procedure ADDIMPLICATION(La,Lc,C)
if Imp[Laσ] ̸= /0 for some renaming σ then
(La,Lc)← (Laσ,Lcσ)

if there are no L,L′,M,σ such that (L′,M) ∈ Imp[L],
5 Lσ= La, and L′σ= Lc then

for all (σ,M) such that (Lcσ,M) ∈ Imp[Laσ] do
erase all (L′,M′) such that M ⊆ M′ from Imp[Laσ]

for all L such that (L′,M) ∈ Imp[L]

236

and Laσ= L′ for some σ do
10 if |M| < Klen then

Imp[L]← Imp[L]∪{(Lcσ,M⊎{C})}
for all L such that Imp[L] ̸= /0

and Lσ= Lc for some σ do
Concl←{(L′σ,M⊎{C}) |

15 (L′,M) ∈ Imp[L], |M| < Klen}
Imp[La]← Imp[La]∪Concl

Congr←{(s ̸≈ t,{C}) | ∃u.Lc = u[s] ̸≈u[t]}
Imp[La]← Imp[La]∪{(Lc,{C})}∪Congr

procedure TRACKCLAUSE(C)
20 if C = L1 ∨ L2 then

ADDIMPLICATION(¬L1, L2, C)
ADDIMPLICATION(¬L2, L1, C)
if L2 = ¬L1σ for some nonidempotent σ then

for all i← 1 to Kimp do
25 L2← L2σ

ADDIMPLICATION(¬L1, L2, C)

procedure UNTRACKCLAUSE(C)
for all La,Lc,M such that (Lc,M) ∈ Imp[La] do

if C ∈ M then
30 erase (Lc,M) from Imp[La]

The algorithm views a clause L ∨ L′ as two implications
¬L−■→ L′ and ¬L′ −■→ L. It stores only one entry for all literals
equal up to variable renaming (line 2). Each implication La −■→
Lc represented by the clause is stored only if its generalization
is not present in Imp (line 4). Conversely, all instances of the
implication are removed (line 6).

Next, the algorithm finds each implication stored in Imp
that can be linked to La −■→ Lc: Either Lc becomes the
new consequent (line 9) or La becomes the new antecedent
(line 13). If Lc can be decomposed into u[s] ̸≈ u[t], rule (3)
of Definition 4 allows us to store s ̸≈ t in Imp[La] (line 18).
This is an exception to the idea that transitive chains should
use only rule (1). The application of rule (3) does not count
toward the bound Klen. If La is of the form u[s]≈ u[t], then
Imp could be extended so that Imp[s≈ t] = Imp[La], but this
would substantially increase Imp’s memory footprint.

In first-order logic, different instances of the same clause
can be used along a transitive chain. For example, the clause
C = ¬p(x) ∨ p(f(x)) induces p(x) ↪→i p(f i(x)) for all i. The
algorithm discovers such self-implications (line 23): For each
clause C of the form ¬L ∨ Lσ, where σ is some nonidem-
potent substitution, the entires (Lσ2,{C}), . . . ,(LσKimp+1,{C})
are added to Imp[L], where Kimp is a parameter.

To track and untrack clauses efficiently, we implement the
mapping Imp as a nonperfect discrimination tree [34]. Given
a query literal L, this indexing data structure efficiently finds
all literals L′ such that for some σ, L′σ= L and Imp[L′] ̸= /0.
We can use it to optimize all lookups except the one on line 9.
For this remaining lookup, we add an index Imp−1 that inverts
Imp, i.e., Imp−1[L] = {L′ | Imp[L′] = (L,M) for some M}. To
avoid sequentially going through all entries in Imp when the
prover deletes them, for each clause C we keep track of each

literal L such that C appears in Imp[L]. Finally, we limit the
number of entries stored in Imp[L] – by default, up to 48
pairs in each Imp[L] are stored.

Rules HLE and HTR have a simple implementation based
on Imp lookups. To implement UNITHLE and UNITHTR,
we maintain the index Unit, containing literals Lcσ, such
that (Lc,M) ∈ Imp[La] for some M and La and σ is the
most general unifier of L′ and La, for some unit clause {L′}.
The implementation of FLE and FLR also uses Unit: When
(L′,M) is added to Imp[L], we check if (¬L′,M′)∈ Imp[L] for
some M′. If so, ¬L is added to Unit.

In propositional logic, the conventional approach constructs
the binary implication graph for the clause set N [4], with
edges (¬L,L′) and (¬L′,L) whenever L ∨ L′ ∈ N. To avoid
traversing the graph repeatedly, solvers rely on timestamps to
discover connections between literals. This relies on syntactic
literal comparisons, which is very fast in propositional logic
but not in first-order logic, because of substitutions and con-
gruence.

B. Predicate Elimination

To implement portfolio predicate elimination, we maintain
a record for each predicate symbol p occurring in the problem
with the following fields: set of definition clauses for p,
set of nondefinition clauses in which p occurs once, and
set of clauses in which p occurs more than once. These
records are kept in a priority queue, prioritized by properties
such as presence of definition sets and number of estimated
resolutions. If p is the highest-priority symbol that is eligible
for SPE or DPE, we eliminate it by removing all the clauses
stored in p’s record from the proof state and by adding flat
resolvents to the passive set. Eliminating a symbol might make
another symbol eligible.

As an optimization, predicate elimination keeps track only
of symbols that appear at most Kocc times in the clause set. For
inprocessing, we use signals that the prover emits whenever a
clause is added to or removed from the proof state and update
the records. At the beginning of the 1st, (Kiter+1)st, (2Kiter+
1)st, . . . iteration of the given clause procedure’s loop body,
predicate elimination is systematically applied to the entire
proof state. The first application of inprocessing amounts to
preprocessing. By default, Kocc = 512 and Kiter = 10. The same
ideas and limits apply for blocked clause elimination.

The most important novel aspect of our predicate elimina-
tion implementation is recognizing the definition clauses for
symbol p in a clause set N, which is performed as follows:

1) Let G= {C |C=(¬)p(x⃗)∨C′,C ∈N, no variable repeats
in x⃗, and variables of C′ are among x⃗}. If G is empty,
report failure; otherwise continue.

2) Rename all clauses in G so that their only variables are x⃗.

3) Let ⌊a⌋ be a function that assigns a propositional variable
to each atom a. This function is lifted to literals by
assigning ⌊¬a⌋=¬x, if ⌊a⌋= x, and to clauses pointwise.
Furthermore, let E = {⌊C′⌋ | (¬)p(x⃗) ∨ C′ ∈G}. If E is
satisfiable, report failure. Else, let E′ be the unsatisfiable

237

core of E and G′ the set of corresponding first-order
clauses and continue.

4) If all resolvents in G′p⋊pG′¬p are tautologies, then G′ is
the definition set for symbol p. Else, report failure.

The invalidity of set E from step 3 is checked using a
SAT solver, which is already integrated in Zipperposition. As
modern theorem provers (such as E or Vampire) also use SAT
solvers, the method can easily be implemented.

During experimentation, we noticed that recognizing defi-
nitions of symbols that occur in the conjecture often harms
performance. Thus, Zipperposition recognizes definitions only
for the remaining symbols.

VII. EVALUATION

We measure the impact of our elimination techniques for
various values of their parameters. As a baseline, we use Zip-
perposition’s first-order portfolio mode, which runs the prover
in 13 configurations of heuristic parameters in consecutive
time slices. None of these configurations use our new tech-
niques. To evaluate a given parameter value, we fix it across
all 13 configurations and compare the results with the baseline.

The benchmark set consists of all 13 495 CNF and FOF
TPTP 7.3.0 theorems [17]. The experiments were carried out
on StarExec servers [35] equipped with Intel Xeon E5-2609
CPUs clocked at 2.40 GHz. The portfolio mode uses a
single CPU core with a CPU time limit of 180 s. The base
configuration solves 7897 problems. The values in the tables
indicate the number of problems solved minus 7897. Thus,
positive numbers indicate gains over the baseline. The best
result is shown in bold.

A. Hidden-Literal-Based Elimination

The first experiments use all implemented HLBE rules. To
avoid overburdening Zipperposition, we can enable an option
to limit the number of tracked clauses for hidden literals. Once
the limit has been reached, any request for tracking a clause
will be rejected until a tracked clause is deleted. We can choose
which kind of clauses are tracked: only clauses from the active
set A , only clauses from the passive set P , or both. We also
vary the maximal implication chain length Klen and the number
of computed self-implications Kimp.

In Zipperposition, every lookup for instances or general-
izations of s≈ t must be done once for each orientation of
the equation. To avoid this inefficiency, and also because
the implementation of hidden literals does not fully exploit
congruence, we can disable tracking clauses with at least one
functional literal. Clauses containing functional literals can
then still be simplified.

Figures 1 and 2 show the results, without and with func-
tional literal tracking enabled, for Klen = 2 and Kimp = 0.The
columns specify different limits on the number of tracked
clauses, with ∞ denoting that no limit is imposed. The rows
represent different kinds of tracked clauses. The results suggest
that tracking functional literals is not worth the effort but that
tracking predicate literals is. The best improvement is observed
when both active and passive clauses are tracked. Normally

Tracked clauses
250 500 1000 ∞

Active −14 −16 −8 −12
Passive +7 +10 +5 −35
Both +12 +10 +7 −45

Fig. 1. Impact of the number and kinds of tracked clauses on HLBE
performance, when only predicate literals are tracked

Tracked clauses
250 500 1000 ∞

Active −10 −14 −8 −18
Passive −5 −5 −14 −71
Both +2 −1 −8 −79

Fig. 2. Impact of the number and kinds of tracked clauses on HLBE
performance, when all literals are tracked

DISCOUNT-loop provers [26] such as Zipperposition do not
simplify active clauses using passive clauses, but here we see
that this can be effective. Figure 3 shows the impact of varying
Klen and Kimp, when 500 clauses from the entire proof state are
tracked. These results suggest that computing long implication
chains is counterproductive.

B. Predicate and Blocked Clause Elimination

For defined predicate elimination, the number of resolvents
grows exponentially with the number of occurrences of p. To
avoid this expensive computation, we limit the applicability
of PPE to proof states for which p is singular. According to
our informal experiments, full PPE, without this restriction,
generally performs less well.

Predicate elimination can be done using Khasidashvili and
Korovin’s criterion (K&K) or using our relaxed criterion with
different values of Ktol. Figure 4 shows the results for SPE and
PPE used as preprocessors. Our numbers corroborate Khasi-
dashvili and Korovin’s findings: SPE with K&K proves 70
more problems than the base, a 0.9% increase, comparable to
the 1.8% they observe when they combine SPE with additional
preprocessing. Remarkably, the number of additional proved
problems more than doubles when we use our criterion with
Ktol > 0, for both SPE and PPE.

Although this is not evident in Figure 4, varying Ktol
substantially changes the set of problems solved. For
example, when Ktol = 0, SPE proves 60 theorems not proved
using Ktol = 50. The effect weakens as Ktol grows. When
Ktol = 100, SPE proves only 13 problems not found when
Ktol = 200. Similarly, the set of problems proved by SPE and
PPE differs: When Ktol = 25, 14 problems are proved by PPE
but missed by SPE. Recognizing definition sets is useful:
PPE outperforms SPE regardless of the criterion.

Performing BCE and variable elimination until fixpoint
increases the performance of SAT solvers [14]. We can
check whether the same holds for superposition provers. In
this experiment, we use the relaxed criterion with Ktol = 25
and HLBE which tracks up to 500 clauses from any clause
set, Klen = 2, and Kimp = 0. We use each technique as
preprocessing and inprocessing.

238

Chain length Klen
1 2 4 8

Kimp = 0 +9 +10 +7 +5
Kimp = 1 +5 +11 +7 +4
Kimp = 2 +6 +11 +8 +8

Fig. 3. Impact of the parameters Klen and Kimp on HLBE performance

Relaxed with Ktol
K&K 0 25 50 100 200

SPE preproc. +70 +117 +154 +160 +154 +158
PPE preproc. +71 +124 +160 +164 +165 +162

Fig. 4. Impact of the choice of criterion on predicate elimination performance

The results are summarized in Figure 5, where the + sign
denotes the combination of techniques. We confirm the results
obtained by Kiesl et al. about the performance of BCE as
preprocessing: It helps prove 30 more problems from our
benchmark set, increasing the success rate by roughly 0.4%.
The same percentage increase was obtained Kiesl et al. Using
BCE as inprocessing, however, hurts performance, presumably
because of its incompatibility with the redundancy criterion.

For preprocessing, the combinations SPE+BCE and
PPE+BCE performed roughly on a par with SPE and PPE,
respectively. This stands in contrast to the situation with
SAT solvers, where such a combination usually helps.
It is also worth noting that the inprocessing techniques
never outperform their preprocessing counterparts. The last
column shows that combining HLBE with other elimination
techniques overburdens the prover.

C. Satisfiability by Blocked Clause Elimination

Kiesl et al. found that blocked clause elimination is espe-
cially effective on satisfiable problems. To corroborate their
results and ascertain whether a combination of predicate elim-
ination and blocked clause elimination increases the success
rate, we evaluate BCE on all 2273 satisfiable or TPTP FOF
and CNF problems. The hardware and CPU time limits are the
same as in the experiments above. Figure 6 presents the results.

The baseline establishes the satisfiability of 856 problems.
We consider only preprocessing techniques, since BCE
compromises refutational completeness—a saturation does not
guarantee that the original problem was satisfiable. We note
that recognizing definition sets makes almost no difference on
satisfiable problems. The sets of problems solved by BCE and
PPE differ—30 problems are solved by BCE and not by PPE.

VIII. CONCLUSION

We adapted several preprocessing and inprocessing elimi-
nation techniques implemented in modern SAT solvers so that
they work in a superposition prover. This involved lifting the
techniques to first-order logic with equality but also tailoring
them to work in tandem with superposition and its redundancy
criterion. Although SAT solvers and superposition provers
embody radically different philosophies, we found that the
lifted SAT techniques provide valuable optimizations.

HLBE
SPE PPE +PPE

BCE SPE +BCE PPE +BCE +BCE

Preprocessing +30 +154 +159 +160 +166 +162
Inprocessing −48 +140 +127 +146 +131 +127

Fig. 5. Performance of predicate and blocked clause elimination

HLBE
SPE PPE +PPE

BCE SPE +BCE PPE +BCE +BCE

Preprocessing +29 +46 +60 +47 +59 +55

Fig. 6. Performance of predicate and blocked clause elimination for estab-
lishing satisfiability

We see several avenues for future work. First, the implemen-
tation of hidden literals could be extended to exploit equality
congruence. Second, although inprocessing blocked clause
elimination is incomplete in general, we hope to achieve refu-
tational completeness for a substantial fragment of it. Third,
predicate and blocked clause elimination, which thrives on the
absence of clauses from the proof state, could be enhanced
by tagging and ignoring generated clauses that have not yet
been used to subsume or simplify untagged clauses. Fourth,
predicate and blocked clause elimination could be extended
to work with functional literals. Fifth, more SAT techniques
could be adapted, including bounded variable addition [36]
and blocked clause addition [37]. Sixth, the techniques we
covered could be adapted to work with other first-order calculi,
or generalized further to work with higher-order calculi such
as combinatory superposition [38] and λ-superposition [39].

A. Acknowledgment

We are grateful to the maintainers of StarExec for letting
us use their service. Uwe Waldmann participated in the search
for a counterexample to completeness of BCE as inprocessing
and confirmed that Example 23 is correct. He also suggested
major simplifications and helped us debug the proofs of the
claims about predicate elimination. Anne Baanen helped us
define the nonclassical logic used to disallow splitting. Ahmed
Bhayat, Armin Biere, Mathias Fleury, Benjamin Kiesl, and
the anonymous reviewers made some useful comments on our
manuscript, and Mark Summerfield suggested many textual
improvements. We thank them all.

Vukmirović and Blanchette’s research has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation pro-
gram (grant agreement No. 713999, Matryoshka). Blanchette’s
research has also received funding from the Netherlands
Organization for Scientific Research (NWO) under the Vidi
program (project No. 016.Vidi.189.037, Lean Forward). Heule
is supported by the National Science Foundation (NSF) under
grant CCF-2015445.

239

REFERENCES

[1] J. P. Marques-Silva, I. Lynce, and S. Malik, “Conflict-driven clause
learning SAT solvers,” in Handbook of Satisfiability, ser. Frontiers in
Artificial Intelligence and Applications, A. Biere, M. J. H. Heule, H. van
Maaren, and T. Walsh, Eds. IOS Press, 2009, vol. 185, pp. 131–153.

[2] L. Bachmair and H. Ganzinger, “Rewrite-based equational theorem
proving with selection and simplification,” J. Log. Comput., vol. 4, no. 3,
pp. 217–247, 1994.

[3] M. J. H. Heule, M. Järvisalo, and A. Biere, “Clause elimination
procedures for CNF formulas,” in LPAR-17, ser. LNCS, C. G. Fermüller
and A. Voronkov, Eds., vol. 6397. Springer, 2010, pp. 357–371.

[4] ——, “Efficient CNF simplification based on binary implication graphs,”
in SAT 2011, ser. LNCS, K. A. Sakallah and L. Simon, Eds., vol. 6695.
Springer, 2011, pp. 201–215.

[5] J. W. Freeman, “Improvements to propositional satisfiability search
algorithms,” Ph.D. dissertation, University of Pennsylvania, 1995.

[6] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” J. ACM, vol. 7, no. 3, pp. 201–215, 1960.

[7] S. Subbarayan and D. K. Pradhan, “NiVER: Non-increasing variable
elimination resolution for preprocessing SAT instances,” in SAT 2004,
ser. LNCS, H. H. Hoos and D. G. Mitchell, Eds., vol. 3542. Springer,
2004, pp. 276–291.

[8] P. Chatalic and L. Simon, “ZRES: The old Davis–Putnam procedure
meets ZBDD,” in CADE-18, ser. LNCS, D. A. McAllester, Ed., vol.
1831. Springer, 2000, pp. 449–454.

[9] A. Biere, “Resolve and expand,” in SAT 2004, ser. LNCS, H. H. Hoos
and D. G. Mitchell, Eds., vol. 3542. Springer, 2004, pp. 59–70.

[10] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in SAT 2005, ser. LNCS, F. Bacchus and
T. Walsh, Eds., vol. 3569. Springer, 2005, pp. 61–75.

[11] D. M. Gabbay and H. J. Ohlbach, “Quantifier elimination in second-
order predicate logic,” in KR ’92, B. Nebel, C. Rich, and W. R. Swartout,
Eds. Morgan Kaufmann, 1992, pp. 425–435.

[12] H. J. Ohlbach, “SCAN—elimination of predicate quantifiers,” in CADE-
13, ser. LNCS, M. A. McRobbie and J. K. Slaney, Eds., vol. 1104.
Springer, 1996, pp. 161–165.

[13] Z. Khasidashvili and K. Korovin, “Predicate elimination for preprocess-
ing in first-order theorem proving,” in SAT 2016, ser. LNCS, N. Creignou
and D. L. Berre, Eds., vol. 9710. Springer, 2016, pp. 361–372.

[14] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,” in
TACAS 2010, ser. LNCS, J. Esparza and R. Majumdar, Eds., vol. 6015.
Springer, 2010, pp. 129–144.

[15] A. Biere, F. Lonsing, and M. Seidl, “Blocked clause elimination
for QBF,” in CADE-23, ser. LNCS, N. Bjørner and V. Sofronie-
Stokkermans, Eds., vol. 6803. Springer, 2011, pp. 101–115.

[16] B. Kiesl, M. Suda, M. Seidl, H. Tompits, and A. Biere, “Blocked clauses
in first-order logic,” in LPAR-21, ser. EPiC Series in Computing, T. Eiter
and D. Sands, Eds., vol. 46. EasyChair, 2017, pp. 31–48.

[17] G. Sutcliffe, “The TPTP problem library and associated infrastructure—
from CNF to TH0, TPTP v6.4.0,” J. Autom. Reason., vol. 59, no. 4, pp.
483–502, 2017.

[18] P. Vukmirović, J. Blanchette, and M. J. H. Heule, “SAT-inspired
eliminations for superposition (technical report),” Technical report, 2021,
https://matryoshka-project.github.io/pubs/satelimsup report.pdf.

[26] J. Avenhaus, J. Denzinger, and M. Fuchs, “DISCOUNT: A system for
distributed equational deduction,” in RTA-95, ser. LNCS, J. Hsiang, Ed.,
vol. 914. Springer, 1995, pp. 397–402.

[19] J. H. Gallier, Logic for Computer Science: Foundations of Automatic
Theorem Proving. Wiley, 1987.

[20] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge
University Press, 1998.

[21] L. Bachmair and H. Ganzinger, “Resolution theorem proving,” in
Handbook of Automated Reasoning, J. A. Robinson and A. Voronkov,
Eds. Elsevier and MIT Press, 2001, vol. I, pp. 19–99.

[22] A. Riazanov and A. Voronkov, “Splitting without backtracking,” in IJCAI
2001, B. Nebel, Ed. Morgan Kaufmann, 2001, pp. 611–617.

[23] A. Fietzke and C. Weidenbach, “Labelled splitting,” Ann. Math. Artif.
Intell., vol. 55, no. 1–2, pp. 3–34, 2009.

[24] A. Voronkov, “AVATAR: The architecture for first-order theorem
provers,” in CAV 2014, ser. LNCS, A. Biere and R. Bloem, Eds., vol.
8559. Springer, 2014, pp. 696–710.

[25] W. McCune and L. Wos, “Otter—the CADE-13 competition incarna-
tions,” J. Autom. Reason., vol. 18, no. 2, pp. 211–220, 1997.

[27] A. Nonnengart and C. Weidenbach, “Computing small clause normal
forms,” in Handbook of Automated Reasoning, J. A. Robinson and
A. Voronkov, Eds. Elsevier and MIT Press, 2001, vol. I, pp. 335–
367.

[28] M. Heule, M. Seidl, and A. Biere, “A unified proof system for QBF
preprocessing,” in IJCAR 2014, ser. LNCS, S. Demri, D. Kapur, and
C. Weidenbach, Eds., vol. 8562. Springer, 2014, pp. 91–106.

[29] B. Kiesl and M. Suda, “A unifying principle for clause elimination in
first-order logic,” in CADE-26, ser. LNCS, L. de Moura, Ed., vol. 10395.
Springer, 2017, pp. 274–290.

[30] M. Fitting, First-Order Logic and Automated Theorem Proving, 2nd ed.,
ser. Graduate Texts in Computer Science. Springer, 1996.

[31] S. Cruanes, “Superposition with structural induction,” in FroCoS 2017,
ser. LNCS, C. Dixon and M. Finger, Eds., vol. 10483. Springer, 2017,
pp. 172–188.

[32] S. Schulz, S. Cruanes, and P. Vukmirović, “Faster, higher, stronger: E
2.3,” in CADE-27, ser. LNCS, P. Fontaine, Ed., vol. 11716. Springer,
2019, pp. 495–507.

[33] G. Sutcliffe, “The CADE-27 Automated Theorem Proving System
Competition—CASC-27,” AI Commun., vol. 32, no. 5-6, pp. 373–389,
2020.

[34] I. V. Ramakrishnan, R. C. Sekar, and A. Voronkov, “Term indexing,”
in Handbook of Automated Reasoning. Elsevier and MIT Press, 2001,
vol. II, pp. 1853–1964.

[35] A. Stump, G. Sutcliffe, and C. Tinelli, “StarExec: A cross-community
infrastructure for logic solving,” in IJCAR 2014, ser. LNCS, S. Demri,
D. Kapur, and C. Weidenbach, Eds., vol. 8562. Springer, 2014, pp.
367–373.

[36] N. Manthey, M. Heule, and A. Biere, “Automated reencoding of Boolean
formulas,” in HVC 2012, ser. LNCS, A. Biere, A. Nahir, and T. E. J.
Vos, Eds., vol. 7857. Springer, 2012, pp. 102–117.

[37] O. Kullmann, “On a generalization of extended resolution,” Discr. Appl.
Math., vol. 96–97, pp. 149–176, 1999.

[38] A. Bhayat and G. Reger, “A combinator-based superposition calculus
for higher-order logic,” in IJCAR 2020, Part I, ser. LNCS, N. Peltier
and V. Sofronie-Stokkermans, Eds., vol. 12166. Springer, 2020, pp.
278–296.

[39] A. Bentkamp, J. Blanchette, S. Tourret, P. Vukmirović, and U. Wald-
mann, “Superposition with lambdas,” J. Autom. Reason., to appear.

240

https://matryoshka-project.github.io/pubs/satelimsup_report.pdf

Formal Methods in Computer-Aided Design 2021

SAT Solving in the Serverless Cloud
Alex Ozdemir§ , Haoze Wu§ , and Clark Barrett

Stanford University, USA.
{aozdemir, haozewu, barrett}@cs.stanford.edu

Abstract—In recent years, cloud service providers have sold
computation in increasingly granular units. Most recently,
“serverless” executors run a single executable with restricted
network access and for a limited time. The benefit of these
restrictions is scale: thousand-way parallelism can be allocated in
seconds, and CPU time is billed with sub-second granularity. To
exploit these executors, we introduce gg-SAT: an implementation
of divide-and-conquer SAT solving. Infrastructurally, gg-SAT
departs substantially from previous implementations: rather than
handling process or server management itself, gg-SAT builds
on the gg framework, allowing computations to be executed on
a configurable backend, including serverless offerings such as
AWS Lambda. Our experiments suggest that when run on the
same hardware, gg-SAT performs competitively with other D&C
solvers, and that the 1000-way parallelism it offers (through AWS
Lambda) is useful for some challenging SAT instances.

Index Terms—parallel SAT, serverless computing, divide and
conquer.

I. INTRODUCTION

Modern Boolean satisfiability (SAT) solvers have been
successfully applied to important practical and theoretical
domains, such as hardware verification, planning, and math-
ematics. Progress in the scalability of these tools has come
from both algorithmic improvements and better leveraging of
multi-processing hardware. While the number of processors on
a single machine is limited, and maintaining a warm cluster
to run occasional tasks is expensive, cloud-computing is a
promising approach for leveraging on-demand parallelism at
low cost.

Recent cloud-computing services are offered at increasingly
fine granularity and low latency. Instead of renting a server
or a cluster, one can now rent state-free executors, which
can be rapidly and plentifully provisioned at a low price—
a paradigm referred to as serverless computing. Serverless
executors generally have restricted network access, limited
memory, and limited runtime. For example, Amazon’s Lambda
service rents a Linux container to run arbitrary x86-64 executa-
bles for up to 15 minutes, with less than a second of startup
time and no charge when idle. Similar services are offered
by Google, Microsoft, Alibaba, and IBM. Previous research
has used serverless computing as a “burstable supercomputer”
for video processing [2], neural network training [25], and
more [13]–[15], [33]. These successes beg the question: “can
serverless computing be leveraged for massively parallel SAT-
solving?”

There are two traditional parallel SAT-solving paradigms:
1) the portfolio approach, where each thread runs a different

§Equal contribution

SAT solver on the same instance; and 2) the divide-and-
conquer (D&C) approach, where a problem is partitioned into
independent sub-problems to be solved in parallel. While the
former approach in combination with clause-sharing leads
to surprisingly good performance for small portfolio sizes,
the benefits decrease as parallel computing power increases,
and this approach is also not well aligned with the runtime
and communication limitations of serverless executors. In this
paper, we follow the second approach and present gg-SAT,
a divide-and-conquer (D&C) SAT solver compatible with
serverless computing. gg-SAT makes black-box use of a
solver (e.g., CaDiCaL [8]) and a divider (e.g., march [28])
to solve and partition the problems, respectively. Problem
division is performed throughout the search, whenever a sub-
problem reaches a timeout imposed by either the user or the
cloud-service. Infrastructurally, gg-SAT differs substantially
from previous D&C implementations: rather than handling
process or server management itself, gg-SAT builds on top
of the gg framework for parallel computation. By expressing
D&C search using gg, gg-SAT can execute that search on
any mixture of user-specified backends; supported backends
currently include local processes, remote machines, and server-
less cloud-services such as AWS Lambda and Google Cloud
Functions. To implement gg-SAT, we designed and built
pygg, a novel and idiomatic Python interface to gg. We
expect that pygg will be independently useful for other future
projects, perhaps including parallel SMT solving.

We evaluate gg-SAT using local processes and AWS
Lambda as backends. Local experiments suggest that gg-SAT
performs competitively with the original Cube-and-Conquer
prototype [19], a recent reimplementation of it [18], and
a portfolio solver PLingeling [7], on benchmarks taken
from [18], [19]. Cloud experiments suggest that gg-SAT
unlocks levels of parallelism which are useful for solving some
challenging instances from the 2020 SAT Competition.

II. BACKGROUND & RELATED WORK

A. Parallel SAT

Propositional satisfiability is an old problem; we refer the
reader to the handbook of satisfiability [9] for an introduction.
Parallel SAT-solving also has a lengthy history, with two main
approaches.

The first approach is portfolio solving, pioneered in [16],
[22], [34]. In a portfolio solver, each thread runs a differ-
ent solver or configuration on the same original formula.
An instance is solved as quickly as the best individual
solver for that instance. Portfolio solvers include: ManySAT

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 33 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-0181-6752
https://orcid.org/0000-0002-5077-144X
https://orcid.org/0000-0002-9522-3084
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_33
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_33
https://creativecommons.org/licenses/by/4.0/

[17], CryptoMinisat [32], PLingeling [7], Syrup [3],
HordSAT [6], and Painless [26]. Some portfolio solvers
also use clause sharing [11], [31]: sharing learnt clauses
among the different solvers.

Another approach to parallelizing SAT is divide-and-
conquer (D&C). D&C solvers attempt to divide a SAT instance
into easier SAT instances, which can then be solved in parallel
by a base solver. Typically, D&C solvers divide instances
by partitioning the search space. The important questions—
how and when to divide—are answered heuristically, typically
with heuristics derived from look-ahead solvers and CDCL
solvers. There has been substantial work on D&C SAT solv-
ing [10], [23], [24], including: Psato [35], Painless [27],
and AMPHAROS [29]. One prominent approach, “cube-and-
conquer” [19] uses a lookahead solver to divide instances and
a CDCL solver to solve subproblems; this approach has been
successful for large mathematical problems [21].

B. Distributed SAT

A number of systems attempt parallel SAT solving using
a cluster of computers, possibly rented from the cloud. Most
of these systems (Qsat [30], HordSAT [6], TopoSAT [12],
SLIME [20]) follow the portfolio approach. One recent system
(Paracooba [18]) follows the D&C approach. All of these
systems operate in the “cluster” computational model, in which
long-running processes on each node communicate over the
network.

C. Serverless Computing

Cloud service providers, such as Microsoft Azure, rent out
computational resources including compute, storage, and ac-
celerators. Over the past decade, service providers have rented
compute with increasing granularity, scale, and availability.
Their recent offerings include serverless services, which run
a single executable for a limited time, with limited memory
and restricted network access. While restricted, serverless
computing has strengths: it offers massive parallelism that can
be rapidly provisioned, with fine-grained billing. For example,
AWS Lambda [4] runs executables for up to 15 minutes, with
3GB of memory and 500MB of disk space; the runs are billed
at sub-second granularity, and a thousand executors can be
provisioned in seconds.

While serverless computing was designed for operational
convenience, recent work has explored using it as a “burstable
supercomputer-on-demand” [13], for tasks such as video pro-
cessing [2], ray tracing [14], and machine learning [25].
One system, gg [13], provides a general framework for
leveraging minimal executors (including serverless ones). It
uses a configurable backend (such as a local machine, remote
machines, or serverless executors) to evaluate a programmer-
defined dependency graph of thunks: programs that take files
as inputs. Thunks can output files or new thunks; the latter
causes the dependency graph to dynamically grow. Dynamic
dependency graphs can express many applications; gg has
been used for tasks such as neural network verification [33],
compilation [13], and video encoding [15].

S(ϕ, t)

D(3, ϕ)/M

S(ϕ0, ft)

UNSAT

S(ϕ1, ft) S(ϕ2, ft)

(a) The D&C search tree. ϕ’s solve query times out and is split
into three sub-problems, one of which has been solved.

S(·, t) M

S(·, ft) S(·, ft) S(·, ft)

D(3, ·)

ϕ

ϕ0 ϕ1 ϕ2

initial expanded

(b) The gg dependency graph. Dashed arrows denote depen-
dencies; if a node produces multiple outputs, the dependency
edges are labelled. The solid arrow denotes a thunk that returns
another thunk. Shaded thunks have been evaluated.

Fig. 1: A D&C search snapshot and its corresponding depen-
dency graph. In both diagrams, S, M, and D denote solve,
merge, and divide, respectively.

III. DESCRIPTION

A. Algorithm

gg-SAT uses a D&C algorithm with multiplicatively grow-
ing timeouts. It is parameterized by a base solver and a divider.
The base solver can be any SAT solver. The divider’s job is to
partition a problem into a requested number of sub-problems
such that the disjunction of the sub-problems is equisatisfiable
with the original problem. Other parameters to the algorithm
include the timeout t, the timeout growth factor f , the number
of initial partitions pi, and the number of partitions for each
sub-problem, ps.

Figure 1a illustrates the solving of formula ϕ as a tree, with
pi = 1 and ps = 3. The number of initial divisions is 1,
so the base solver first attempts the original problem ϕ with
timeout t. This times out, so the divider runs and splits ϕ into
sub-problems (ϕ0, ϕ1, ϕ2), each of which is attempted with
timeout ft. The sub-problem ϕ0 is determined to be UNSAT;
other sub-problems have yet to be solved, and may be divided
again. The process ends when all sub-problems are determined
to be UNSAT or any sub-problem is determined to be SAT.

B. Implementation

To apply D&C to SAT, we must instantiate its primitive
notions (sub-problems, solving, and dividing) for SAT. We
follow previous work [19], [24] by using a lookahead solver
(march) to build sub-problems described by cubes (lists of
asserted literals) and by using a CDCL solver (CaDiCaL [8])
to attempt to solve problems and sub-problems. march can

242

D&C
driver

gg
reductor

AWS Lambda
executor

subprocess
executor

ϕ
thunks

results

gg

Fig. 2: gg-SAT expresses D&C search as a dynamically expanding dependency graph and uses gg to evaluate that graph
using a back-end of the user’s choice.

produce a large number of cubes (e.g., millions) and can take a
long time. This was appropriate for cube-and-conquer (which
ran march exactly once per problem) but is inappropriate for
divide-and-conquer (which runs march many times seeking
a small number of sub-problems each time). To address this,
we configure march with a maximum cube length, which
substantially reduces its runtime.

Our D&C implementation uses the gg framework for par-
allel execution [13]. Recall (§II) that using gg requires the
computation to be expressed as a dependency graph of thunks,
each of which is an individual executable. For D&C, there are
three kinds of thunks. Solve thunks run the base solver; if it
returns a result, the thunk returns that result as well; otherwise,
the solve thunk returns a merge thunk, which combines the
solutions to sub-problems that are produced by a divide thunk,
which runs the divider. Figure 1 illustrates the relationship
between an in-progress D&C search and the gg dependency
graph. When D&C attempts to solve S(ϕ, t), the dependency
graph contains only the nodes left of the dotted line. However,
when that query times out, the corresponding thunk returns 5
new thunks: a divide thunk to create 3 sub-problems, three
solve thunks to (attempt to) solve them, and a merge thunk,
whose output should be taken as the output of the original S
thunk.

By expressing D&C search as a gg dependency graph,
we can use gg to execute that search using a back-end (or
combination of back-ends) of the user’s choice. Figure 2
visualizes the different runtime components of the system.
Our driver translates the D&C search tree into a graph. The
reductor analyzes this graph, searching for thunks whose
dependencies are fully evaluated; it sends these to a configured
backend. When an executor returns values or subgraphs, the
reductor updates its graph. When the graph is reduced to a
single value, the reductor returns that value to the driver. For
more details about the execution process, see [13].

To ease the development of gg-SAT, we built pygg, a
python library for building dynamic gg dependency graphs.
While gg is conceptually simple, using it typically requires
programmers to write many different shell scripts for tasks
such as embedding values in the gg graph, creating different

kinds of thunks, and reformatting files for different solvers.
With pygg, the entire computation can be expressed as a
single python script. Different kinds of thunks are just different
python functions, each of which can return basic python
values, one or more files, or the output of some combination
of other thunks. With pygg, our D&C implementation fits in
a single python script of less than 200 lines. pygg has been
merged upstream into the gg project.

IV. EXPERIMENTS

gg-SAT is the first SAT solver targeting serverless com-
putation, so we cannot compare with previous tools on our
infrastructure of interest. Nonetheless, we perform two exper-
iments. First, we compare gg-SAT with other multithreaded
solvers on a single multicore machine, to validate the general
architecture and performance of gg-SAT. Second, we use
1000 serverless executors to attempt unsolved benchmarks
from the SAT 2020 competition, showing the utility of the
massive parallelism that gg-SAT unlocks.

A. Local experiment

We compare with the default configurations of three parallel
solvers: 1) the original Cube-and-Conquer prototype (denoted
CnC) 1 [19]; 2) Paracooba2 [18], a recent Cube-and-
Conquer re-implementation that is optimized for distributed
computing; 3) Treengeling 3 [8], a divide-and-conquer
SAT solver; and 4) PLingeling [8], a state-of-the-art port-
folio SAT solver. We evaluate on the benchmarks reported in
[18], [19]. We run gg-SAT with pi = 64, ps = 4, t = 10,
and f = 1.5, a set of parameters empirically determined to
work well. For the other four solvers, we use the default
parameters except that the number of threads is set to 64.
Our testbed machines have two 2.70GHz Xeon Platinum 8280
CPUs, running CentOS 7. Each job is run with a 256 GB
memory limit, and a 1-hour wall-clock timeout.

Table I shows the solvers’ wall-clock runtime for each
benchmark. Given the small set of benchmarks, we can

1https://github.com/marijnheule/CnC/tree/ee8f8aab3729b46bc92dc
2https://github.com/maximaximal/Paracooba/tree/d905b67304eb780
3https://github.com/arminbiere/lingeling/tree/7d5db72420b95ab (same for

PLingeling)

243

https://github.com/marijnheule/CnC/tree/ee8f8aab3729b46bc92dc
https://github.com/maximaximal/Paracooba/tree/d905b67304eb780
https://github.com/arminbiere/lingeling/tree/7d5db72420b95ab

TABLE I: Runtime (s) of gg-SAT, CnC, Paracooba, Treengeling, and PLingeling on the benchmarks reported in
[18], [19]

benchmark Result gg-SAT CnC Paracooba Treengeling PLingeling

9dlx vliw at b iq8 UNSAT 850 – 966 – 155
9dlx vliw at b iq9 UNSAT 2830 – 1302 – 222
AProVE07-25 UNSAT 599 – 2091 1596 –
cruxmiter32.cnf UNSAT 717 496 – 2078 –
dated-5-19-u UNSAT 1723 436 1819 891 1030
eq.atree.braun.12 UNSAT 466 170 465 384 605
eq.atree.braun.13 UNSAT 3225 826 – 1615 1517
gss-24-s100 SAT 1166 – – 1618 335
gss-26-s100 SAT 3509 – – 560 –
gus-md5-14 – – – – – –
ndhf xits 09 UNS UNSAT 948 – – – 1633
rbcl xits 09 UNK UNSAT 629 – – – 2965
rpoc xits 09 UNS UNSAT 331 – – – 1267
sortnet-8-ipc5-h19 SAT – – 3008 – 225
total-10-17-u UNSAT 1098 388 919 310 666
total-5-15-u UNSAT – 1440 – 3253 –

draw only limited conclusions. Nonetheless, the results sug-
gest gg-SAT’s performance is reasonable. It solves more
benchmarks than the other three divide-and-conquer solvers,
corroborating past research [1] that interleaving look-ahead
with CDCL can be beneficial. It also solves more than
PLingeling, suggesting that the divide-and-conquer ap-
proach can be preferable to the portfolio approach in some
cases. Note, however, that each other solver can solve at
least one benchmark that gg-SAT cannot, suggesting that the
approaches are complementary.

B. Serverless experiment

Our second experiment demonstrates the utility of the
thousand-way parallelism that gg-SAT makes convenient. We
find that with this parallelism, gg-SAT can solve challenging
instances that are out of reach for solvers running at lower
levels of parallelism.

We sample 8 instances from the Cloud track of the
SAT Competition 2020 [5], none of which were solved
during the competition.4 As summarized in Table II, four
of the five solvers from the previous section (using the
same configurations) are unable to solve any of these in-
stances within 4 hours. Treengeling solves one instance,
Steiner-81-21-bce, in 9331 seconds. However, with
gg-SAT running on AWS Lambda with 1000-way paral-
lelism, we find that three instances: Steiner-81-21-bce,
bv-term-small-rw_350.smt2, and mulhs16.smt2
are UNSAT in 2559, 1455, and 2866 seconds respectively.
For AWS Lambda, we configure gg-SAT with pi = 1024,
ps = 8, t = 10, and f = 1.5.5

4Steiner-81-21-bce, abw-I-ash85.mtx-w24,
ccp-s8-facto4, bv-term-small-rw_350.smt2,
Steiner-405-71-bce, mulhs16.smt2,
LED_round_29-32_faultAt_29_fault_injections_5_
seed_1579630418, PRESENT_round_1-32_faultAt_30_
fault_injections_10_seed_1579630418

5Our experiment is incomparable with the results of the 2020 SAT cloud
track. The competition environment differs substantially from our testbed; it
uses 1600 cores, 20 minutes, and different hardware.

TABLE II: Solver performance on 8 hard instances from the
SAT Competition 2020

Solver Executor Parallelism Time Limit (h) Solved

CnC local threads 64 4 0
Paracooba local threads 64 4 0
Treengeling local threads 64 4 1
PLingeling local threads 64 4 0
gg-SAT local threads 64 4 0
gg-SAT AWS Lambda 1000 1 3

V. DISCUSSION

We have presented gg-SAT, a parallel D&C SAT solver
compatible with serverless-computing. gg-SAT is built on top
of gg, an infrastructure for evaluating parallel computations.
gg-SAT appears competitive with other parallel SAT solvers,
and easily unlocks ad-hoc large-scale parallelism through ex-
ecution on serverless cloud-services. This massive parallelism
appears to be effective in solving some challenging instances.
To implement gg-SAT, we also built pygg, a novel python
interface to gg, which we hope will be useful for other
applications, such as parallel SMT solving.

Future Work: gg-SAT itself could be substantially im-
proved. Currently, its search strategy (e.g., how many sub-
problems to create, when to re-divide) is independent of the
number of idle workers and the number of unsolved problems.
This can cause one of two undesirable dynamics: most workers
sitting idle while a few tackle challenging sub-problems (that
would ideally be immediately divided) or too much time being
spent re-dividing (even though all workers are already busy).
In the future, we hope to adjust the search strategy depending
on the current workload of the system, dividing more when
workers are idle, and less when they are not. We suspect that
this will improve performance while also reducing the number
of parameters for the system.

Other future directions for gg-SAT include proof-
generation, new dividers, and trying to retain useful clauses
from failed base solver attempts.

244

REFERENCES

[1] T. Ahmed, O. Kullmann, and H. Snevily. On the van der Waerden
numbers w (2; 3, t). Discrete Applied Mathematics, 174:27–51, 2014.

[2] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter. Sprocket: A
serverless video processing framework. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC ’18, page 263–274, 2018.

[3] G. Audemard and L. Simon. Lazy clause exchange policy for parallel
sat solvers. In International Conference on Theory and Applications of
Satisfiability Testing, pages 197–205. Springer, 2014.

[4] AWS lambda. https://docs.aws.amazon.com/lambda/index.html.
[5] T. Balyo, N. Froleyks, M. J. Heule, M. Iser, M. Järvisalo, and M. Suda.

Proceedings of sat competition 2020: Solver and benchmark descrip-
tions. 2020.

[6] T. Balyo, P. Sanders, and C. Sinz. Hordesat: A massively parallel port-
folio sat solver. In International Conference on Theory and Applications
of Satisfiability Testing, pages 156–172. Springer, 2015.

[7] A. Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Enter-
ing the SAT Competition 2017. In T. Balyo, M. Heule, and M. Järvisalo,
editors, Proc. of SAT Competition 2017 – Solver and Benchmark
Descriptions, volume B-2017-1 of Department of Computer Science
Series of Publications B, pages 14–15. University of Helsinki, 2017.

[8] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020. In T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo,
and M. Suda, editors, Proc. of SAT Competition 2020 – Solver and
Benchmark Descriptions, volume B-2020-1 of Department of Computer
Science Report Series B, pages 51–53. University of Helsinki, 2020.

[9] A. Biere, M. Heule, and H. van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[10] W. Blochinger, C. Sinz, and W. Küchlin. Parallel propositional satisfia-
bility checking with distributed dynamic learning. Parallel Computing,
29(7):969–994, 2003.

[11] W. Chrabakh and R. Wolski. Gridsat: Design and implementation of a
computational grid application. Journal of Grid Computing, 4(2):177,
2006.

[12] T. Ehlers and D. Nowotka. Tuning parallel sat solvers. Proceedings of
Pragmatics of SAT, 59:127–143, 2019.

[13] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein. From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional containers. In 2019
USENIX Annual Technical Conference, USENIX ATC 2019, pages 475–
488, 2019.

[14] S. Fouladi and B. Shacklett. R2-t2. https://github.com/r2t2-project/r2t2.
[15] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,

R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein. Encoding,
fast and slow: Low-latency video processing using thousands of tiny
threads. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 363–376, Boston, MA, Mar. 2017.
USENIX Association.

[16] C. P. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence,
126(1-2):43–62, 2001.

[17] Y. Hamadi, S. Jabbour, and L. Sais. Manysat: a parallel sat solver.
Journal on Satisfiability, Boolean Modeling and Computation, 6(4):245–
262, 2010.

[18] M. Heisinger, M. Fleury, and A. Biere. Distributed cube and conquer
with paracooba. In International Conference on Theory and Applications
of Satisfiability Testing, pages 114–122. Springer, 2020.

[19] M. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In Haifa Verification
Conference, volume 7261 of Lecture Notes in Computer Science, pages
50–65. Springer, 2011.

[20] M. J. Heule, M. Järvisalo, and M. Suda. Proceedings of sat race 2019:
Solver and benchmark descriptions. 2019.

[21] M. J. H. Heule, O. Kullmann, and V. W. Marek. Solving and verifying
the boolean pythagorean triples problem via cube-and-conquer. In SAT,
volume 9710 of Lecture Notes in Computer Science, pages 228–245.
Springer, 2016.

[22] B. A. Huberman, R. M. Lukose, and T. Hogg. An economics approach
to hard computational problems. Science, 275(5296):51–54, 1997.

[23] A. E. Hyvärinen, T. Junttila, and I. Niemelä. A distribution method
for solving sat in grids. In International conference on theory and
applications of satisfiability testing, pages 430–435. Springer, 2006.

[24] A. E. J. Hyvärinen, T. Junttila, and I. Niemelä. Partitioning sat instances
for distributed solving. In C. G. Fermüller and A. Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, pages
372–386, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[25] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy
the cloud: Distributed computing for the 99In Proceedings of the 2017
Symposium on Cloud Computing, SoCC ’17, page 445–451, New York,
NY, USA, 2017. Association for Computing Machinery.

[26] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon. Painless: a framework
for parallel sat solving. In International Conference on Theory and
Applications of Satisfiability Testing, pages 233–250. Springer, 2017.

[27] L. Le Frioux, S. Baarir, J. Sopena, and F. Kordon. Modular and efficient
divide-and-conquer sat solver on top of the painless framework. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 135–151. Springer, 2019.

[28] S. Mijnders, B. De Wilde, and M. Heule. Symbiosis of search and
heuristics for random 3-sat. arXiv preprint arXiv:1402.4455, 2014.

[29] S. Nejati, Z. Newsham, J. Scott, J. H. Liang, C. Gebotys, P. Poupart,
and V. Ganesh. A propagation rate based splitting heuristic for divide-
and-conquer solvers. In International Conference on Theory and
Applications of Satisfiability Testing, pages 251–260. Springer, 2017.

[30] Y. Ngoko, C. Cérin, and D. Trystram. Solving sat in a distributed cloud:
a portfolio approach. International Journal of Applied Mathematics and
Computer Science, 29(2):261–274, 2019.

[31] C. Sinz, W. Blochinger, and W. Küchlin. Pasat—parallel sat-checking
with lemma exchange: Implementation and applications. Electronic
Notes in Discrete Mathematics, 9:205–216, 2001.

[32] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryp-
tographic problems. In O. Kullmann, editor, Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT
2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584
of Lecture Notes in Computer Science, pages 244–257. Springer, 2009.

[33] H. Wu, A. Ozdemir, A. Zeljić, K. Julian, A. Irfan, D. Gopinath,
S. Fouladi, G. Katz, C. Pasareanu, and C. Barrett. Parallelization
techniques for verifying neural networks. In 2020 Formal Methods in
Computer Aided Design (FMCAD), pages 128–137. IEEE, 2020.

[34] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Satzilla: portfolio-
based algorithm selection for sat. Journal of artificial intelligence
research, 32:565–606, 2008.

[35] H. Zhang, M. P. Bonacina, and J. Hsiang. Psato: a distributed propo-
sitional prover and its application to quasigroup problems. Journal of
Symbolic Computation, 21(4):543–560, 1996.

245

https://docs.aws.amazon.com/lambda/index.html
https://github.com/r2t2-project/r2t2

Formal Methods in Computer-Aided Design 2021

Induction with Recursive Definitions in
Superposition

Márton Hajdu∗ , Petra Hozzová∗ , Laura Kovács∗ and Andrei Voronkov†
∗TU Wien

†University of Manchester and EasyChair

Abstract—Functional programs over inductively defined data
types, such as lists, binary trees and naturals, can naturally
be defined using recursive equations over recursive functions.
In first-order logic, function definitions can be considered as
universally quantified equalities. Verifying functional program
properties therefore requires inductive reasoning with both the-
ories and quantifiers. In this paper we propose new extensions
and generalizations to automate induction with recursive func-
tions in saturation-based first-order theorem proving, using the
superposition calculus. Instead of using function definitions as
first-order axioms, we introduced new simplification rules for
treating function definitions as rewrite rules. We guide inductive
reasoning and strengthen induction schema using recursively
defined functions. Our experimental results show that handling
recursive definitions in superposition reasoning significantly im-
proves automated reasoning with induction.

I. INTRODUCTION

Automated reasoning has become the backbone of formal
software development [1]. Automating inductive reasoning is
of increasing importance for emerging applications in soft-
ware verification, in particular in the context of functional
programming and inductive/algebraic data types (also called
term algebras), such as natural numbers, lists and binary trees.
Functional programs can be typically described by recursive
equations/functions over algebraic data types, as illustrated in
Figure 1. On the other hand, algebraic data types are, for
example, commonly used in security applications to encode
uniqueness of hash functions [2] or to express non-interference
properties preventing information flow between private/public
channels [3]. Formalizing such properties requires full first-
order logic with theories, and automating their validation
requires inductive reasoning.

Previous works on automating induction mainly focus on
inductive theorem proving [4], [5], [6], [7], [8], [9], [10], [11]:
deciding when induction should be applied and what induction
axiom should be used. Further restrictions are made on the log-
ical expressiveness, for example induction over only universal
properties [7], [9], [6], term algebras [12] or Horn clauses [13].
Recent advances related to automating inductive reasoning,
such as first-order reasoning with inductively defined data
types [14], inductive strengthening of SMT properties [15],
structural induction in first-order theorem proving [16], [17],
[18], [12], open up new possibilities for automating induction.
In this paper we focus on first-order theorem proving and
automate induction by integrating it directly into the proof
search algorithm of first-order theorem proving. The program

assertions from lines 17–18 of Figure 1 show what we strive
for: validating first-order properties over algebraic data types,
such as binary trees, lists and naturals, involving additional
recursive function definitions and predicates, such as even,
mul, app, flat and aflat. We prove such and similar
inductive properties by using saturation-based proof search
based on the superposition calculus [19], which is the leading
technology in automated theorem proving [20], [21], [22].
Reasoning about inductively defined data types with recur-
sive definitions. Our work targets full and efficient automation
of induction with recursive function reasoning, as illustrated
in a toy ML-like functional program of Figure 1. Lines 1–3
of Figure 1 declare respectively the algebraic data types of
natural numbers nat, lists list and binary trees bt, using
constructors. In first-order logic, these data types correspond
to term algebras [14]. Functional programs over data types
can be defined by recursive equations, for example lines 4-5
of Figure 1 define the addition add of two natural numbers
x, y (in first-order logic, function definitions can be considered
as universally quantified equalities). Verifying the correctness
of Figure 1 requires then to prove the formulas of lines 17-
18, which asserts the equivalence of two functions over binary
trees (line 17) and even properties of naturals (line 18). Au-
tomating reasoning about properties of inductively defined data
types like nat, list and bt needs to handle acyclicity already
for equational properties (which, in general, is not finitely
axiomatizable) and induction. Our recent results on reasoning
with inductively defined data types and induction [14], [18]
enable induction in superposition-based theorem proving, yet
only by applying induction over one clause at a time. Our
work builds upon these results and brings novel extensions
for handling recursive functions and (generalized) induction
on arbitrarily many clauses simultaneously.
Our contributions. This paper brings the following contribu-
tions.
• We introduce an induction formula generation method,

utilizing unification and recursive function definitions
over algebraic data types (Section IV). We propose induc-
tive strengthening and generalization methods well-suited
for saturation-based approaches.

• We propose new inference rules for induction in super-
position by treating recursive function definitions over
algebraic data types as rewrite rules in superposition (Sec-
tion V). Moreover, we make use of induction hypotheses
with specialized inference rules. Applications of induc-

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 34 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0002-8273-2613
https://orcid.org/0000-0003-0845-5811
https://orcid.org/0000-0002-8299-2714
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_34
https://creativecommons.org/licenses/by/4.0/

1 datatype nat = zero | s of nat

2 datatype list = nil | cons of nat list

3 datatype bt = leaf | node of bt nat bt

4 add zero y = y
5 add (s x) y = s (add x y)
6 mul zero y = zero

7 mul (s x) y = add (mul x y) y
8 even zero

9 ¬even (s zero)

10 even (s (s x)) ↔ even x

11 app nil z = z
12 app (cons x y) z = cons x (app y z)
13 flat leaf = nil

14 flat (node x y z) = app (flat x) (cons y (flat z))
15 aflat leaf u = u
16 aflat (node x y z) u = aflat x (cons y (aflat z u))

17 assert (∀x, y)(app (flat x) y = aflat x y)
18 assert (∀x, y)(even y → even (mul x y))

Fig. 1. Motivating example with recursive definitions over algebraic data types.

tion become inference rules of the saturation process,
adding instances of appropriate induction schemata.

• We extend superposition-based equational reasoning with
new inference rules capturing inductive steps over mul-
tiple clauses and optimize saturation-based proof search
with induction (Section VI). Unlike [16], our results do
not necessarily depend on the AVATAR clause splitting
framework [23]. Contrarily to [12], we are not limited to
induction over term algebras with the subterm ordering
and we stay in a standard saturation framework.

• We implemented our approach in the VAMPIRE theorem
prover [22] and evaluated it on a large collection of
examples, including 327 examples from the SMT-LIB
repository [24] and 3,397 mathematical properties over
naturals, lists and binary trees (Section VII).

• Our experiments show the potential of our new approach,
by solving 527 problems that other systems automating
induction could not prove (Section VII).

Structure of the paper. The rest of the paper is organized as
follows. We illustrate the challenges of automating induction
with recursive definitions in superposition reasoning in Sec-
tion II. We present our induction formula generation method
in Section IV. Section V describes inductive reasoning with
recursive definitions, whereas Section VI generalizes our work
to induction with multiple premises. After summarizing our
experimental findings in Section VII, we overview related
work in Section VIII. We conclude the paper in Section IX.

II. MOTIVATING EXAMPLE

We first motivate our work using the functional program of
Figure 1 over naturals, lists and binary trees.

Example 1 (Inductive reasoning with lists and binary trees).
Using the recursive function definition app over lists, and
recursive function definitions flat and aflat over binary
trees (lines 11–16 of Figure 1), we first focus on proving the
equivalence of functions flat and aflat flattening binary
trees to lists, specified as an assertion at line 17 of Figure 1.
For easing readability, we write this assertion in infix notation
as below:

∀u, v.app(flat(u), v) = aflat(u, v) (1)

Proving (1) requires induction over binary trees, using for
example the structural induction formula(

F [leaf] ∧ ∀x, y, z.
(
(F [x] ∧ F [z])

→ F [node(x, y, z)]
))
→ ∀u.F [u],

(2)

where F [x] denotes a first-order formula over x. By instan-
tiating (2), proving (1) reduces to proving two formulas: the
base case and the step case. The base case,

∀v.app(flat(leaf), v) = aflat(leaf, v), (3)

holds by the recursive definitions at lines 11, 13 and 15 of
Figure 1. For the step case, we strengthen the hypotheses by
replacing v with fresh universally quantified variables v0, v1:

∀x, y, z, v.
(
∀v0.app(flat(x), v0) = aflat(x, v0)∧ (4)
∀v1.app(flat(z), v1) = aflat(z, v1) → (5)

app(flat(node(x, y, z)), v) = aflat(node(x, y, z), v)
)

(6)

For proving (6), we first use the recursive definitions at
lines 14 and 16 of Figure 1 to obtain (omitting (4), (5) and
implicit universal quantification):

app(app(flat(x),cons(y, flat(z))), v) =

aflat(x, cons(y, aflat(z, v)))
(7)

By rewriting (7) with (4) and (5), we are left with proving:

app(app(flat(x),cons(y, flat(z))), v) =

app(flat(x), cons(y, app(flat(z), v)))
(8)

By replacing flat(x) with a fresh variable w in (8), we obtain

app(app(w, cons(y,flat(z))), v) =

app(w, cons(y, app(flat(z), v)))
(9)

which is a generalized/stronger formula than (8). By applying
the structural induction formula over lists(

F [nil] ∧ ∀x, y.(F [y]→ F [cons(x, y)])
)
→ ∀z.F [z]

over w in (9), we derive the validity of (9) by also using
the definition of app from lines 11-12 in Figure 1. We thus
conclude that (1) holds, and hence the assertion at line 17 of
Figure 1 is valid.

247

While the proof above is quite natural for humans, it is very
difficult for saturation-based first-order provers using the su-
perposition calculus. For example, the state-of-the-art solvers
supporting induction CVC4 [15], ZIPPERPOSITION [16] and
VAMPIRE [17] fail proving (1). To organize proof search,
saturation-based theorem provers, intuitively speaking, disal-
low rewriting small terms into big terms w.r.t. some ordering.
In most (simplification) orderings used by these provers, the
terms flat and aflat in (6) cannot be expanded using their
recursive definitions, as the right-hand sides of these defini-
tions are heavier/bigger1 than their left-hand sides. Moreover,
deciding the order in which induction hypotheses should be
applied, such as (4) and (5), is as difficult as doing the proof
itself. In this paper, we extend superposition reasoning with
special treatment of recursive definitions, guiding the genera-
tion of induction formulas during saturation (Section IV). We
use rewrite rules for terms occurring in recursive definitions
and inductive hypotheses (Section V). Thanks to this extension,
our work can easily validate (1).

Another challenging aspect of induction with recursive
definitions comes with generalizing and adjusting induction
formulas over recursively defined terms and multiple premises,
as illustrated next.

Example 2 (Inductive reasoning with naturals). Using the
recursive function and predicate definitions of add, mul, and
even from lines 4–10 of Figure 1, the assertion at line 18
encodes the following first-order formula over naturals:

∀x, y.even(y)→ even(mul(x, y)) (10)

Similarly as in Example 1, proving (10) requires instantiat-
ing a structural induction formula for naturals as below:(

F [zero] ∧ ∀z.(F [z]→ F [s(z)])
)
→ ∀x.F [x] (11)

and thereby proving the following two formulas:

∀y.even(y)→even(mul(zero, y)) (12)

∀z, y.
((
even(y)→ even(mul(z, y))

)
→(

even(y)→ even(mul(s(z), y))
)) (13)

Validity of the formula (12) follows from the recursive func-
tion definitions in lines 6 and 8 of Figure 1. By using the
recursive definition in line 7 of Figure 1, formula (13) reduces
to

∀z, y.
(
even(mul(z, y))→ even(add(mul(z, y), y))

)
(14)

The antecedent of (14) cannot however be used for prov-
ing its conclusion. We overcome this limitation by replac-
ing/generalizing mul(z, y) in (14) with a fresh new variable u
and instantiating the following variant of (11):(

F [zero] ∧ F [s(zero)] ∧ ∀z.(F [z]→ F [s(s(z))])
)

→ ∀x.F [x]
(15)

While (11) cannot be used to prove (14), note that (15) enables
the application of the recursive definition of even in line 10

1W.r.t. orderings of first-order provers.

of Figure 1. As such, proving the generalized version of (14)
reduces to proving the three formulas:

even(zero)→ even(add(zero, y)) (16)
even(s(zero))→ even(add(s(zero), y)) (17)

∀z.
((
even(z)→ even(add(z, y))

)
→(

even(s(s(z)))→ even(add(s(s(z)), y))
)) (18)

All three formulas can be proven by applying the recursive
function definitions of add and even from Figure 1 and using
induction with multiple premises over (18) (Section VI). In this
paper, we generate induction formula variants, such as (15),
based on recursive function/predicate definitions (Section IV)
and support induction with multiple premises (Section VI),
proving for example (10).

While relatively simple, Figure 1 illustrates the key chal-
lenges in automating induction with recursive definitions in
superposition: (i) strengthening and creating induction for-
mulas using recursive definitions (Section IV); (ii) rewriting
recursively defined terms by their (function/predicate) defini-
tions (Section V); and (iii) applying induction with multiple
premises (Section VI). In what follows, we describe our
solutions for these challenges.

III. PRELIMINARIES

We assume familiarity with standard multi-sorted first-order
logic with equality. Functions are denoted with f , g, h,
predicates with p, q, r, variables with x, y, z, u, v, w, and
Skolem constants with σ, all possibly with indices. A term is
ground if it contains no variables. By x and t we denote tuples
of variables and terms, respectively.

We use the standard logical connectives ¬, ∨, ∧,→ and↔,
and quantifiers ∀ and ∃. A literal is an atom or its negation.
For a literal L, we write L to denote its complementary literal.
A disjunction of literals is a clause. We reserve the symbol �
for the empty clause which is logically equivalent to ⊥. We
denote the clausal normal form of a formula F by cnf(F).
We call every term, literal, clause or formula an expression.
We use the notation s E t to denote that s is a subterm of t
and s / t if s is a proper subterm of t.

We use the words sort and type interchangeably. We distin-
guish special sorts called inductive sorts, function symbols
for inductive sorts called constructors and destructors. We
distinguish recursive constructors, which have at least one
argument of the same sort as their return sort, from base
constructors, which do not have any arguments of the same
type as their return sort. We call the ground terms built from
the constructor symbols of a sort its term algebra.

We axiomatise term algebras using their injectivity, dis-
tinctness, exhaustiveness and acyclicity axioms [14]. In this
paper, we refer to term algebras also as algebraic data types
or inductively defined data types.

We write E[s] to denote that expression E contains k
distinguished occurrence(s) of the term s, with k ≥ 0. For
simplicity, E[t] means that these occurrences of s are replaced
by the term t. Further, E[t]p1...pk , with p1 . . . pk ∈ {0, 1}k,

248

is the expression obtained by replacing ith distinguished
occurrence of s by t in E[s] iff pi = 1. We abbreviate
E[t1] . . . [tn] with E[t].

A substitution θ is a mapping from variables to terms. A
substitution θ is a unifier of two terms s and t if sθ = tθ, and
is a most general unifier (mgu) if for every unifier η of s and
t, there exists substitution µ s.t. η = θµ. We denote the mgu
of s and t with mgu(s, t).

A. Saturation-based proof search

First-order theorem provers work with clauses, rather than
with arbitrary formulas. Given a set S of input clauses, first-
order provers saturate S by computing all logical conse-
quences of S with respect to a sound inference system I.
The saturated set of S is called the closure of S and process
of computing the closure of S is called saturation [22]. If
the closure contains the empty clause �, the original set S of
clauses is unsatisfiable. A simplified saturation algorithm for
inference system I is given below with a clausified goal F
and clausified assumptions A as input:

1 passive := A ∪ {¬F}, active := ∅
2 while passive 6= ∅:
3 G := select(passive)
4 derive consequences C of G and active w.r.t. I
5 passive := (passive ∪ C) \G
6 active := active ∪ {G}
7 if � ∈ passive then return UNSAT
8 return SAT

Completeness and efficiency of saturation-based reasoning
rely heavily on properties of select and I (lines 3 and 4).
The superposition calculus [19] (denoted Sup) is the most
common inference system employed by saturation-based first-
order theorem provers, such as E [20], VAMPIRE [22] and
ZIPPERPOSITION [16]. The superposition calculus is sound
and refutationally complete: for any unsatisfiable formula,
the empty clause can be derived as a logical consequence.
To organize saturation, first-order provers use simplification
orderings on terms, which are extended to orderings over
literals and clauses; for simplicity, we write � for both the
term ordering and its clause ordering extension. We write s .

= t
to mean that the orientation of the equality s = t is fixed (i.e.,
either s � t or t � s).

We make use of the following inference rules of Sup in this
paper:
Binary resolution:

A ∨ C ¬B ∨D
(C ∨D)θ

where θ is the mgu of A and B.
Superposition:

l = r ∨ C s[l′] 6= t ∨D
(s[r] 6= t ∨ C ∨D)θ

l = r ∨ C s[l′] = t ∨D
(s[r] = t ∨ C ∨D)θ

where θ is the mgu of l and l′, rθ 6� lθ and tθ 6� s[l′]θ. There
are special cases of these rules, imposing more restrictions on

the premises. One such case is when one of the premises of
superposition is a unit clause, yielding the so-called demodu-
lation rules, as given in Section V.

Given an ordering �, a clause C is redundant with respect
to a set S of clauses if there exists a subset S′ of S such
that S′ is smaller than {C} (i.e., C � S) and S′ implies
C. Redundant clauses can be eliminated during proof search
without destroying completeness; simplification and deletion
rules are used to remove redundant clauses.

IV. INDUCTION FORMULAS OVER RECURSIVE
DEFINITIONS IN SUPERPOSITION

We now describe our solution for generating induction
formulas in saturation-based theorem proving. Unlike [7], [4],
[16], [10], [11], [25], [26], we integrate induction directly in
the saturation-based theorem proving using the superposition
calculus. For doing so, we rely on [17], [18] and use the
following sound inference rule of induction:

L[t] ∨ C
cnf(F → ∀y.L[y])

(Ind),

where L is a ground literal, C is a clause, and F → ∀y.L[y]
is a valid induction formula. Further, y is a tuple of variables
and t is a tuple of induction terms, of the same size.

In [17], [18], the inference rule (Ind) has been used by
considering the induction formulas as instances of mathemat-
ical and structural induction. In this paper, we go beyond
these works and utilise recursive function/predicate definitions
to derive induction formulas to be used in (Ind). For doing
so, we first select terms in recursive definitions over which
induction formulas will be generated in Section IV-A and
strengthened in Section IV-B. Further, in Section VI we extend
(Ind) to induction formulas with multiple premises.

A. Generating Induction Formulas over Recursive Definitions

A recursive function/predicate definition has a number of
branches, characterized by one or more clauses. We assume
that (i) a function definition clause contains exactly one
equality with a fixed orientation, i.e., f(s)

.
= t∨C. Similarly,

(ii) a predicate definition axiom contains one marked literal,
i.e., (¬)p̂(s) ∨D, where p̂ denotes that p is marked/selected.
Two clauses f(s1)

.
= t1 ∨ C and f(s2)

.
= t2 ∨ D belong to

the same branch of f if f(s1) and f(s2) are variants of each
other. Similarly, two clauses (¬)p̂(s1) ∨C and (¬)p̂(s2) ∨D
belong to the same branch of p if p(s1) and p(s2) are variants
of each other. We therefore characterize a recursive definition
branch with its characteristic term f(s) or characteristic atom
p(s). We write “branch f(s)” and “branch p(s)” to refer to the
branches with the characteristic term f(s) and characteristic
atom p(s), respectively. We denote the set of variable disjoint
branches of a function f and predicate p with Bf and Bp,
respectively.

Definition 1 (Recursive Calls of Recursive Definitions). Let f
be a recursive function and p a recursive predicate. The set of

249

recursive calls corresponding, respectively, to the branch f(s)
and the branch p(s) are defined as:

Rf(s) :=
⋃

f(s′)
.
=t∨C

{f(s′′)θ | f(s′′) E t, f(s′)θ = f(s)}

Rp(s) :=
⋃

p̂(s′)∨C

{p(s′′)θ | p(s′′) ∈ C, p(s′)θ = p(s)}

The rest of this section only details the generation of induc-
tion formulas using recursive function definitions; recursive
predicates are handled similarly. Given a recursive function f,
we categorize its argument positions similarly to [16].

Definition 2 (Active Positions, Accumulators). If for any
branch f(s) ∈ Bf and f(s′) ∈ Rf(s):
(1) if s′i / si, then i is an active argument position of f
(2) if si is a variable and si 6= s′i, then i is an accumulator

argument position of f
We denote the set of active and accumulator argument posi-
tions of f with If.

Example 3. Based on the functions app, flat and aflat

from Figure 1 lines 11-16, we have:

Bapp = {app(nil, z0), app(cons(x, y), z1)}

Bflat = {flat(leaf), flat(node(x, y, z))}

Baflat = {aflat(leaf, u0), aflat(node(x, y, z), u1)}

While Rapp(nil,z0) = Rflat(leaf) = Raflat(leaf,u0) = ∅, the
second branches of the three functions have the following sets
of recursive calls:

Rapp(cons(x,y),z1) =
{
app(y, z1)

}
Rflat(node(x,y,z)) =

{
flat(x), flat(z)

}
Raflat(node(x,y,z),u1) =

{
aflat(x, cons(y, aflat(z, u1))),

aflat(z, u1)

}
Iapp = {1}, since y is a proper subterm of cons(x, y) but the
second argument is not an accumulator since it remains z1 in
the only recursive call. The only argument position of flat

is active, and therefore Iflat = {1}. Finally, aflat has one
active and one accumulator argument position, hence Iaflat =
{1, 2}.

Definition 3 (Induction Terms from Active and Accumulator
Positions). Consider a recursive function f of arity n and a
ground term f(c). The term f(c′) is a generator term iff (i) c′
coincides with c in all positions from {1 ≤ i ≤ n} \ If, and
(ii) c′ contains fresh variables on positions from If.

The induction case of f(c) over branch f(s) ∈ Bf is the
two-tuple:

(θ, {mgu(f(c′), f(s′)θ) | f(s′) ∈ Rf(s)})

where θ := mgu(f(c′), f(s)).
The case distinction Θf(c) of f(c) is the set of induction

cases of f(c) over each branch of f. We call {ci | i ∈ If} the
induction terms of f(c).

Induction Formula over Active and Accumulator Terms.
Using Definition 3, we guide induction formula generation
over active and accumulator terms, as follows. Given a literal
L[c] with zero or more occurrences of the terms c, we generate
and add the following induction formula over active and
accumulator terms to saturation-based proving:

(∀)
∧

(θ,R)∈Θf(c)

(∧
θ′∈R

L[c′]θ′ → L[c′]θ
)
→ L[c′] (19)

Since (19) is a valid induction formula, using it in the
conclusion of (Ind) yields a sound (Ind) inference.

Example 4. For proving the assertion of line 17 from Figure 1
in a saturation-based framework, we consider its negation:

app(flat(σ0), σ1) 6= aflat(σ0, σ1) (20)

Using Definition 3 and Iflat (Example 3), the generator term
of flat(σ0) is t := flat(v). Moreover, by Bflat from
Example 3, we obtain

θ1 = mgu(t, flat(leaf)) = {v 7→ leaf}
θ2 = mgu(t, flat(node(x, y, z))) = {v 7→ node(x, y, z)}

Applying the unifier θ2 on the recursive calls of
Rflat(node(x,y,z)) from Example 3 is a no-op, since the
recursive calls do not contain v and we derive

θ2.1 = mgu(t, flat(x)) = {v 7→ x}
θ2.2 = mgu(t, flat(z)) = {v 7→ z}

Using the case distinction

Θflat(σ0) = {(θ1, ∅), (θ2, {θ2.1, θ2.2})} (21)

we derive the following induction formula:

∀x, y, z, u.((
app(flat(leaf), σ1) = aflat(leaf, σ1)∧(
app(flat(x), σ1) = aflat(x, σ1)∧
app(flat(z), σ1) = aflat(z, σ1) →
app(flat(node(x, y, z)), σ1) = aflat(node(x, y, z), σ1)

))
→ app(flat(u), σ1) = aflat(u, σ1)

)
(22)

B. Strengthening Induction over Recursive Definitions

Induction hypotheses of induction formulas might not be
strong enough to prove the corresponding induction step.
A common technique to overcome such limitations is to
strengthen the induction hypotheses: replace some terms in
the hypotheses with universally quantified fresh variables,
yielding thus logically stronger versions of induction hy-
potheses. Introducing universally quantified variables during
saturation can however negatively impact the performance of
the prover (e.g., yielding more unifications/rewriting steps). As
a remedy to this practical burden in the context of recursive
function definitions f, we utilize the accumulator argument
positions from If in Definition 3, which supersede the need
for introducing universally quantified variables by implicitly
instantiating these variables to the terms that will be matched
by the recursive calls of f.

250

Example 5. The induction formula (22) is not strong enough
to prove (20) and strengthening its induction hypotheses by
replacing σ1 with a universally quantified fresh variable – as
in (4) and (5) from Example 1, – is inefficient. Instead, we
use the term aflat(σ0, σ1) from (20) with the generator term
t′ := aflat(v, w) and induction terms {σ0, σ1}. We obtain
the following unifiers:

θ′1 = mgu(t′, aflat(leaf, u0)) = {v 7→ leaf, w 7→ u0}
θ′2 = mgu(t′, aflat(node(x, y, z), u1))

= {v 7→ node(x, y, z), w 7→ u1}

Applying θ′2 is once again a no-op on the recursive calls
Raflat(node(x,y,z),u1), and we get the unifiers:

θ′2.1 = mgu(t′, aflat(x, cons(y, aflat(z, u1))))

= {v 7→ x,w 7→ cons(y, aflat(z, u1))}
θ′2.2 = mgu(t′, aflat(z, u1)) = {v 7→ z, w 7→ u1}

Thus we obtain the induction formula with the required
induction hypothesis with term cons(y, aflat(z, u1)) that
matches the conclusion after simplification:

∀x, y, z, u0, u1, v, w.((
app(flat(leaf), u0) = aflat(leaf, u0)∧(
app(flat(x), cons(y, aflat(z, u1))) =

aflat(x, cons(y, aflat(z, u1)))∧
app(flat(z), u1) = aflat(z, u1) →
app(flat(node(x, y, z)), u1) = aflat(node(x, y, z), u1)

))
→ app(flat(v), w) = aflat(v, w)

)
(23)

After skolemizing x, y, z, u0 and u1 during clausification,
binary resolving with (20), with v and w bound to σ0 and σ1,
respectively, we get the following ground induction hypotheses
literals and ground conclusion literal from (23):

app(flat(σ2), cons(σ3, aflat(σ4, σ5))) =

aflat(σ2, cons(σ3, aflat(σ4, σ5)))
(24)

app(flat(σ4), σ5) = aflat(σ4, σ5) (25)
app(flat(node(σ2, σ3, σ4)), σ5) 6=

aflat(node(σ2, σ3, σ4), σ5)
(26)

Further, the hypotheses of (23) are strong enough to
prove (20), as shown in Section V.

In summary, we use Definition (3) to generate induction
formulas over the active and accumulator terms from If. To
further limit and guide the generation of induction formulas,
we devised heuristics similar to [16]. Foremost, we only
generate induction formulas from function/predicate terms
with active occurrences.

Definition 4 (Active Term Occurrences). An occurrence of a
term t in literal L is an active occurrence if (i) t is L, or (ii)
L is an equality l = r and t is l or r, or (iii) the immediate
superterm s of t is an active occurrence and the occurrence of
t is in an active argument position of s.

As described in [18], apart from generalizing over complex
terms as seen in Example (1), we can also generalize over
active term occurrences. For example, we can refine the

induction formula (19) to induct upon only certain occurrences
of an induction term t with k occurrences in literal L, by using
any bit vector p ∈ {0, 1}k and L[t]p instead of L[t].

V. REFUTING INDUCTIVE PROPERTIES WITH RECURSIVE
DEFINITIONS

Automating inductive reasoning not only requires finding
useful induction formulas, but also comes with the task of
proving inductive properties. Section IV detailed our approach
towards finding useful induction formulas over recursive def-
initions. As a next step, we now present our solution towards
(more) efficient refutation of inductive properties over recur-
sive definitions.

A. Rewriting with Recursive Function Definitions

We extend superposition reasoning with two inference rules
in support of rewriting recursive functions by their definitions.

First, we focus on a simplification inference implementing
rewriting by unit equalities, called also demodulation [22]. We
adjust demodulation to handle unit clauses describing recursive
function definitions, as follows:

f(s)
.
= t ((((((L[f(s)θ] ∨D
L[tθ] ∨D

(DemF)

where f(s)θ � tθ and L[f(s)θ] ∨D � f(s)θ = tθ.
Second, we introduce a generating inference rule as an

instance of superposition rules. Namely, we enable rewriting
arbitrary recursive functions with their definitions, as follows:

f(s)
.
= t ∨ C L[f(s)θ] ∨D
L[tθ] ∨ Cθ ∨D

(ParF)

Note that (ParF) has no side conditions restricting which
terms can be rewritten. As such, (ParF) allows to expand
function headers, yet at the cost that small terms may be
rewritten into bigger terms w.r.t. the underlining term ordering
� of a superposition prover. As a result, the simplification
ordering constraints of � are violated by (ParF), yielding
an incomplete extension of superposition. On the other hand,
soundness of superposition implies soundness of our new
inference rules.

Theorem 1 (Soundness of Rewriting). The inference rules
(DemF) and (ParF) are sound.

B. Rewriting Induction Hypotheses

Upon clausifying the induction formula (19) introduced
in Section IV, for each step case ∧1≤i≤mL[ti] → L[t] we
obtain a set of induction hypothesis literals L[t′i] and an
induction conclusion literal L[t′]. Intuitively, we extend these
notions such that any literal resulting from the rewriting or
simplification of induction hypothesis or induction conclusion
literals is also an induction hypothesis or induction conclusion
literal, respectively.

We introduce an induction hypothesis rewriting rule, in short
(IndHRW), to (i) rewrite one side of an induction conclusion
literal with one of its induction hypothesis literals (against

251

ordering constraints) and (ii) apply induction on the rewritten
induction conclusion literal without adding it to the search
space:

l = r ∨D s[l] 6= t ∨ C
cnf(F → ∀y.(s[r] = t)[y])

(IndHRW)

where s 6= t is an induction conclusion literal with cor-
responding induction hypothesis literal l = r, l 6� r, and
F → ∀y.(s[r] = t)[y] is a valid induction formula. By
soundness of (Ind), we conclude soundness of (IndHRW).

Theorem 2 (Soundness of Induction Hypothesis Rewriting).
The inference rule (IndHRW) is sound.

Note that (IndHRW) allows rewriting only with induction
hypothesis literals that are positive equalities. Hence, the
induction conclusion literal must be a disequality (s 6= t). We
further stress that rewriting using the premises of (IndHRW)
yields s[r] 6= t ∨ C ∨D, which is binary resolved against the
resulting induction formula clauses of (19) and not added to
the search space.

Example 6. Continuing Example 5, rewriting (26) with
(ParF) results in a new induction conclusion literal:

app(app(flat(σ2), cons(σ3, flat(σ4))), σ5) 6=
aflat(σ2, cons(σ3, aflat(σ4, σ5)))

(27)

By rewriting the right-hand side of (27) with the corresponding
hypotheses literals (24) and (25), we obtain the intermediate
induction conclusion literal

app(app(flat(σ2), cons(σ3, flat(σ4))), σ5) 6=
app(flat(σ2), cons(σ3, app(flat(σ4), σ5)))

(28)

By applying induction with (IndHRW) with case distinction
Θapp(flat(σ2),cons(σ3,flat(σ4))) and induction term flat(σ2),
we obtain the induction formula:
∀x, y, z.((
app(app(nil, cons(σ3, flat(σ4))), σ5) =

app(nil, cons(σ3, app(flat(σ4), σ5)))∧(
app(app(y, cons(σ3, flat(σ4))), σ5) =

app(y, cons(σ3, app(flat(σ4), σ5))) →
app(app(cons(x, y), cons(σ3, flat(σ4))), σ5) =

app(cons(x, y), cons(σ3, app(flat(σ4), σ5)))
))

→ app(app(z, cons(σ3, flat(σ4))), σ5) =

app(z, cons(σ3, app(flat(σ4), σ5)))
)

(29)

The resulting clauses – after binary resolving with the
intermediate unit clause (28) – can be finally refuted using the
definitions at lines 11 and 12 of Figure 1. We thus validate
correctness of the assertion on line 17 in Figure 1.

VI. MULTI-CLAUSE INDUCTION IN SUPERPOSITION

The induction rule (Ind) does not allow inducting on mul-
tiple literals, limiting for example the use of (Ind) over (14)
in Example 2. Moreover, when (Ind) is used together with the
induction formula (19), clausification introduces new Skolem
constants, making it impossible to use ground assumptions
or previous induction hypotheses containing different ground

subterms. To address this issue, in this section we revise the
induction inference rule (Ind) with only one premise to an
induction rule with multiple premises, as follows.

We extend (Ind) for a given literal L (the main literal) to
also incorporate other literals Li (the side literals) that are
relevant for proving L, as follows:

L1[t] ∨ C1 ... Ln[t] ∨ Cn L[t] ∨ C
cnf(F → ∀y.(

∧
1≤i≤n Li[y]→ L[y]))

(IndMC)

where L and Li are ground literals, C and Ci are clauses,
and F → ∀y.(

∧
1≤i≤n Li[y] → L[y]) is a valid induction

formula. Further, y and t are tuples of variables and induction
terms, respectively. Soundness of (IndMC) follows then from
soundness of (Ind).

Theorem 3 (Soundness of Multi-clause Induction). The rule
(IndMC) is sound.

We note that after the application of (IndMC), binary
resolution can be applied on each resulting clause with the
main and side literals, yielding cnf(¬F) ∨

∨
1≤i≤n Ci ∨ C.

Multi-Clause Induction Formula over Active and Accu-
mulator Terms. For generating valid induction formulas to
be used in (IndMC), we proceed as in Section IV. Yet, we
adjust the generation of (19), by using Definition 3 over the
active and accumulator terms of ∧nk=1Lk[c′] → L[c′] (rather
than just L[c]). As a result, for a given case distinction Θf(c),
we generate the following multi-clause induction formula over
active and accumulator terms in saturation-based proving:

(∀)
∧

(θ,R)∈Θf(c)

(∧
θ′∈R

(∧nk=1Lk[c′]θ′ → L[c′]θ′)→

(∧nk=1Lk[c′]θ → L[c′]θ)
)
→ (∧nk=1Lk[c′]→ L[c′])

(30)

Since (30) is a valid induction formula, using it in the
conclusion of (IndMC) yields a sound (IndMC) inference.

Example 7. Negating and clausifying the assertion on line 18
of Figure 1, we obtain the two unit clauses:

even(σ1) (31)
¬even(mul(σ0, σ1)) (32)

Inducting on (32) using Θmul(σ0,σ1) and induction term σ0, we
get the following clauses:

¬even(mul(zero, σ1)) ∨ even(mul(σ2, σ1))

¬even(mul(zero, σ1)) ∨ ¬even(mul(s(σ2), σ1))

By function and predicate definitions of mul and even, the
base case reduces to false and we are left with the unit clauses

even(mul(σ2, σ1)) (33)
¬even(add(mul(σ2, σ1), σ1)) (34)

The hypothesis literal in (33) and the conclusion literal in (34)
cannot be binary resolved with each other to solve the step
case but they share the term mul(σ2, σ1). We can use (33)

252

and (34) in (IndMC) as side and main literals, respectively,
with induction term mul(σ2, σ1) and the case distinction:

Θeven(mul(σ2,σ1)) =

{
({z 7→ zero}, ∅), ({z 7→ s(zero)}, ∅),

({z 7→ s(s(x))}, {{z 7→ x}})

}
We get the following induction formula:

∀x, z.
((

even(zero) → even(add(zero, σ1))
)
∧(

even(s(zero)) → even(add(s(zero), σ1))
)
∧((

even(x) → even(add(x, σ1))
)
→(

even(s(s(x))) → even(add(s(s(x)), σ1))
))

→
(
even(z) → even(add(z, σ1))

))
(35)

After clausifying (35), and binary resolving the resulting
clauses against (33) and (34), using function and predicate
definitions and the unit clause (31), we arrive at the empty
clause, thus validating the assertion at line 18 in Figure 1.

We conclude this section by noting that the (IndMC) infer-
ence rule might use an arbitrary number of side literals, slow-
ing down the practical efficiency of saturation-based proving
with multi-clause induction. As a remedy, the following two
heuristics could be used to choose the literal L from clause
L ∨ C as a side literal of (IndMC): (i) if L is p(s) for some
predicate p, and L is an induction hypotheses to the main
literal p(t), and s and t share some non-Skolem (complex)
term with an active occurrence, or (ii) if neither L nor the
main literal are derived from a clausified induction formula
and they share some common term with an active occurrence.

VII. EXPERIMENTS

Implementation. We implemented our approach to automat-
ing induction with recursive definitions in superposition-
based theorem prover VAMPIRE. We extended VAMPIRE’s
induction framework [18] with recursive definitions and hy-
pothesis strengthening, as described in Section IV. This
can be enabled with --structural_induction_kind
rec_def. Rewriting with induction hypotheses and func-
tion definitions, as presented in Section V, can be switched
on using --induction_hypothesis_rewriting on
and --function_definition_rewriting on, re-
spectively. The multi-clause induction rule from Section VI
is enabled by --induction_multiclause on. All to-
gether, our implementation consists of around 5,000 lines
of C++ code and is available at https://github.com/vprover/
vampire/tree/induction-recursive-functions.
Experimental setup. To experimentally evaluate our ap-
proach, we used the benchmarking tool BENCHEXEC [27],
[28] and two benchmark sets2: (i) the UFDTLIA examples
from SMT-LIB [24], consisting of 327 problems over algebraic
data types; and (ii) our new set dty RD of 3,397 inductive
examples with recursive definitions, as described in [30]. We
used the keyword define-fun-rec for defining recursive
functions in the examples from our dty RD dataset. Moreover,

2While some examples from the TIP library [29] are included in SMT-LIB,
most of the TIP examples are parametric and not yet supported by VAMPIRE.

UFDTLIA dty RD
327 problems 3,397 problems

VAMPIRE 180 (0) 1,641 (0)
VAMPIRE∗ 259 (30) 3,223 (497)

ZIPPERPOSITION 174 (0) 2,534 (21)
CVC4 235 (12) 165 (0)

Fig. 2. Numbers of problems solved by respective solvers in our experiments.
The number in parentheses is the number of problems solved uniquely
compared to the other solvers.

we also converted examples from the UFDTLIA set to ex-
plictly use define-fun-rec, detecting this way recursive
definitions in UFDTLIA.

We also combined our inductive approach in
VAMPIRE with recent developments in first-order
reasoning [18], [31], [32], creating this way various
VAMPIRE configurations for automating induction with
recursive definitions. The default options we used
for these configurations are: --induction_gen
on --induction_on_complex_terms on
enabling inductive generalizations and induction on
complex terms [18]; --newcnf on to select the
cnf method in [31]; and --theory_split_queue
on --theory_split_queue_cutoffs 0,8 and
--theory_split_queue_ratios 20,10,1 to
control theory reasoning with split queues [32]. As a
result, we designed a new VAMPIRE portfolio mode for
inductive reasoning, which can be switched on by --mode
portfolio --schedule struct_induction.
Experimental comparison. In what follows, VAMPIRE refers
to the (default) version of VAMPIRE, as in [18]. By VAMPIRE∗

we denote our new version of VAMPIRE, using induction
with recursive definitions and the aforementioned options. We
compared our work in VAMPIRE∗ against VAMPIRE, as well as
against the superposition prover ZIPPERPOSITION3 [16] and
the SMT solver CVC4 [33].

Since the default mode of VAMPIRE and VAMPIRE∗

only occasionally solves unique problems with respect to
their portfolio mode counterpart, we omitted the former
results. Note that we used the same portfolio schedule
struct_induction for VAMPIRE as well. Since in port-
folio mode VAMPIRE ignores the new options and most
of the schedule is not specific to VAMPIRE∗, the results
obtained for VAMPIRE give a meaningful baseline. We used
ZIPPERPOSITION in the default mode, while for CVC4 we
used the parameters --conjecture-gen --quant-ind.
Each prover was given 300 seconds of time and 16 GB of
memory per problem. The experiments were ran on computers
with 32 cores (AMD Epyc 7502, 2.5 GHz) and 1 TB RAM.
Experimental results. We summarize our experimental results
in Figure 2. For each solver, listed in the first column of

3ZIPPERPOSITION has a non-official option --input tip to parse
benchmarks in a variant of SMT-LIB. In order to parse UFDTLIA bench-
marks, we converted them to this variant.

253

https://github.com/vprover/vampire/tree/induction-recursive-functions
https://github.com/vprover/vampire/tree/induction-recursive-functions

VAMPIRE∗ UFDTLIA dty RD
forced option 327 problems 3,397 problems

default 259 (1) 3223 (3)
-indmc off 237 (0) 3259 (33)
-indhrw off 242 (0) 3192 (4)
-fnrw off 237 (3) 3001 (0)
-sik one 200 (1) 962 (0)

Fig. 3. Numbers of problems solved by VAMPIRE∗ with different new
features disabled. The number in parentheses is the number of problems solved
uniquely compared to the other configurations.

Figure 2, we indicate the total number of examples the solver
proved from the respective benchmark category; the values
in parentheses show the number of uniquely solved problems
compared to the other solvers. Figure 2 shows that while
VAMPIRE performs reasonably well on both benchmark sets,
it cannot solve more problems than CVC4 in the UFDTLIA
set and than ZIPPERPOSITION in the dty RD set, where
the latter two perform the best. VAMPIRE∗, on the other
hand, is able to solve many more problems than the other
solvers in both sets, suggesting that combining the state-
of-the-art techniques of superposition with induction over
recursive definition can perform much better than SMT solvers
and superposition provers with only structural induction. All
together, VAMPIRE∗ solved 527 new problems that the
other automated solvers could not prove. It is also worth
noting that while VAMPIRE∗ dominates the uniquely solved
problems w.r.t. the dty RD set, its dominance is only marginal
compared to the uniquely solved problems of CVC4 in the
UFDTLIA set. Looking at the problems uniquely solved by
CVC4, we found that these problems mostly contain either
some nested structure that current techniques in VAMPIRE∗

cannot handle and require non-trivial lemma generation or
recursive definitions that cannot be used with our induction
formula generation as their well-foundedness is not based on
the subterm relation.

In addition to comparing to other solvers, we compared
VAMPIRE∗ to itself with different techniques from the paper
disabled, overriding the portfolio options during these runs.
Our results are shown in Figure 3.

For UFDTLIA, the default run still performs best but
we can see different deviations from this value with each
disabled technique. We argue that the relatively small differ-
ences obtained by turning off induction hypothesis rewriting
(-indhrw off) and function definition rewriting (-fnrw
off) can be attributed to combinations of options that to-
gether may simulate these techniques. In comparison, multi-
clause induction cannot be simulated with other techniques
in VAMPIRE, so the relatively small difference obtained by
turning off this technique (-indmc off) for UFDTLIA is
probably due to the lack of non-unit induction needed in
most of this set. For dty RD, the decrease in solved problems
when this feature is turned on needs further investigation.
The greatest difference to the default is obtained by using

structural induction (-sik one, see [17]) instead of inferring
induction formulas from recursive function definitions. We can
conclude with the observation that each configuration solved
problems uniquely which suggests the portfolio schedule can
be improved.

VIII. RELATED WORK

Generation of induction formulas, as presented in Sec-
tion IV, although similar to recursion analysis of [7] and
recursion induction of [10], utilizes unification and generates
non-trivial induction hypotheses. Our work complements these
techniques by integrating induction in saturation: rather than
replacing inductive goals by sub-goals/other formulas, we
generate induction formulas over recursive definitions and add
these induction formulas as additional properties to the search
space.

When compared to superposition approaches treating certain
E-theories [19] or function definitions as rewrite rules [16], we
note that our method designs new induction inference rules as
simplification rules in superposition and strengthens induction
hypotheses during saturation-based inductive reasoning. Our
approach extends [17] by handling recursive definitions as
rewrite rules and multiple clauses in a single induction step;
the latter is often required when assumptions are supported in
universally quantified conjectures. Unlike [16], our technique
generalizes to scenarios where multiple induction steps are
needed to refute non-equality literals. Contrarily to [12], we
are not limited to induction over term algebras as most of these
techniques work for e.g. mathematical induction as well.

While our approach often does not need auxiliary lemmas
due to generalizations over (complex) term occurrences and
strengthened induction hypotheses, extending our work to-
wards lemma generation would be beneficial. In particular,
theory exploration and lemma generation approaches from [8],
[15], [10], [34], [35], [13] could complement our method,
ranging from randomly generating terms by iterative deepen-
ing to analysing failed induction steps and even circumventing
the need for auxiliary lemmas by using predicates.

IX. CONCLUSION

We introduce a new approach for automating induction
with recursive definition in first-order theorem proving. We
design new inference rules for rewriting with function defini-
tions as well as induction hypotheses in superposition-based
proving. We generate induction formulas based on recursive
function definitions and extend our work to support multi-
clause induction. Our experiments show that induction with
recursive definitions in superposition allows us to solve many
new problems that other automated reasoners failed to prove.

ACKNOWLEDGMENTS

This work was partially funded by the ERC CoG ARTIST
101002685, the ERC StG SYMCAR 639270, the EPSRC
grant EP/P03408X/1, the FWF grant LogiCS W1255-N23, the
Amazon ARA 2020 award FOREST and the TU Wien SecInt
DK.

254

REFERENCES

[1] B. Cook, “Formal Reasoning About the Security of Amazon Web
Services,” in CAV, H. Chockler and G. Weissenbacher, Eds. Springer,
2018, pp. 38–47.

[2] “SHA-2 Cryptographic Hash Standard,” National Institute
of Standards and Technology, 2002. [Online]. Avail-
able: https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/
2002-08-01/documents/fips180-2withchangenotice.pdf

[3] J. A. Goguen and J. Meseguer, “Security Policies and Security Models,”
in S&P, 1982, pp. 11–20.

[4] A. Bundy, “The Automation of Proof by Mathematical Induction,” in
Handbook of Automated Reasoning, J. A. Robinson and A. Voronkov,
Eds., 2001, vol. I, ch. 13, pp. 845–911.

[5] J. S. Moore and C.-P. Wirth, “Automation of Mathematical Induction
as part of the History of Logic,” CoRR, vol. abs/1309.6226, 2013.
[Online]. Available: http://arxiv.org/abs/1309.6226

[6] W. Sonnex, S. Drossopoulou, and S. Eisenbach, “Zeno: An automated
prover for properties of recursive data structures,” in TACAS, C. Flanagan
and B. König, Eds. Springer, 2012, pp. 407–421.

[7] R. S. Boyer and J. S. Moore, A Computational Logic Handbook.
Academic Press, 1988.

[8] A. Bundy, D. Basin, D. Hutter, and A. Ireland, Rippling: Meta-Level
Guidance for Mathematical Reasoning, ser. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2005.

[9] G. O. Passmore, S. Cruanes, D. Ignatovich, D. Aitken, M. Bray,
E. Kagan, K. Kanishev, E. Maclean, and N. Mometto, “The Imandra Au-
tomated Reasoning System (System Description),” in IJCAR, N. Peltier
and V. Sofronie-Stokkermans, Eds. Springer, 2020, pp. 464–471.

[10] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “Automating
Inductive Proofs Using Theory Exploration,” in CADE, M. P. Bonacina,
Ed. Springer, 06 2013, pp. 392–406.

[11] I. L. Valbuena and M. Johansson, “Conditional Lemma Discovery
and Recursion Induction in Hipster,” Electron. Commun. Eur.
Assoc. Softw. Sci. Technol., vol. 72, 2015. [Online]. Available:
https://doi.org/10.14279/tuj.eceasst.72.1009

[12] M. Echenheim and N. Peltier, “Combining Induction and Saturation-
Based Theorem Proving,” J. Automated Reasoning, vol. 64, pp. 253–294,
2020.

[13] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, “Removing
Algebraic Data Types from Constrained Horn Clauses Using Difference
Predicates,” in IJCAR, N. Peltier and V. Sofronie-Stokkermans, Eds.
Springer, 2020, pp. 83–102.

[14] L. Kovács, S. Robillard, and A. Voronkov, “Coming to Terms with
Quantified Reasoning,” in POPL, G. Castagna and A. D. Gordon, Eds.,
2017, pp. 260–270.

[15] A. Reynolds and V. Kuncak, “Induction for SMT Solvers,” in VMCAI,
D. D’Souza, A. Lal, and K. G. Larsen, Eds. Springer, 2015, pp. 80–98.

[16] S. Cruanes, “Superposition with Structural Induction,” in FroCoS,
C. Dixon and M. Finger, Eds. Springer, 2017, pp. 172–188.

[17] G. Reger and A. Voronkov, “Induction in saturation-based proof search,”
in CADE, P. Fontaine, Ed. Springer, 2019, pp. 477–494.

[18] P. Hozzová, M. Hajdú, L. Kovács, J. Schoisswohl, and A. Voronkov,
“Induction with Generalization in Superposition Reasoning,” in CICM,
C. Benzmüller and B. Miller, Eds. Springer, 2020, pp. 123–137.

[19] R. Nieuwenhuis and A. Rubio, “Paramodulation-Based Theorem Prov-
ing,” in Handbook of Automated Reasoning, J. A. Robinson and
A. Voronkov, Eds., 2001, vol. I, ch. 7, pp. 371–443.

[20] S. Schulz, S. Cruanes, and P. Vukmirović, “Faster, Higher, Stronger: E
2.3,” in CADE, P. Fontaine, Ed. Springer, 2019, pp. 495–507.

[21] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and
P. Wischnewski, “SPASS Version 3.5,” in CADE, R. A. Schmidt, Ed.
Springer, 2009, pp. 140–145.

[22] L. Kovács and A. Voronkov, “First-Order Theorem Proving and Vam-
pire,” in CAV, N. Sharygina and H. Veith, Eds. Springer, 2013, pp.
1–35.

[23] A. Voronkov, “AVATAR: The Architecture for First-Order Theorem
Provers,” in CAV, A. Biere and R. Bloem, Eds. Springer, 2014, pp.
696–710.

[24] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[25] L. Dixon and J. Fleuriot, “IsaPlanner: A Prototype Proof Planner in
Isabelle,” in CADE, F. Baader, Ed. Springer, 2003, pp. 279–283.

[26] C. Walther, “Computing Induction Axioms,” in LPAR, A. Voronkov, Ed.
Springer, 1992, pp. 381–392.

[27] D. Beyer, S. Löwe, and P. Wendler, “Reliable Benchmarking: Require-
ments and Solutions,” Int. J. on Software Tools for Technology Transfer,
vol. 21, no. 1, pp. 1–29, 2019.

[28] D. Beyer, “Reliable and reproducible competition results with benchexec
and witnesses (report on sv-comp 2016),” in TACAS, M. Chechik and
J.-F. Raskin, Eds. Springer, 2016, pp. 887–904.

[29] N. Smallbone, M. Johansson, and K. Claessen, “Tons of Inductive Prob-
lems (TIP),” tip-org.github.io, Springer, pp. 333–337, 2015.

[30] M. Hajdu, P. Hozzová, L. Kovács, J. Schoisswohl, and A. Voronkov,
“Inductive Benchmarks for Automated Reasoning,” in CICM, 2021, to
appear. [Online]. Available: https://easychair.org/publications/preprint/
gGb9

[31] G. Reger, M. Suda, and A. Voronkov, “New Techniques in Clausal Form
Generation,” in GCAI, C. Benzmüller, G. Sutcliffe, and R. Rojas, Eds.,
2016, pp. 11–23.

[32] B. Gleiss and M. Suda, “Layered Clause Selection for Theory Reason-
ing,” in IJCAR, N. Peltier and V. Sofronie-Stokkermans, Eds. Springer,
2020, pp. 402–409.

[33] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in CAV, G. Gopalakr-
ishnan and S. Qadeer, Eds. Springer, 2011, pp. 171–177.

[34] E. Singher and S. Itzhaky, “Theory Exploration Powered By Deductive
Synthesis,” ArXiv, vol. abs/2009.04826, 2020.

[35] A. Murali, L. Peña, C. Löding, and P. Madhusudan, “Synthesizing
Lemmas for Inductive Reasoning,” ArXiv, vol. abs/2009.10207, 2020.

255

https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2withchangenotice.pdf
https://csrc.nist.gov/csrc/media/publications/fips/180/2/archive/2002-08-01/documents/fips180-2withchangenotice.pdf
http://arxiv.org/abs/1309.6226
https://doi.org/10.14279/tuj.eceasst.72.1009
https://easychair.org/publications/preprint/gGb9
https://easychair.org/publications/preprint/gGb9

Formal Methods in Computer-Aided Design 2021

Fair and Adventurous Enumeration
of Quantifier Instantiations

Mikoláš Janota
Czech Technical University in Prague

Prague, Czech Republic

Haniel Barbosa
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil

Pascal Fontaine
University of Liège

Liège, Belgium

Andrew Reynolds
University of Iowa

USA

Abstract—SMT solvers generally tackle quantifiers by instan-
tiating their variables with tuples of terms from the ground part
of the formula. Recent enumerative approaches for quantifier
instantiation consider tuples of terms in some heuristic order.
This paper studies different strategies to order such tuples and
their impact on performance. We decouple the ordering problem
into two parts. First is the order of the sequence of terms to
consider for each quantified variable, and second is the order
of the instantiation tuples themselves. While the most and least
preferred tuples, i.e. those with all variables assigned to the most
or least preferred terms, are clear, the combinations in between
allow flexibility in an implementation. We look at principled
strategies of complete enumeration, where some strategies are
more fair, meaning they treat all the variables the same but some
strategies may be more adventurous, meaning that they may
venture further down the preference list. We further describe
new techniques for discarding irrelevant instantiations which
are crucial for the performance of these strategies in practice.
These strategies are implemented in the SMT solver cvc5, where
they contribute to the diversification of the solver’s configuration
space, as shown by our experimental results.

Index Terms—SMT, quantifier instantiation, enumeration

I. INTRODUCTION

While SMT (satisfiability modulo theory) solvers [5] are
used successfully as decision procedures to automatically dis-
charge quantifier-free proof obligations for many applications,
there is an increasing need for tools that can furthermore
handle quantifiers. Quantified languages however are most
often undecidable, or have prohibiting complexity. Quantifier
handling within SMT solving is thus a challenge and requires
good heuristics.

Quantifier reasoning in SMT builds on the strength of SMT
solvers, that is, their ability to efficiently reason on ground
formulas, and relies on instantiation: ground consequences of
quantified formulas are generated, and the ground reasoner’s
view of the problem is gradually refined with these instances,
to embed knowledge from the quantified formula into ground
reasoning. The terms to generate instances may be generated
using mostly syntactic methods, e.g., E-matching [6], or se-
mantic techniques like model-based quantifier instantiation [7].
But plain enumeration, done in a principled manner, can give
surprisingly good results, particularly in combination with
other instantiation techniques [8].

A crucial aspect, when using enumeration-based instanti-
ation, is to prioritize the numerous, often infinite, potential

instantiations. When instantiating just one variable, this is
essentially a matter of prioritizing smaller terms that are
already present in the original formula, according to some
order. Quantified assertions however most often have many
quantified variables, and there is a lot of freedom on the order
on tuples of terms to instantiate those. We here investigate a
few strategies based on different tuple orders, some favoring
fairness, some being more adventurous, and show that they are
valuable in a portfolio of enumerative instantiation strategies.
In Section IV, we also present an elimination technique for
redundant instantiations that significantly contributes to the
improvement of enumeration-based instantiation.

II. BACKGROUND

Originally, SMT solvers were essentially decision proce-
dures for ground (i.e., quantifier-free) problems in a combi-
nation of decidable languages, containing e.g., operators to
handle arrays, linear arithmetic expressions, bitvectors, and
uninterpreted predicates and functions. They excel at deciding
the satisfiability of large formulas in these languages. As a toy
example, consider the (satisfiable) conjunctive set of formulas

{R(a),¬S(b), a = b}.

It belongs to the quantifier-free fragment of first-order logic,
and as such, is decided by many SMT solvers. Quantifier
reasoning in modern SMT solvers builds on this. The input
formula, possibly after a pre-processing phase, is first given
to the ground solver. From the point of view of this ground
solver, each quantified formula is abstracted into a distinct
propositional variable. As an example, the conjunctive set

{R(a),¬S(b), a = b, ∀x .R(x) ⇒ S(x)}

is understood by the ground solver as the previous ground
set, augmented with an abstract proposition Q corresponding
to ∀x .R(x) ⇒ S(x). Then the ground solver provides a
satisfying assignment for the ground part of the formula,
including a valuation of the propositional variables abstracting
the quantified formulas (in our case Q must be true). The
instantiation module recovers the quantified formulas associ-
ated to these variables, and generates new instances of the
quantified formulas to the ground reasoner (Figure 1). In our
toy example such an instance could be

Q ⇒ (R(a) ⇒ S(a)) ,

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 35 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0003-3487-784X
https://orcid.org/0000-0003-0188-2300
https://orcid.org/0000-0003-4700-6031
https://orcid.org/0000-0002-3529-8682
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_35
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_35
https://creativecommons.org/licenses/by/4.0/

Input
formula

SMT solver

Ground solver

Instantiation
Ground

assignment Instances satisfiable
unsatisfiable

Or infinite
loop

Fig. 1. The SMT instantiation loop.

which would render the problem unsatisfiable at the ground
level. In general, the instantiation loop is iterated until the
ground reasoner is able to conclude that the formula is
unsatisfiable, a time out is reached, or no instance can be
deduced anymore. In this paper, we focus on refutations only
and will not consider the last case.

Thanks to the Herbrand Theorem (see e.g., [8]), with fair
enumeration of instances using all possible terms built on
the appropriate set of symbols, SMT solving is refutationally
complete for satisfiability modulo well-behaved first-order the-
ories. Since typical SMT inputs contain hundreds of quantified
formulas with many nested quantifiers, on a language with
often infinitely many terms, the number of possible instances
is very large, and most often infinite. It is crucial to quickly
find out the right instances, otherwise the ground solver will
be overwhelmed by the amount of instances. For a quantified
formula ∀x1 . . . xn . φ with n variables, this boils down to
ordering n-tuples of ground terms to prioritize instantiation.

III. ENUMERATION STRATEGIES

We start by the assumption that for each variable xi there
is a sequence of terms Ti = t1i , t

2
i , . . . , which are the possible

candidates for instantiation into the variable xi. We further
assume that this sequence of terms is sorted by some given
preference, i.e., that tji is more likely to yield a useful
instantiation than the candidate tj

′

i with j < j′. This lets us
focus on the indices into the sequences of terms, rather than on
the terms themselves. An instantiation, i.e., a tuple of terms,
is uniquely represented as an n-tuple of indices.

While this setup already assumes a given order on the terms
for the individual variables, it does not tell us how to order
the actual tuples. Clearly, the tuple of indices (0, . . . , 0) is the
most advantageous and (|T1| − 1, . . . , |Tn| − 1) is the least
advantageous one. However, it is unclear whether (0, 1, 1) is
more advantageous than (0, 0, 2), or the other way around.
This motivates our quest for different enumeration strategies.
A general notion from multi-objective optimization is useful:
Pareto-optimal solutions are such that improving any criterion
worsens some other.

000

100 010 001

200 110 101 020 011 002

300 210 201 120 111 030 021 102 012 003

Fig. 2. Pareto graph for 3 variables with 4 candidate terms for each.

Definition 1 (Pareto dominates). Let t1 = (a1, . . . , an) and
t2 = (b1, . . . , bn) be n-tuples of integers. We say that t1 Pareto
dominates t2, if and only if t1 ̸= t2 and ai ≤ bi for all i ∈ 1..n.

We focus on traversals of the graph of tuples where travers-
ing an edge increases one of the indices. Hence, there is an
edge from tuple t1 to tuple t2 iff t2 is obtained by increasing
either of the digits of t1 by 1; see Figure 2. This graph anchors
our initial motivation that the order on the terms pertaining to a
single variable represents preference. Indeed, following down
any edge in this graph means going to a less preferred tuple.
We call this graph the Pareto graph.

So what does differentiate one traversal from another? In
graph theory vernacular, a traversal is broad or deep. In our
context, a broad traversal is more fair since it alters terms of
different variables evenly. A deep traversal is more adventur-
ous since it opts for less preferred, i.e., riskier, instantiations.

Fair strategies observe the Pareto ordering, meaning that no
tuple dominates any of the previous tuples. For instance, the
sequence (0, 0), (0, 1), (1, 0), (1, 1) respects Pareto ordering
but (0, 0), (0, 1), (1, 1), (1, 0) does not because (1, 0) Pareto-
dominates (1, 1). Note that both of these examples respect the
Pareto graph in the sense that a node is visited only if at least
one of its predecessors has been visited.

In the remainder of the section we introduce techniques
considered in the experimental evaluation in Section V. On a
technical note, in practice the number of possible candidates
per variable may vary, but for the sake of clarity, we assume
that each variable has the same number of possible candidate
terms. This means that every element of the tuple (digit) is in
the range 0..M for some fixed M ∈ N. Effectively, this means
that we are looking for systematic enumerations of tuples from
the space [0..M]n, with a fixed set of n variables.

A. Stages by maximal digit [8]

This ordering interprets tuples as numbers in increasing
base b ∈ 2..(M + 1). As an example, consider two variables
and M = 2. The enumeration starts with base 2, yielding:
(0, 0), (1, 0), (0, 1), (1, 1). Subsequently, it switches to base 3,
while skipping already enumerated tuples, giving the rest of
the tuples: (2, 0), (2, 1), (0, 2), (1, 2), (2, 2).

This is a natural alternative to interpreting the tuples as
numbers in base M + 1, which would lead to a highly unfair
strategy because large values of M would lead to changing
significant digits very late.

This ordering observes Pareto domination and the enumer-
ation algorithm runs in constant space.

B. Stages by sum of digits

The maximum digit approach mitigates unfairness in large
value of M (large number of candidate terms). However, it
still leads to an imbalance with a large number of quantified
variables, i.e., with large tuples. Indeed, even with M = 1
already 10 variables require 210 iterations before the most
significant digit is changed. The alternative is to iterate over
combinations stratified by the sum of all the digits. Tuples
with the same sum of digits are ordered lexicographically.

257

This leads to a breadth first traversal of the Pareto graph and
its effect is more pronounced with large number of variables.
The initial sequence has the following form:

(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1),
(2, 0, . . . , 0), (1, 1, . . . , 0), (0, 2, . . . , 0), . . .

This ordering also observes the Pareto domination and can be
calculated in constant space.

C. Leximax

Arguably the most fair strategy is enumeration according to
the leximax order [1] since all the variables are in equivalent
roles: let t1, t2 be n-tuples of integers. We say that t1 is
leximax preferred to t2 if t↓1 is lexicographically smaller than
t↓2, where t↓ denotes t sorted in descending order. Enumer-
ation can be done in constant space. We observe that all
permutations of a tuple are incomparable. This enables us
to stage the enumeration by gradually worsening a sorted
tuple and enumerate all its permutations through standard
means. The incomparable permutations are enumerated lexi-
cographically. For two variables the sequence starts as follows,
(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0). Contrast that with the
sum of digits (0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0).

D. Iterative Deepening and Random-walk Search

Strategies discussed so far never violate Pareto domination,
which would be violated by depth-first but that would have
a large degree of unfairness. Instead, we propose to use
iterative deepening where the maximum depth is incremented
by some fixed parameter k ∈ N+. Maximum depth 2 yields
(0, 0), (0, 1), (0, 2), (1, 1), (1, 0), (2, 0), where (1, 0) Pareto-
dominates (1, 1), even though it comes later in the sequence.

As another very adventurous strategy, we propose random-
walk traversal, which is similar to DFS but instead of a stack
we use a set where the next element is chosen randomly.

IV. DISCARDING REDUNDANT INSTANTIATIONS

When solving quantified formulas, SMT solvers are often
hindered by an overabundance of generated instantiations.
Thus, it is paramount to avoid instantiations that are redundant.
At a high level, an instantiation is considered redundant if it
does not help rule out models in the current context. Methods
for discovering redundant instantiations are particularly impor-
tant in the context of enumerative instantiation, where typically
we are iterating over similar domains of terms on multiple
instantiation rounds, and are looking for the first instantiation
that is not redundant.

In our implementation, we consider three criteria for deter-
mining that an instantiation φ · {x1 ↦→ t1, . . . , xn ↦→ tn} is
redundant, in increasing order of cost:

1) (Duplicate Term Vector) For each φ, maintain a trie
containing all term vectors of its previous instantiations.
If (t1, . . . , tn) is already in this trie, then the instantiation
is redundant.

2) (Entailed) As described in [8, Section 4.1], a fast in-
complete method for entailment is used for discovering

when an instantiation lemma is already implied by the
current set of constraints known by the SMT solver. All
instantiations that are entailed are considered redundant.

3) (Duplicate Formula Modulo Rewriting) Maintain a set
of previous formulas returned by quantifier instantiation.
Construct the formula φ · {x1 ↦→ t1, . . . , xn ↦→ tn} and
normalize it using rewriting techniques. If the resulting
formula is already in our set, it is redundant.

If none of these criteria hold, the instantiation is not considered
redundant.

It is important to note that the latter two methods allow
one to learn that a class of instantiations is redundant. For
this purpose, we introduce the concept of a fail mask for
an instantiation. A fail mask M for a substitution {x1 ↦→
t1, . . . , xn ↦→ tn} is a sequence of n bits such that all
substitutions that extend {xi ↦→ ti | the ith bit of M is set }
when applied to φ result in a redundant instantiation.

For example, let φ be the formula P (x1, x2) ∨ Q(x2, x3),
and consider the substitution σ = {x1 ↦→ a, x2 ↦→ b, x3 ↦→ c}.
Let E = {P (a, b),¬Q(b, c)} be the current set of assertions
from the ground solver. The instantiation φ · σ is redundant;
a fail mask for σ is 110, since P (a, b) ∨Q(b, x3) is entailed
by E for any value of x3.

We incorporate fail masks into our implementation in the
following way. When an instantiation φ · σ is discovered to
be redundant, we construct the fail mask M containing all 1s.
Starting with i = 1, we drop the entry {xi ↦→ ti} from σ.
If the instantiation is still redundant based on the latter two
criteria above, then we set the ith bit to 0. If not, then we re-
add the entry {xi ↦→ ti} to σ, and proceed with i+ 1. Notice
this means that our computation of the fail mask is greedy.

The fail mask is incorporated into the enumerative strategies
as follows. After each failed instantiation, combine the tuple
of term indices and the fail mask into a tuple with wildcards,
denoted “?”. So for instance, if the tuple (5, 4, 3) fails with
the mask 101, construct the tuple (5, ?, 3) meaning that if
the first variable is instantiated with the 5th term and the
third variable with the 3rd term, the instantiation is bound
to be redundant. Such combinations we wish to avoid. This
is checked independently of the enumeration algorithm by
storing the disabled patterns into a trie and discarding any
combinations matching one of the previously disabled patterns.
The trie handles the wildcard character ? specially by always
matching on it.

V. EXPERIMENTS

This section reports on our experimental evaluation of
different tuple enumeration strategies implemented in the cvc5
SMT solver (the successor of CVC4 [3]). We performed all
experiments on a cluster with Intel Xeon CPU E5-2620 CPUs
with 2.1GHz and 128GB memory, providing one core, 300
seconds, and 8GB RAM for each job.

Enumerative instantiation is extensively compared with
other techniques in [8], where it was concluded that inter-
leaving E-matching with enumeration gives the best results.
However, as the focus of the paper is the different enumeration

258

TABLE I
SUMMARY OF PROBLEMS SOLVED. BEST NON-PORTFOLIO RESULTS ARE IN BOLD.

Library # e u id2 id4 lmax sum rwlk allu-port eu-port eallu-port z3

TPTP 18627 7765 6989 6801 6834 6832 6922 6839 7330 9056 9292 -

UF 7668 3243 3016 2975 2963 2959 3009 2992 3120 3433 3452 2905
UFLIA 10137 7424 6024 6018 5897 6001 5980 5994 6188 7595 7615 6912
UFNIA 13509 5715 7458 7396 7384 7426 7437 7430 7620 7740 7843 6491

strategies, we run enumeration on its own. For succinctness,
we omit certain details, such as relevant domain heuristic, run
as proposed in [8].

Benchmarks are selected from first-order benchmarks from
the TPTP library [10], version 7.4.0, and from SMT-LIB [4],
2020 release. Of 19287 first-order TPTP problems, we ex-
cluded 660 which contained polymorphic types, leaving 18627
for consideration. For SMT-LIB, we considered all problems
from logics containing quantifiers and integer arithmetic, i.e.,
UF, UFLIA, and UFNIA, totaling 31314 problems. This selec-
tion of benchmarks was inspired by the evaluation from [8],
where enumerative instantiation was shown more effective in
the above sets.

1 10 100
1

10

100

u

u-
no

-f
ai

lm
as

k

time (s)

time
(s)

Fig. 3. Impact of elimination of redundant instantiation via fail masks.

The evaluation covers a number of cvc5 configurations. The
default enumeration, maximal digit, is denoted as u. Its vari-
ations according to different enumeration strategies described
above are id-n for iterative deepening with increment n; lmax
for leximax; sum of digits; and rwlk for random walk. We
also run, for control, cvc5’s E-matching (denoted e) and
z3 4.8.10 (denoted z3). By default z3 uses a combination
of E-matching and model-based quantifier instantiation. All
the cvc5 configurations run with the fail-masks technique
enabled; further, they use conflict-based instantiation [2], [9]
as a “fail-fast” technique, given its strong focusing effect.
The implementation of E-matching in cvc5 already uses a
redundancy checking mechanism [2], which is always enabled
in our experiments. The z3 evaluation is restricted to SMT-
LIB, given its limited support for TPTP.

The results are summarized in Table I. The column allu-
port is a virtual best solver (vbs) of all the enumerative
configuration, eu-port of a vbs of only e and u, and eallu-

TABLE II
SUMMARY PROBLEMS SOLVED UNIQUELY PER STRATEGY.

Library # e u id2 id4 lmax sum rwlk z3

TPTP 18627 1862 27 5 22 12 14 17 -

UF 7668 160 0 0 5 3 1 2 126
UFLIA 10137 370 0 3 1 3 1 1 49
UFNIA 13509 76 3 8 9 12 2 9 547

port a vbs of all cvc5 configurations. We first emphasize the
tremendous advantage in UFNIA of u over e, which can be
explained by many benchmarks needing instantiations with
key arithmetic constants, such as 0, to enable the necessary
ground reasoning to solve the problem. However, a large
number of these benchmarks may be impossible to solve via
E-matching alone: if matching needs to be done on terms
containing arithmetic operators, e.g. to match x+1 with 1, E-
matching will fail, whereas enumerative instantiation would
instantiate the formula regardless. Moreover, the different
enumeration strategies do lead to significant orthogonality
among the different configurations. The number of uniquely
solved problems per strategy is shown in Figure II. Note also
that the vbs of the enumerative configurations versus u reduces
the number of unsolved problems in UFNIA in almost 3%,
while eallu-port vs eu-port reduces the number of unsolved
in almost 2%. These improvements are also present in TPTP,
with similar reductions in the number of unsolved problems
when considering all the enumeration strategies in a virtual
best solver. This clearly shows the benefit of integrating into
actual portfolios different enumeration strategies rather than
having just the default one.

We also evaluated an even more adventurous enumeration
strategy than those in Table I, which randomly changes the
strategy at each instantiation round, thus effectively simultane-
ously trying all the strategies. This random strategy performs
similarly to the others but can be deeply influenced by the
random seed chosen for selecting a strategy each round, to
the extent that changing the seed from 0 to 7 makes it go, in
UFLIA, from 6007 successes to 6047. This further reinforces
the usefulness of diversifying the set of strategies used for
quantifier instantiation in practice.

Discarding classes of redundant instantiations using fail
masks gives a clear advantage as illustrated in Figure 3
(default enumerative instantiation strategy, on all benchmarks).
Using the fail masks leads to 217 uniquely solved problems,
whereas without it only 31 problems are solved uniquely.

259

Moreover, a large number of commonly solved problems
have very significant speed-ups, as the plot makes clear.
These improvements can be explained by the technique being
the most effective in problems containing quantifiers with
many variables, which are common occurrences among the
benchmark sets we considered. On problems where the fail
masks do not help, the overhead of computing and checking
them is noticeable (see the often prevalent crosses just below
the diagonal line). However, it is far from a deterrent, given
the significant gains.

VI. CONCLUSIONS

Enumerative instantiation is powerful, versatile, and offers
a lot of freedom for strategies. We presented several ordering
heuristics for instantiation that contribute to the orthogonality
of the strategies, and ultimately improve the SMT solver’s
performance and robustness. This is especially useful when a
user is willing to employ a barrage of solver configurations to
tackle a high-priority problem instance.

In future work, we plan to investigate the applications of
enumerative instantiation strategies for portfolio approaches
to SMT solving. We also would like to pursue more advanced
techniques where tuple and term orderings are not fixed and
may be influenced by previous successes or failures.

ACKNOWLEDGMENTS

We thank Mathias Preiner for helping with scripts for com-
puting the experimental results. The results were supported
by the Ministry of Education, Youth and Sports within the
dedicated program ERC CZ under the project POSTMAN
no. LL1902. This scientific article is part of the RICAIP
project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 857306.

REFERENCES

[1] Salvador Barbarà and Matthew Jackson. Maximin, leximin, and the
protective criterion: Characterizations and comparisons. Journal of
Economic Theory, 46(1):34–44, 1988.

[2] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence
closure with free variables. In Axel Legay and Tiziana Margaria, editors,
Tools and Algorithms for Construction and Analysis of Systems (TACAS),
Part II, volume 10206 of Lecture Notes in Computer Science, pages
214–230, 2017.

[3] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.
CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification (CAV), pages 171–177. Springer, 2011.

[4] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Stan-
dard: Version 2.6. Technical report, Department of Computer Science,
The University of Iowa, 2017. Available at www.SMT-LIB.org.

[5] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors, Handbook of Model Checking., pages 305–343. Springer,
2018.

[6] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3):365–473, 2005.

[7] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation
for quantified formulas in satisfiabiliby modulo theories. In Computer
Aided Verification, 21st International Conference, CAV, pages 306–320,
2009.

[8] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting
enumerative instantiation. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 10806, pages 112–131, 2018.

[9] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura.
Finding conflicting instances of quantified formulas in SMT. In Formal
Methods In Computer-Aided Design (FMCAD), pages 195–202. IEEE,
2014.

[10] Geoff Sutcliffe. The TPTP problem library and associated infrastructure.
J. Autom. Reasoning, 43(4):337–362, 2009.

260

Formal Methods in Computer-Aided Design 2021

Mathematical Programming Modulo Strings
Ankit Kumar and Panagiotis Manolios

Northeastern University

Email: {ankitk, pete}@ccs.neu.edu

Abstract—We introduce TranSeq, a non-deterministic, branching
transition system for deciding the satisfiability of conjunctions
of string equations. TranSeq is an extension of the Mathemati-
cal Programming Modulo Theories (MPMT) constraint solving
framework and is designed to enable useful and computationally
efficient inferences that reduce the search space, that encode
certain string constraints and theory lemmas as integer linear
constraints and that otherwise split problems into simpler cases,
via branching. We have implemented a prototype, SeqSolve,
in ACL2s, which uses Z3 as a back-end solver. String solvers
have numerous applications, including in security, software engi-
neering, programming languages and verification. We evaluated
SeqSolve by comparing it with existing tools on a set of
benchmark problems and our experimental results show that
SeqSolve is both practical and efficient.

I. INTRODUCTION

The problem of solving string equations has interested mathe-
maticians and computer scientists for decades. Security, soft-
ware engineering and verification applications, in particular,
have generated a renewed interest in string solvers. Security
applications include finding cross-site scripting vulnerabilities
in Web applications, SQL injection attacks and fuzzing [1], [2],
[3], [4], [5]. Software engineering applications include testcase
generation, symbolic evaluation and flow analysis [6], [7], [8].
Programming language applications include type inference for
array processing languages [9][10].

The basic problem is easy to define. Let Γ be a non-empty set
of constants. The elements of Γ∗ form a free monoid, i.e., a
structure with a single associative operation, corresponding to
concatenation, and an identity element ε. Elements of Γ∗ are
called strings or words. Let X be a set of variables over Γ∗

and let Y be a set of variables over Γ such that Γ, X and Y
are disjoint. Elements in Y are also called unit variables. Let
Z = X ∪Y . Elements of the free monoid (Γ∪Z)∗ are called
sequences, again with ε as the identity. A normal substitution
is a partial function ρ : Z ⇀ (Γ∪Z)∗. Every substitution can
be extended to the domain (Γ∪Z), by defining ρ(a) = a for
all a not in the domain of ρ. We can also extend the domain
to (Γ∪Z)∗ in the standard way. wρ stands for the application
of substitution ρ to the sequence w and it extends naturally
to sequence equations. A solution of a set of equations
{u1 = v1, u2 = v2, . . . , un = vn} is a substitution ρ that
when applied to each equation yields identical sequences, i.e.,
{u1ρ = v1ρ, u2ρ = v2ρ, . . . , unρ = vnρ} is a set of syntactic
equivalences over (Γ ∪ Z)∗. The problem statement is: given
a set of sequence equations {u1 = v1, u2 = v2, . . . , un = vn}
find a solution if there exists one, otherwise return unsat .

Related Work. Makanin, in 1977, proved that the satisfia-
bility of string equations is decidable [11]. A series of results
on complexity followed, after which Plandowski showed that
the problem is in polynomial space [12]. String solvers sup-
porting a variety of theories are available, e.g., Z3Str3 [13],
CVC4 [14], [15], S3P [16], Norn [17], TRAU [18], Str-
Solve [19], Sloth [2], Kepler22 [20] and HAMPI [1]. Z3Str3
and CVC4 are multi-theory SMT solvers which consider
unbounded string equations with concatenation, substring,
replace and length functionality. Together with S3P and Norn,
these tools handle a variety of string constraints including
string equations, length constraints and regular language mem-
bership. However, these tools are incomplete. HAMPI works
only for problems with one string variable of fixed size.
Kepler22 is a decision procedure for the straight line and
quadratic fragments of string equations. Norn and TRAU
can decide only the acyclic fragment whereas Sloth de-
cides straight line and acyclic fragments. To the best of our
knowledge, there is no solver that for decidable fragments
is both theoretically and practically complete, e.g., none
of the above solvers are able to solve the string equation
xcyczvycya = yacwazvbux. Therefore it is important to
explore new techniques for solving string equations. One of
the most promising existing techniques uses context-dependent
techniques to improve the reasoning of string constraints in the
context of DPLL(T)-based SMT solvers [15]. Similarly, our
work introduces new techniques for reasoning in the context of
BC(T)-based (Branch and Cut Modulo T) MPMT solvers [21],
[22].

Contributions. Our contributions include (1) TranSeq, a
new non-deterministic, branching transition system that can
be used as part of the MPMT framework for combining
decision procedures, (2) the SeqSolve solver, an implemen-
tation of TranSeq which resolves non-deterministic choices
in a way designed to infer as much as possible with as few
computational resources as possible, (3) proof sketches of
soundness, completeness and termination for TranSeq and (4)
an evaluation of SeqSolve using a set of benchmarks from
related work, as well as Remora examples [9], [10]. We use
publicly available benchmarks, being careful to evaluate only
the string solving capabilities of our tool, not irrelevant aspects
of the underlying SMT/MPMT tools. The integration of our
solver into SMT/MPMT tools is briefly discussed. There are
over 1,100 problems in our benchmark and no existing string
solver can solve all of them. Experimental results show that

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_36 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-9587-2861
https://orcid.org/0000-0003-0519-9699
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_36
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_36
https://creativecommons.org/licenses/by/4.0/

SeqSolve is more efficient and complete than existing solvers.

Paper Outline. Section II illustrates some techniques we use
to reason about string equations through motivating examples.
Section III defines basic terms used to define our transition
system and algorithm. Section IV describes TranSeq and
SeqSolve. Section V gives proofs sketches of correctness
and termination; due to space limitations full definitions and
proofs will appear in a full version of the paper. Section VI
describes implementation considerations of our prototype and
Section VII contains our evaluation. Conclusions and future
work appear in Section VIII.

II. ILLUSTRATIVE EXAMPLES

In this section, we highlight some of the techniques used in
our string equation solver, via a collection of examples, where
a, b, c . . . are constants (elements of Γ) and u, v, w, x, y and z
are string variables (elements of X).

Example 1 [ConstUnsat] Consider the string equation b = a.
The constant b differs from the constant a so this equation
is unsatisfiable. Our algorithm determines by performing par-
tial evaluation that includes evaluating constant prefixes and
suffixes of equations.

Example 2 [Trim] Consider xab = xbb. Our algorithm trims
common prefixes and suffixes from both sides of the input
equation to get a = b which is unsatisfiable by ConstUnsat.

Example 3 [Decompose] Consider xyazy = yxubyz. Prefixes
xy and yx have provably equal lengths. So do the suffixes
zy and yz. Therefore our algorithm decomposes the input
equation into three equations: xy = yx, a = ub and zy = yz.
Equation a = ub can be further decomposed into a = b and
u = ε, which is unsatisfiable by ConstUnsat.

Example 4 [EqLength] Consider uvxayvu = vuyxuv.
Decomposition generates the two distinct equations uv = vu
and xay = yx. Notice that if an equation is satisfiable, then
both sides have to have the same length and our algorithm
generates the constraint lx + 1 + ly = ly + lx where lx
and ly denote the lengths of x and y, respectively, which is
unsatisfiable.

Example 5 [EqConsts] Consider ax = xb. If the equation is
satisfiable, then both sides of the equation must have the same
number of occurrences of each constant. To enforce this, our
algorithm generates the constraint 1 + cxa = cxa, where cxa is
the number of a’s in x, which is unsatisfiable.

Example 6 [VarElim] Consider the set of (implicitly con-
joined) string equations {uv = vu, xa = ax, cy = x}. The
last equation has the form of a definition and this allows our
algorithm to eliminate x by applying the appropriate substitu-
tion to the set of equations, giving us {uv = vu, cya = acy}.
Since cya = acy is unsatisfiable, so is the set.

Example 7 [VarSplit] Consider xxa = cyx. One side starts
with the constant c so the other side must also start with c,
which means x cannot be empty and must start with a c. Our

algorithm detects this and adds the equation x = cx̂, where x̂
is a new string variable. After eliminating x and trimming, we
wind up with the equation x̂cx̂a = ycx̂, which decomposes
into x̂c = y and x̂a = cx̂. The EqConsts analysis (Example 5)
infers that the second equation is unsatisfiable. Our algorithm
also does this for suffixes.

Example 8 [VarSubst] Consider wuzwuza = cywuz. The
equation is equi-satisfiable with xxa = cyx: we substitute a
new string variable, x, for the sequence of string variables,
wuz, thereby eliminating all occurrences of w, u and z from
all string equations. The resulting equation is unsatisfiable by
VarSplit (see Example 7).

Example 9 [Rewrite] Consider the set of (implicitly con-
joined) string equations {zv = ba, xxazv = cyxba}. The
first equality can be used to rewrite the second equality to
xxazv = cyxzv which can be trimmed to xxa = cyx, which
is unsatisfiable, as per Example 7.

Example 10 [LenSplit] Consider xbyu = caxzb. The length
of the prefix xb is strictly less than the length of the prefix cax,
which allows us to infer that yu = ŷzb for some new string
variable ŷ 6= ε. We can rewrite yu to ŷzb (see Example 9)
and after trimming, we wind up with the equation xbŷ = cax,
which is unsatisfiable (see Example 5).

Example 11 [EqWords] Consider xbcay = ycbax. Let W x
ca

and W y
ca be the number of occurrences of a word ca in x and y

respectively. If the equation is satisfiable, then both sides must
have the same number of ca occurrences. To enforce this, our
algorithm generates the constraint W x

ca + 1 + W y
ca = W y

ca +
W x
ca, which is unsatisfiable. Consider bwbxacv = vbabxcw,

which shows that counting words requires more care than what
the above example suggests, e.g., to count the occurrences of
bc, we have to take into account whether c is a prefix of w,
whether b is a suffix of x, whether x is empty, and so on. We
use 0-1 indicator variables Pwc , S

x
b and εx, denoting the above

conditions, respectively. Now, with just the ab occurrence
analysis, we can use variable splitting on w (w ends in an
a) and then on v (v ends in an a) to derive a contradiction.

Example 12 [SAT] None of the string solvers we tried are able
to solve the string equation xcyczvycya = yacwazvbux. This
equation is outside the scope of Kepler22, StrSolve, Hampi
and Sloth. Sloth, TRAU and S3P return unsat , which is wrong.
Norn, Z3Str3 and CVC4 timed out after 1,000 seconds, which
shows that existing tools are incomplete, in a practical sense.
Our solver finds the assignment x = aba, y = ab, u = cabc
and v, w, z = ε in a fraction of a second.

III. BLOCKS, SUBSTITUTIONS AND THEORIES

Suppose that a sequence u has an l length subsequence of
consecutive occurrences of the constant a. This subsequence
can be compactly represented by the pair (a, l), which we refer
to as a block: pairs in Γ× PExp where

PExp := P | x | PExp + PExp | PExp − PExp
and x is a variable over positive natural numbers, P. We

262

require that a PExp is positive. A sequence that allows blocks
is called an extended sequence (es); an extended sequence
equation (ese) is similarly defined. The set of extended
sequences es is (Γ∪ (Γ×PExp)∪Z)∗. We define a function
compress : es → ((Γ,PExp) ∪ Z)∗ which given an
(extended) sequence, replaces contiguous occurrences of each
constant by its block such that no two blocks of the same
constant are adjacent to each other, thus returning a unique
maximally compressed sequence. We define the following
useful functions, which given an extended sequence U : (1)
Elems : es → 2Γ∪Z∪(Γ,PExp) returns the set of elements
of U ; (2) Atoms : es → 2Γ∪Z returns the set of variables
and constants occurring in U ; (3) Consts : es → 2Γ returns
the set of constants in U . (4) Vars : es → 2Z returns the
set of variables in U . These functions extend naturally to
eses and to sets of ess and eses. An extended sequence U
represents a sequence u if u is obtained from U by replacing
every block (α, n) by α repeated n times. Note that n needs
to be a positive integer. Extended sequences U and V are
syntactically equivalent if they represent the same sequence.
We use ≡ to denote syntactic equivalence. For example,
(α, 2)αX ≡ α(α, 2)X , as both of them represent the sequence
αααX . Notice that syntactic equivalence is an equivalence
relation.

We define a substitution σ to be a partial function of the form
σ : es ⇀ es. Given substitution σ, let σv be σ restricted to Z
and let σs be σ\σv . Let dom(f) and cod(f) be the domain and
codomain of function f , respectively. Note that dom(σv) ⊆ Z ,
so σv is a normal substitution. Substitutions σv and σs partition
σ and have disjoint domains. We say that σs is an extended
substitution, as its domain may contain sequences. We require
substitutions to be well-typed, i.e., σv must map unit variables
to sequences of unit length. Uσ stands for the application of
substitution σ to U ∈ es. This notation extends naturally to
equations and sets of equations. In order for application to be
well-defined, we require that σ is consistent, as defined below.
We say that σ is uniquely defined if for all x, y ∈ dom(σ),
if x 6= y then Atoms(x) ∩ Atoms(y) = ∅. To see why we
require this, consider the case where σv = {x:ab, y:a} and
σs = {yax:aba}; note that (yax)σ is ambiguous.

Given two uniquely defined substitutions, σ and τ , we say
that they are equivalent, written σ ≡ τ , if for all U ∈ es,
we have Uσ ≡ Uτ . We say that σ is consistent if it is
uniquely defined and 〈∃τ :: dom(τ) ⊆ Z ∧ σ ≡ τ〉, i.e., σ is
equivalent to a normal substitution. Consider σ = {xay:bbb}.
Even though σ is uniquely defined, it can not be expressed as
a normal substitution. From now on, unless we say otherwise,
all substitutions are implicitly assumed to be consistent. A
substitution σ is said to solve an ese U = V if Uσ ≡ V σ; σ
solves Q, a set of eses, if σ solves every ese in Q. A word
ab is an es in which no prefix is a suffix.

Theorem 1. If σ is a consistent substitution and x1, . . . , xn ∈
Z are distinct variables such that n ≥ 0 and {x1, . . . , xn} ∩
Vars(dom(σ)) = ∅, then σ ∪ {x1:V1, . . . , xn:Vn} (where

V1, . . . , Vn are extended sequences of the right type) is a
consistent substitution.

A theory is a pair T = (Σ, I), where Σ is a signature and
I is a class of Σ-interpretations, the models of T . A set of
formulas, Ψ, entails in T a Σ-formula φ, written Ψ �T φ, if
every interpretation in I that satisfies all formulas in Ψ satisfies
φ as well. The set Ψ is unsatisfiable in T if Ψ �T ⊥.

Let LIA be a theory with signature (0, 1,+,−,≤) interpreted
over the standard model of integers Z. A linear constraint
is a formula of the form

∑
i∈[1..n]

aixi ≤ b, where xi are

variables and ai and b are integer constants. For a collection
of linear constraints C, C �LIA ⊥ means that C is unsatisfiable
in LIA, whereas C 2LIA ⊥ means that a model exists for
C. Our algorithm accepts and generates linear constraints
on the conjunction of input string equations. It assumes a
sound, complete and terminating backend ILP solver for such
constraints. Let ES be a theory of (extended) sequences over
a signature ΣES with two sorts: extended sequences (es) and
integers (Z) along with an infinite set of variables over each
sort. ΣES also includes constants in Γ, PExp expressions,
blocks, (extended) sequences and functions len interpreted as
the string length function, countConst interpreted as a function
counting the number of a specified constant in a sequence and
countWords interpreted as a function counting the number of
specified words in a sequence.

IV. MPMT-BASED STRING SOLVER

Our algorithm, SeqSolve, accepts a conjunction of string
equations Q as well as initial constraints Cinit and returns
either unsat , unknown or sat along with a solution. Cinit is
a set of initexp’s defined as

LExp := Z | x | len(u) | LExp + LExp | LExp − LExp

initexp := LExp (< | ≤ | > | ≥ | = | 6=) LExp

where x is an integer variable (Z), u is an (extended) sequence
and len : es → N is a function that returns length of u. We
refer to variables occurring in PExp and LExp expressions
as numeric variables. Central to the algorithm is a non-
deterministic transition system TranSeq with rules that operate
on configurations consisting of (extended) sequence equations
and sets of LIA constraints.

Our decision procedure can be integrated into MPMT solvers
in a fine-grained way since MPMT is based on branching,
using the branch-and-cut framework. However, in order to
make the paper more self contained, we present TranSeq and
SeqSolve with as few dependencies on the MPMT framework
as possible.

Our decision procedure can be integrated into SMT solvers
using the idea of recursive solvers: these are solvers whose
decision procedures may depend on the solvers themselves.
For example, we can integrate our decision procedure into
Z3, even though our decision procedure uses Z3 as a backend
solver, by using a separate Z3 process to handle the LIA

263

constraints and one can use this integration as a backend solver
for yet another decision procedure, and so on. As far as we
know, we are the first to propose the idea of recursive solvers.
For SMT solvers like Z3 that provide contexts and a stack with
a push-pop interface to manage constraints, integration can be
achieved using these features by creating a new context or
stack frame, thereby allowing decision procedures to query
the SMT solver without polluting its state.

A. Configurations

The algorithm works on configurations that include tuples of
the form 〈unsat〉, 〈unknown〉, 〈sat , σ, C〉 and 〈Q, σ, vars , C〉
where (1) Q is a set of eses, (2) σ : es ⇀ es is a
(consistent) substitution, (3) vars is a superset of the variables
in Z which occur in Q, (4) C is a union of constraints
Clen ,Cconsts ,Cwords and a set of linear constraints corre-
sponding to Cinit , where (i) Clen is a set of linear constraints
regarding the lengths of variables in vars . For x ∈ vars ,
lx is an integer variable denoting the length of x and εx
is a 0-1 indicator variable indicating whether x is empty.
Linear constraints in Clen and Cinit are over these integer
variables and over PExp variables; (ii) Cconsts is a set of linear
constraints regarding the number of occurrences of constants
in variables from vars . For x ∈ vars , nxa is an integer variable
denoting the number of occurrences of the constant a in x.
Linear constraints in Cconsts are over these variables as well as
over variables of Clen ; (iii) Cwords is a set of linear constraints
regarding the number of words occurring in variables from
vars . Let x ∈ vars and s ∈ consts∗. Then W x

s denotes the
number of s occurrences in x; P xs and Sxs are 0-1 indicator
variables indicating whether x begins with s and ends with
s, respectively. Linear constraints in Cwords are over these
variables as well as over variables of Clen .

The reason why we distinguish between Clen ,Cconsts and
Cwords is that it makes it easier to consider simplified tran-
sition systems that include only a subset of these kinds of
constraints. We define sets consts and Cfuel where (1) consts
is a superset of the constants from Γ occurring in Q and (2)
Cfuel is a set of linear constraints over the lx variables, used
to guarantee termination. Both consts and Cfuel are generated
once and never modified by our transition system. The rules
in TranSeq depend on auxiliary functions that are used to
generate LIA constraints or to simplify equations. All of these
functions are described in the full version of this paper.

B. Transition System TranSeq

We describe a non-deterministic transition system TranSeq.
TranSeq consists of a set of rules called derivation rules. A
derivation rule applies to a configuration K if all of the rule’s
premises are satisfied by K. Such a rule is enabled for K. A
derivation tree is a tree where each node is a configuration and
the children of any non-leaf node are exactly the configurations
obtained by applying one of the derivation rules to the node.
A configuration is terminal if no rules can be applied to it.
We prove that terminal configurations are either of the form
〈unsat〉, in which case we call them unsat terminal nodes,

〈unknown〉, in which case we call them unknown terminal
nodes, or of the form 〈sat , σ, C〉, in which case we call them
sat terminal nodes and σ, C can be used to generate a satisfying
assignment to the equations appearing in the root of the tree.

A configuration K = 〈Q, σ, vars , C〉 is sat (unsat) iff
Q ∪ C ∪ Cfuel is sat (unsat). K is C-sat iff Q ∪ C is sat .
Notice that an unknown terminal node may be sat (or unsat).
This discrepancy is due to the Cfuel constraints, which are
provable upper bounds on the lengths of minimal solutions,
but only if we have no length constraints in the input, so it is
possible that K is C-sat , but the configuration is unsat and
we generate an unknown terminal node. The derivation rules
of TranSeq are given in guarded assignment form and can
be categorized into three groups: (1) Terminal rules: Rules
that yield terminal nodes. (2) Inference rules: Rules that
generate new inferences. (3) Branching rules: Rules that
generate multiple subproblems.

A derivation tree is closed if all its leaf nodes are terminal
nodes. A derivation tree is unsat-closed if it is closed and all
of its leaf nodes are unsat-terminal nodes. A derivation tree
is unknown-closed if it is closed, has at least one unknown
terminal node and has no sat-terminal nodes. We prove that
if a derivation tree is unsat-closed, then the conjunction of
the equations and constraints appearing in the root of the
tree are unsatisfiable. A derivation tree for a set of sequence
equations Q = {u1=v1, u2=v2, . . . , un=vn} and some ini-
tial length constraints Cinit (if provided) is a tree whose
root, genRoot(Q,Cinit), is defined in Algorithm 1, where
Choose(X) is a function that given a non-empty set X , returns
an element of X . Clen , Cconsts and Cwords are initialized
with linear constraints by functions initLen, initConsts and
initWordCount respectively. These functions generate con-
straints which are satisfiable for any string variable. Cfuel

comprises of constraints on the size of the minimum solution
of each equation in Q which are calculated in function initFuel
and are based on results from [23]. The sets consts and vars
are supersets of the constants and variables occurring in Q,
respectively.

We define the function toLIA, which given an initexp returns a
linear constraint. Given len(x), where x is a sequence variable,
toLIA returns lx; we extend this to initexp expressions in the
obvious way and use toLIA to also generate fuel constraints.
We denote the set of words we are interested in counting as
W , which is global.

C. Rules in TranSeq

We now describe each rule in TranSeq. The conclusion of
a rule describes how each component of a configuration is
changed, if it does. Rules with two or more conclusions
separated by ‖, are branching rules, where each of the config-
urations are starting configurations for new branches in their
derivation tree. In derivation rules, if Q is relevant, it appears
on the top-left corner in the premise and as the last line of a
concluding branch. A, t is an abbreviation for A∪{t} and A∼t

264

Algorithm 1 genRoot(Q,Cinit) : Given input set of string equations
Q, genRoot generates the root node of a derivation tree.

1: σ ← {}
2: vars ← {x | x ∈ Z ∧ x ∈ uv ∧ u=v ∈ Q}
3: consts ← {a | a ∈ uv ∧ a ∈ Γ∧ u=v ∈ Q}
4: if consts = ∅ ∧ vars ∩ Y 6= ∅ then
5: consts ← {Choose(Γ)}
6: Clen ←

⋃
v∈vars

initLen(v)

7: Cconsts ←
⋃

v∈vars

initConsts(v, consts)

8: Cwords ←
⋃

v∈vars,w∈W
initWordCount(v, w)

9: C ← toLIA(Cinit) ∪ Clen ∪ Cconsts ∪ Cwords

10: Cfuel ← initFuel(Q)
11: return 〈Q, σ, vars, C〉

abbreviates A \ {t}. We use ≡ (6≡) for syntactic equivalence
(in-equivalence) and = (6=) for semantic equality (inequality).

Terminal rules When Q is empty, if C is unsatisfiable,
LIAUnsat infers unsat otherwise Sat returns a sat configu-
ration.

C �LIA ⊥ LIAUnsat
〈unsat〉

{} C 2LIA ⊥ Sat
〈sat , σ, C〉

If the fuel constraints are needed to show unsatisfiability, then
the rule FuelUnsat returns unsat if no initial linear constraints
were provided, otherwise the rule Unknown returns unknown .
Terminal rules are subject to fairness constraints, as described
later.

Cinit = ∅ C ∪ Cfuel �LIA ⊥
FuelUnsat

〈unsat〉
Cinit 6= ∅ C 2LIA ⊥ C ∪ Cfuel �LIA ⊥

Unknown
〈unknown〉

If there exists an equation with syntactically different extended
sequences on both sides, ConstUnsat infers unsat .

{U=V , . . .} U 6≡ V Vars(UV) = ∅
ConstUnsat

〈unsat〉
Note that we do not apply substitution σ to U and V when
checking for syntactic equivalence, as shown below.

{U=V , . . .} Uσ 6≡ V σ Vars(UV) = ∅
ConstUnsat

〈unsat〉
This is because, for any equation U=V ∈ Q, we get the
original rule due to Uσ = U as a result of the invariant
Qσ = Q, which we prove later.

When one side of an extended equation contains a constant or
a block, while the other side is empty, ConstEmpty deduces
unsat . If both sides begin with blocks of unequal constants,
DiffConsts deduces unsat .
{U=ε, . . .} α ∈ Atoms(U) α ∈ consts

ConstEmpty
〈unsat〉

{(α, l)U=(β,m)V , . . .} α 6= β
DiffConsts

〈unsat〉

If one side of an equation contains a unit variable while the
other side is empty, then YVarEmpty infers 〈unsat〉.

{U=ε, . . .} e ∈ U e ∈ Y
YVarEmpty

〈unsat〉
The rules ConstEmpty and DiffConsts deduce unsat based on
how terms in an equation start, but there is a symmetry here
that allows us to define rules that make the same deduction
based on how terms end. For example, the symmetric version
of DiffConsts would start with {U(α, l) = V (β,m), . . .}, but
would otherwise be identical to DiffConsts. When rules have
this kind of symmetry, we denote it by underlining the name
of the rule in its definition. These symmetric rules help with
efficiency, but are not needed for completeness, so to simplify
the rest of the presentation, we proceed as if they do not exist.

Inference rules Trim removes syntactically equal prefixes and
suffixes from both sides of an equation; note that one of
a, b can be ε. EqElim removes eses whose both sides are
syntactically equivalent. Observe that Trim can be used to
reduce an equation U=V which is syntactically equivalent
on both sides, to get ε=ε, in which case we get syntactic
equivalence of both sides trivially.
{aUb=cV d, . . .} a ≡ c
|ab| > 0 b ≡ d

Trim
{U=V , . . .}

{U=U, . . .}
EqElim

{. . .}

Decompose splits an ese U=V into multiple equations using
length constraints. A simple example is given in Example 3.

{U=V , . . .} |splitEq(U, V, C)| > 1
Decompose

splitEq(U, V, C) ∪ {. . .}
Compress converts an equation u=v ∈ Q into a maximally
compressed sequence. Observe that the premise requires that
there is at least one constant element in u=v. Note that blocks
such as (a, 1) are not constants, as they are not elements of
Γ.

{u=v, . . .} Elems(uv) ∩ Γ 6= ∅
Compress

{compress(u)=compress(v), . . .}
VarSubst formalizes the idea from Example 8. Given W , a
non-empty subsequence in Q satisfying the conditions below,
the rule replaces W with a new variable z. We show later that
for every node in a derivation tree generated by our algorithm,
Qσ = Q holds; hence, the first condition for consistency of
substitutions is satisfied. The second consistency condition is
satisfied due to the premise that requires atoms of W and
Q{W :z} to be disjoint. Hence, the substitution in the new
configuration is consistent. The LIANewVar procedure gener-
ates numeric constraints for new variables. After this rule, it
is called implicitly whenever a new variable is introduced.
{U=V , . . .} 〈∃S, T :: SWT=U ∧ |W | > 1〉
Atoms(W) ⊆ vars z ∈ X z /∈ vars

Atoms(W) ∩ Atoms({U=V , . . .}{W :z}) = ∅
VarSubst

LIANewVar(z)
σ ← σ,W :z

{U=V , . . .}{W :z}

265

Rewrite replaces a subsequence S of U by T , given that S=T
is an equation in Q. Rewrite can choose which occurrences to
replace. Infinite derivation trees are ruled out with a fairness
requirement that only allows us to use the Rewrite rule a finite
number of times.

{U=V , S=T , . . .} S ∈ U
Rewrite

{U{S:T}=V , S=T , . . .}
EqLength, EqConsts and EqWords generate length, constant
count and word count constraints implied by an equation.
Function equateWordCount returns a linear constraint equat-
ing the number of occurrences of a word w in U and V .

{U=V , . . .} equateLen(U ,V) 6⊆ C
EqLength

Clen ← Clen ∪ equateLen(U, V)

{U=V , . . .} equateConsts(U ,V) 6⊆ C
EqConsts

Cconsts ← Cconsts ∪ equateConsts(U, V, consts)

{U=V , . . .} w ∈ consts≥2

equateWordCount(U, V,w) 6⊆ C
EqWords

Cwords ← Cwords ∪ equateWordCount(U, V,w)

VarElim allows us to eliminate variables.
{x=V , . . .} x /∈ V x ∈ X

VarElim
σ ← σ, x:V

{. . .}{x:V }
Given an equation where one side starts with c occurrences of
variable x and the other starts with m occurrences of constant
β, the rule VarSplit infers shape information about x involving
fresh variable y. x can not be empty, and the prefix of xc must
be syntactically equivalent to (β,m). Hence, VarSplit infers
that x is (β, k)y, where c ∗ k ≥ m. Note that c is a constant,
hence expressions such as c ∗ k do not take us out of the LIA
fragment. Also note that if k < m, y will have to start with β
as well, which we do not want. Hence we add an implication
that if k < m then y is empty. We extend the set of equations
with x=(β, k)y. Anytime we extend a the set of equations with
an equation of the form x= . . ., we call VarElim to eliminate
the variable x.
{xc(α, l)U=(β,m)V , . . .} α 6= β, c > 0

x, y ∈ X y /∈ vars
VarSplit

Clen ← Clen , k > 0, (c− 1) ∗ k < m ≤ c ∗ k,
k < m⇒ εy = 1

Cwords ← Cwords , k < m⇒ Sxβ = 1

{x=(β, k)y, xc(α, l)U=(β,m)V , . . .}
Length constraints alone may not always be enough to split
an equation. LenSplit introduces a new variable on one side
of an equation such that the resulting equation is clearly split
into smaller and possibly more tractable equations. Example
10 illustrates a simple example.

{UW=SzV , . . .} C �LIA len(U) < len(Sz)

y, z ∈ X y /∈ vars
LenSplit

Clen ← Clen , εy = 0

{Uy=Sz,W=yV , . . .}

Inferences made by the backend LIA solver can be used to
infer sequence variables. LIAEmpty concludes that a variable
x is empty if εx = 1 is derived by the solver. Similarly, x
starts (ends) with α iff the solver derives P xα = 1 (Sxα = 1).

C �LIA εx = 1
x ∈ vars LIAEmpty
{x=ε, . . .}

C �LIA P
x
α = 1 y ∈ X

x ∈ vars y /∈ vars
LIABegin

{x=αy, . . .}

C �LIA S
x
α = 1 y ∈ X

x ∈ vars y /∈ vars
LIAEnd

{x=yα, . . .}

Given an equation where one side is empty, XVarEmpty infers
that a variable x ∈ X in the other side must also be empty. If
the two sides of an ese start with unit variables x and y, then
DiffYVars infers that both the variables must be equal.

{U=ε, . . .}
x ∈ U
x ∈ X XVarEmpty

{x = ε, U = ε, . . .}

{xU=yV , . . .}
x 6≡ y
x, y ∈ Y

DiffYVars
{x = y, U = V, . . .}

Branching rules Given an equation where one side starts
with a block of α, while the other side starts with a unit
variable e, UnitConst infers that either the length of the α
block is greater than one, or equal to one. Observe that some
constraints in this rule are emphasized with a wavy underline.
If such constraints are implied by C, we can directly jump to
their corresponding branch. Practically, it helps to not branch,
if one of the underlined constraints can be derived in the
premise.

{eU=(α, l)V , . . .} e ∈ Y
UnitConst

Clen ← Clen , l = 1
::::

‖ Clen ← Clen , l > 1
::::

{e=α, U=V , . . .} {e=α, U=(α, l − 1)V , . . .}

Given an equation where one side starts with a unit variable e
while the other side starts with sequence variable y, UnitVar
infers that either y is empty, or e is a prefix of y.

{eU=yV , . . .} e ∈ Y y, z ∈ X z /∈ vars
UnitVar

Clen ← Clen , εy = 1
:::::

‖ Clen ← Clen , εy = 0
:::::

{y=ε, eU=V , . . .} {y=ez, U=zV , . . .}

If both sides of an equation start with blocks of the same
constant α, SimConsts infers that either both blocks have the
same length or one of them has length more than the other.
So this rule should have three branches, one equating l and
m, while the other two deducing a strict inequality between
them. However, there are two branches, one equating l and
m, while the other deducing m̂ > l̂. This is because, for the
sake of conciseness we introduce “hatted" variables Û , V̂ , l̂, m̂
and β̂. A branch with hatted variables signifies the presence
of another branch where the hatted variables are replaced by
their substitutions defined as:

{x̂:y, ŷ:x, X̂:Y , Ŷ :X, Û :V , V̂ :U, l̂:m, m̂:l, α̂:β, β̂:α}

266

Notice that we also have underlined constraints in the con-
clusion. So, the rule SimConsts represents six rules, three
after expanding hatted variables where none of the underlines
constraints is implied by C, and the rest considering presence
of each of the underlined constraints in the premise of its
corresponding rule.

{(α, l)U=(α,m)V , . . .}
SimConsts

Clen ← Clen ,m = l
:::::

‖ Clen ← Clen , m̂ > l̂
:::::

{U=V , . . .} {Û=(α, m̂− l̂)V̂ , . . .}
Similar to SimConsts, DiffXVars also uses both hatted vari-
ables and underlined constraints which gives rise to a total of
ten rules. If both sides of an equation start with syntactically
different variables x, y ∈ X , and none of the underlined
constraints is implied by C, then DiffXVars infers that either
one of them is empty or they are semantically equal or one of
them is a prefix of the other.

{xU=yV , . . .} x 6≡ y
z /∈ vars x, y ∈ X z ∈ X

DiffXVars
Clen ← Clen , lx̂ > lŷ

:::::
, ‖ Clen ← Clen , lx = ly,

::::::

εx̂ = εŷ = εz = 0, x̂ = lŷ + lz
::::::::::::::::::::::::

εx = εy = 0
:::::::::

{x̂ = ŷz, zÛ = V̂ , . . .} {x = y, U = V, . . .}
‖ Clen ← Clen , εx̂ = 1

:::::

{x̂=ε, Û=ŷV̂ , . . .}
Finally, VarConst fires when one side of an equation starts
with a constant block (α, l) while the other side starts with
a variable x. Again, VarConst represents eight rules due
to the presence of underlined constraints in its branching
conclusions. Assuming none of these constraints is implied
by C, the first branch sets x empty; second branch sets length
of x less than l; third branch equated x to (α, l), while the
last branch sets x as a block of α whose length is greater than
l, possibly followed by another variable y that does not start
with α.
{xU=(α, l)V , . . .} x, y ∈ X y /∈ vars

VarConst
Clen ← Clen , εx = 1

:::::
‖ Clen ← Clen , 0 < lx < l

::::::::

{x=ε, U=(α, l)V , . . .} {x=(α, lx), U=(α, l − lx)V , . . .}
Clen ← Clen , 0 < lx = l

::::::::
‖ Clen ← Clen , 0 < l < lx

::::::::

{x=(α, l), U=V , . . .} {x=(α, lx)y, xU=(α, l)V , . . .}

D. SeqSolve definition

We define SeqSolve in Algorithm 2. It takes a set of sequence
equations W and an optional set of length constraints Cinit

as input and either returns a sat with a solution, unknown or
unsat .

V. CORRECTNESS OF SEQSOLVE

Full proofs of correctness of SeqSolve appear in the full
version of this paper. In the interest of brevity, we outline the
structure of proofs in this section. First, we define correctness.

Algorithm 2 SeqSolve takes a set of (extended) sequence equations
W and optionally a set of linear constraints Cinit as input and either
returns a sat with a solution,unknown or unsat .

1: T ← genRoot(W,Cinit)
2: while ∃ a non-terminal leaf node n ∈ T do
3: apply an enabled TranSeq rule to n
4: if sat terminal node 〈sat , σ, C〉 generated then
5: generate a satisfying assignment ψ from σ, C
6: return sat , ψ

7: if ∃ leaf node 〈unknown〉 ∈ T then
8: return unknown
9: else

10: return unsat

Definition 1. A string equation solver is an algorithm that
takes as input a set of string equations and a set of linear
constraints. Its output is either “Unsat,” “Unknown,” or “Sat”
and an assignment.

Definition 2. A string equation solver is sound if it never lies,
by which we mean: (1) when it returns “Sat,” the conjunction
of the string equations and the linear constraints is satisfiable
and the assignment returned is a satisfying assignment and
(2) when it returns “Unsat,” the conjunction of the string
equations and the linear constraints is unsatisfiable.

Definition 3. A string equation solver is partially correct if it
is sound and terminating.

Definition 4. A string equation solver is fully correct if it is
sound, terminating and never returns “Unknown.”

Note that a sound solver can be turned into a partially
correct solver by adding a timeout, which results in the solver
returning “Unknown.” We prove that our solver is fully correct
for the theory of string equations by showing that when the
input consists of only a conjunction of string equations Q,
our transition system generates a derivation tree that is unsat-
closed iff the input is unsatisfiable; otherwise it generates a
derivation tree containing a sat terminal node, from which we
can extract a satisfying assignment for the input. When the
input also includes linear constraints, our solver is partially
correct as it may also generate an unknown-closed derivation
tree. We show that SeqSolve is sound using the following
theorems.

Theorem 5. Given inputs Q,Cinit such that SeqSolve gener-
ates a tree T with a sat terminal node 〈sat , σ, C〉, then σ, C
can be used to generate a solution for Q,Cinit .

A configuration is var-compliant iff it is of the form
〈Q, σ, vars , . . .〉 where Vars(σ) ⊆ vars (by Vars(σ) we mean
Vars(dom(σ)) ∪ Vars(cod(σ))). A configuration is numvar-
compliant iff (1) it is of the form 〈Q, σ, vars , C〉 and all
numeric variables appearing in it are also in C and (2) for
a variable x ∈ vars , initLen(x) ∪ initConsts(x, consts) ∪
initWordCount(x, consts) ⊆ C. A configuration is good iff it
is either terminal or it is disjoint, var-compliant and numvar-
compliant. A derivation tree is good if all of its nodes are

267

good configurations. It turns out that all SeqSolve-generated
derivation trees are good.

Lemma 7. Given input Q,Cinit where Q is a set of (extended)
sequence equations and Cinit is a set of linear constraints,
genRoot returns a good, non-terminal configuration.

Lemma 12. TranSeq rules preserve goodness, i.e., when
applied to a good configuration, they produce good config-
urations.

SeqSolve is subject to the following fairness conditions: (1)
LIAUnsat, FuelUnsat and Unknown are weakly-fair rules. First
note that once any of these rules is enabled, it stays enabled.
We require that no branch of a derivation tree contains a suffix
in which a weakly-fair rule is infinitely enabled, yet never
applied. (2) Rewrite can only be applied a finite number of
times along any branch.

A fair derivation tree is one which respects the above fairness
conditions. SeqSolve generates fair and good derivation trees.
We use good derivation trees to show that TranSeq is sound.

Theorem 6. Every TranSeq rule is sound when applied to a
good configuration.

The termination of SeqSolve (and TranSeq) depends on a
bound on the minimum lengths of solutions of string equations
as described in [23] and on fair derivation trees.

Theorem 9. SeqSolve is terminating.

Theorem 10. SeqSolve is a partially correct string equation
solver.

Theorem 11. SeqSolve is a fully correct string equation solver
when the input does not include any linear constraints.

VI. IMPLEMENTATION OF SEQSOLVE

Our implementation of SeqSolve along with all the bench-
marks used is publicly available [24]. SeqSolve is implemented
in ACL2s [25] which allows us to (1) define datatypes like
blocks, sequences and valid Z3 expressions (used to query
Z3) (2) define TranSeq rules, which requires proving termina-
tion and input/output contracts (input/output types) (3) prove
basic theorems relating datatypes (subtypes,etc) and properties
needed for above proofs and (4) make essential use of the Z3
interface ACL2s provides to solve ILP constraints. SeqSolve
provides various settings that can be used to control how
aggressively it generates linear constraints; however, all of
the results reported in this paper are with the default settings.
We implemented SeqSolve as a standalone decision procedure
as opposed to making it a part of an MPMT solver. This
makes it easier to compare our tool with other string solvers
in an apples-to-apples way, avoiding the complications that
would arise from the use of different underlying solvers and
frameworks.

We apply a few TranSeq rules until we reach a fixpoint
before generating the derivation tree in order to simplify the
input problem. These preprocessing steps include Decompose,

VarElim, VarSubst and Compress. After reaching a fixpoint,
we use LIAUnsat to check if the set of initial constraints and
the linear constraints we generated above are unsat .

In our implementation of the rule EqWords, we only use words
with the property that no non-empty prefix of w is a suffix
of w. Since our solver makes many low-level calls to Z3, it
does this in an incremental way. In addition, care is taken to
avoid unnecessary calls to Z3, e.g., LIAUnsat is not checked
after running Trim, EqElim, Decompose, Compress, VarSubst,
Rewrite and VarElim, because in all of these rules, we do
not update C. We do not apply any branching rules, unless
we have no other options. Our implementation supports string
operations like charAt, contains, indexOf, substr, prefixOf and
suffixOf. Each of these operations can be converted to a
problem in the theory of extended sequences e.g., given charAt
constraint e = (str.at s n), we convert it into the conjunction
of the string equation s = xey and len(x) = n, where e ∈ Y
and x, y ∈ X . Given the constraint (str.contains s t), we
convert it into the string equation s = xty where x, y ∈ X .

VII. EVALUATION

We compared our solver against Z3Str2 and Z3Str3 (Z3 ver-
sion 4.8.8), Norn 1.0, Z3-Trau, Sloth 1.0 and CVC4 1.7. These
are the only string solvers we know of that solve string equa-
tions with length constraints and ran without crashing. In [26],
the tools CVC4, Z3Str2 and S3 are evaluated in which S3 is
found to be 5 times slower than Z3Str2 and crashed on about
4.5% of problems in the Kaluza [27] benchmarks. We ran all
of the selected tools on Kaluza and Stringfuzz-generated [28]
benchmarks, as well as on benchmarks consisting of problem
instances pertinent to type inference in Remora [9], [10], a
dependently typed array processing language. The type of an
array term in Remora encodes the shape of the array as a
list of dimensions (natural numbers). Our work was motivated
by the problem of inferencing these shapes which reduces to
solving string equations. For example, suppose that X has
dimensions [a 3]b and Y has dimensions b[3]z, where a is
a single dimension, while b and z are lists of dimensions,
and juxtaposition indicates concatenation. If X and Y are
used in a context where they must have the same dimensions,
then for the program to be well-typed, we require that the
string equation a3b = b3z is satisfiable. One solution is
b = [], z = [3] and a = 3, in which case X and Y are
2-dimensional matrices with shape [3 3].

We used all of the problems in the above mentioned bench-
marks that were in the extended sequence theory, thus, ex-
cluding problems in Kaluza that used other constructs. This
allows us to evaluate only our contribution, the string solver,
not the underlying solvers. In total, we have 1,178 problems,
of which 903 are sat problems and 275 are unsat problems.
We cross-verified the tools and for all benchmark problems, all
tools that gave definitive answers agreed on the classification
of the problem. All experiments were performed on the same
machine, which was running macOS Catalina 10.14.6 with a
2.7GHz Intel Core i5 CPU and 8 GB of memory. The timeout

268

0 200 400 600 800 1000

Expected Number of Problems Solved

0

2000

4000

6000

8000

10000

12000

Ex
pe

ct
ed

 T
im

e
in

 se
co

nd
s

SeqSolve
CVC4
Z3Str3
Norn
Z3Str2
Trau
Sloth

Fig. 1. Performance of SeqSolve, CVC4, Z3-Str3, Norn, Sloth, Trau
and Z3-Str2 on solved benchmarks across all three benchmark sets.

for each problem was set to 60 seconds. Figure 1 shows the
results of the performance evaluation, using what we call a
ray plot. Ray plots are designed to visually depict the results
of the evaluation in as simple a way as possible. On the x-axis
we have the expected number of problems solved and on the
y-axis we have the expected time in seconds. Suppose you
want to determine how long it will take to solve n benchmark
problems, say 800; just look at the line x = 800 and you will
see that SeqSolve will take about 100 seconds, CVC4 will
take over 2,000 seconds, Z3Str3 will take just under 12,000
seconds, Norn will take about 5,500 seconds and Z3Str2 can
only solve about 500 problems, so it will never solve 800
problems. Symmetrically, if you want to determine how many
problems you can expect to solve in t seconds, just look at
the line y = t. This is a simpler plot than a cactus plot, which
shows similar information, but with problems ordered, on a
per-tool basis, from easiest to hardest. These orderings can
vary significantly from tool to tool and there is no way for a
user of the tool to determine how easy or difficult a problem
will be, so it is not clear what benefit there is to this extra
complexity. It is easy to generate ray plots; just run all the
benchmark problems and draw a ray from the origin to the
(p, t) coordinate, where p is the number of problems solved
and t is the time taken. This is equivalent to shuffling the
problems many times and taking the average of the running
times for the shufflings.

In Table I, we show a table version of the experimental
evaluation. Tuples under “Solved” give the number of
problems solved for the Stringfuzz-generated, Kaluza and
handcrafted benchmarks, respectively. In addition to the time
in seconds, we also show the number of problems for which
solvers returned unknown , timed out or returned incorrect
result (X). We ran the tools without giving them a timeout
and our scripts killed jobs that were taking too long, but some

TABLE I
PERFORMANCE OF SOLVERS ON ALL BENCHMARKS

Solver Solved Time (s) Unknown Timeout X

SeqSolve 1,178: 780/344/54 176 0 0 0

CVC4 1,128: 736/344/48 3,200 0 50 0

Z3Str3 947: 552/344/51 13,527 6 225 0

Norn 883: 492/344/47 12,783 120 175 0

Z3Str2 465: 121/332/12 18 713 0 0

Trau 1,081: 692/344/45 5,223 18 78 1

Sloth 858: 462/344/52 7,486 0 319 64

tools returned unknown before timeouts occurred. Notice
that SeqSolve beats all the other string solvers in terms of
the standard ordering, which is based on first the number
incorrect results, then on the number of problems solved and
finally on the time taken.

Acknowledgements: We thank Andrew Walter for integrating
Z3 with ACL2s, which was indispensable.

VIII. CONCLUSION AND FUTURE WORK

We introduced a new non-deterministic, branching transition
system, TranSeq, for deciding the satisfiability of conjunctions
of string equations and length constraints. TranSeq extends the
MPMT framework for combining decision procedures and we
prove that it is both sound and complete. We implemented a
prototype, SeqSolve, which is based on TranSeq and resolves
non-deterministic choices in a way designed to infer as much
as possible with as few computational resources as possible.
We evaluated SeqSolve by comparing it with existing tools
on a suite of benchmark problems and found that SeqSolve
solved more problems and was faster than existing solvers. In
our ongoing work, we plan to extend the scope of TranSeq
so that it supports richer classes of constraints. We also plan
to reason about the implementation, as it is mostly written in
ACL2s, which is built on top of the ACL2 theorem prover.

REFERENCES

[1] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst,
“HAMPI: A solver for string constraints,” in International Symposium
on Software Testing and Analysis (ISSTA), 2009.

[2] L. Holík, P. Janku, A. W. Lin, P. Rümmer, and T. Vojnar, “String
constraints with concatenation and transducers solved efficiently,” in
Proceedings of the ACM on Programming Languages (PACMPL), 2018.

[3] F. Yu, M. Alkhalaf, and T. Bultan, “Stranger: An automata-based string
analysis tool for php,” in Tools and Algorithms for the Construction and
Analysis of Systems, 2010.

[4] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Programming Language Design and Implementation,
2005.

[5] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Programming Language Design and Implementation, 2008.

[6] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” in Proceedings of the 10th International Confer-
ence on Static Analysis, 2003.

269

[7] R. Majumdar and R. Xu, “Directed test generation using symbolic gram-
mars,” in Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering, 2007.

[8] N. Bjørner, N. Tillmann, and A. Voronkov, “Path feasibility analysis
for string-manipulating programs,” in Tools and Algorithms for the
Construction and Analysis of Systems, 2009.

[9] J. Slepak, O. Shivers, and P. Manolios, “An array-oriented language with
static rank polymorphism,” in European Symposium on Programming
(ESOP), 2014.

[10] J. Slepak, P. Manolios, and O. Shivers, “Rank polymorphism viewed as a
constraint problem,” in International Workshop on Libraries, Languages,
and Compilers for Array Programming, ARRAY@PLDI, 2018.

[11] G. S. Makanin, “The problem of solvability of equations in a free
semigroup,” Mathematics of the USSR-Sbornik, 1977.

[12] W. Plandowski, “Satisfiability of word equations with constants is in
PSPACE,” in Foundations of Computer Science (FOCS), 1999, pp. 495–
500.

[13] M. Berzish, V. Ganesh, and Y. Zheng, “Z3str3: A string solver with
theory-aware heuristics,” in Formal Methods in Computer Aided Design,
FMCAD, 2017.

[14] T. Liang, A. Reynolds, C. Tinelli, C. W. Barrett, and M. Deters, “A
DPLL(T) theory solver for a theory of strings and regular expressions,”
in Computer Aided Verification (CAV), 2014.

[15] A. Reynolds, M. Woo, C. Barrett, D. Brumley, T. Liang, and C. Tinelli,
“Scaling up DPLL(T) string solvers using context-dependent simpli-
fication,” in International Conference on Computer Aided Verification
(CAV), 2017.

[16] M. Trinh, D. Chu, and J. Jaffar, “Progressive reasoning over recursively-
defined strings,” in International Conference on Computer Aided Verifi-
cation (CAV), 2016.

[17] P. A. Abdulla, M. F. Atig, Y.-F. Chen, L. Holík, A. Rezine, P. Rümmer,
and J. Stenman, “String constraints for verification,” in International
Conference on Computer Aided Verification (CAV), 2014.

[18] P. A. Abdulla, M. F. Atig, Y.-F. Chen, B. P. Diep, L. Holík, A. Rezine,
and P. Rümmer, “TRAU: SMT solver for string constraints,” in Formal
Methods in Computer Aided Design (FMCAD), 2018.

[19] P. Hooimeijer and W. Weimer, “StrSolve: Solving string constraints
lazily,” in Automated Software Engineering (ASE), 2012.

[20] S. Eguchi, N. K. B, and T. Tsukada, “Automated synthesis of functional
programs with auxiliary functions,” in Asian Symposium on Program-
ming Languages and Systems (APLAS), 2018.

[21] P. Manolios and V. Papavasileiou, “ILP modulo theories,” in Interna-
tional Conference on Computer Aided Verification (CAV), 2013, pp.
662–677.

[22] P. Manolios, J. Pais, and V. Papavasileiou, “The Inez mathematical
programming modulo theories framework,” in International Conference
on Computer Aided Verification (CAV), 2015.

[23] W. Plandowski, “Satisfiability of word equations with constants is in
NEXPTIME,” in Symposium on Theory of Computing (STOC), 1999.

[24] A. Kumar, “SeqSolve string solver with benchmarks,” https://github.
com/ankitku/SeqSolve.

[25] H. Chamarthi, P. C. Dillinger, P. Manolios, and D. Vroon, “The ACL2
sedan theorem proving system,” in TACAS, 2011.

[26] Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, M. Berzish, J. Dolby,
and X. Zhang, “Z3str2: an efficient solver for strings, regular expres-
sions, and length constraints,” in Formal Methods in System Design,
2017.

[27] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“Kaluza benchmark,” http://webblaze.cs.berkeley.edu/2010/kaluza/.

[28] D. Blotsky, “StringFuzz-generated benchmark,” http://stringfuzz.
dmitryblotsky.com/suites/generated/.

[29] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A
symbolic execution framework for javascript,” in Symposium on Security
and Privacy, S&P, 2010.

[30] A. Jez, “Recompression: A simple and powerful technique for word
equations,” Journal of the ACM (JACM), 2016.

[31] W. Plandowski and W. Rytter, “Application of Lempel-Ziv Encodings
to the Solution of Words Equations,” in International Colloquium on
Automata, Languages and Programming (ICALP), 1998.

[32] D. Blotsky, F. Mora, M. Berzish, Y. Zheng, I. Kabir, and V. Ganesh,
“Stringfuzz: A fuzzer for string solvers,” in International Conference
on Computer Aided Verification (CAV), 2018.

[33] L. M. de Moura, B. Dutertre, and N. Shankar, “A tutorial on satisfiability
modulo theories,” in International Conference on Computer Aided
Verification (CAV), 2007.

[34] H. Abdulrab, “Solving word equations,” in Informatique Théorique et
Applications (ITA), 1990.

[35] S. Subramanian, M. Berzish, O. Tripp, and V. Ganesh, “A solver for
a theory of strings and bit-vectors,” in International Conference on
Software Engineering Companion (ICSE-C). IEEE, 2017.

[36] N. Bjorner, “All strings attached: String and sequence constraints in Z3,”
in Rewriting Logic and Its Applications, 2016.

[37] P. C. Dillinger, P. Manolios, D. Vroon, and J. S. Moore, “ACL2s: The
ACL2 sedan,” in International Conference on Software Engineering
(ICSE), 2007.

[38] C. W. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in International Confer-
ence on Computer Aided Verification (CAV), 2011.

[39] M. T. Trinh, D. H. Chu, and J. Jaffar, “S3: A symbolic string solver
for vulnerability detection in web applications,” in Computer and
Communications Security (CCS), 2014.

[40] A. Lin and P. Barceló, “String solving with word equations and trans-
ducers: Towards a logic for analysing mutation XSS,” in Principles of
Programming Languages (POPL), 2016.

[41] C. Gutiérrez, “Solving equations in strings: On makanin s algorithm,”
in Theoretical Informatics, Third Latin American Symposium (LATIN),
1998.

[42] Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby, and X. Zhang,
“Effective search-space pruning for solvers of string equations, regular
expressions and length constraints,” in International Conference on
Computer Aided Verification (CAV), 2015.

[43] J. D. Day, F. Manea, and D. Nowotka, “The hardness of solving simple
word equations,” in Leibniz International Proceedings in Informatics
(LIPIcs), 2017.

[44] P. Aziz Abdulla, M. Faouzi Atig, Y.-F. Chen, B. Phi Diep, L. Holik,
A. Rezine, and P. Rummer, “Flatten and conquer: A framework for
efficient analysis of string constraints,” in Programming Language
Design and Implementation (PLDI), 2017.

[45] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008.

[46] Y. Minamide, “Static approximation of dynamically generated web
pages,” in Proceedings of the 14th International Conference on World
Wide Web, 2005.

[47] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for javascript,” in IEEE Symposium
on Security and Privacy, 2010.

270

https://github.com/ankitku/SeqSolve
https://github.com/ankitku/SeqSolve
http://webblaze.cs.berkeley.edu/2010/kaluza/
http://stringfuzz.dmitryblotsky.com/suites/generated/
http://stringfuzz.dmitryblotsky.com/suites/generated/

Formal Methods in Computer-Aided Design 2021

Lookahead in Partitioning SMT
Antti E. J. Hyvärinen

USI, Switzerland
antti.hyvaerinen@usi.ch

Matteo Marescotti
Facebook, UK

mmatteo@fb.com

Natasha Sharygina
USI, Switzerland

natasha.sharygina@usi.ch

Abstract—Lookahead in propositional satisfiability has proven
efficient as a heuristic in pre- and in-processing, for partitioning
instances for parallel solving, and as the main driver of a stand-
alone solver. While applying similar techniques in satisfiability
modulo theories is potentially equally useful, adapting lookahead
to learning theory clauses and to estimating search space sizes
in the presence of first-order structures is not straightforward.
This paper addresses both of these observations. We give a
hybrid algorithm that integrates lookahead into the state-based
representation of an SMT solver and show that in the vast
majority of cases it is possible to compute full lookahead up
to depth four on inexpensive theories. We also show the role of
first-order structures in SMT search space: while in most of our
benchmarks the partitions are easier to solve than the original
instance, we identify cases where lookahead results in sequences
of increasingly difficult instances for a computationally expensive
theory.

I. INTRODUCTION

Large scale parallel SMT solving that would result in linear
speed-up reliably over any instance in a cloud environment
is a lucrative prize that has been intensively studied over the
recent years [26], [14], [13], [17]. A central sub-goal in this
project is in understanding how to apply successfully the cube-
and-conquer [24] approach in SMT solving. The lookahead
heuristic in propositional logic [27], in addition to being
efficient in solving certain types of structured problems [8], has
recently proven to be a powerful tool in constructing partitions
for divide-and-conquer-based parallel SAT solvers [10], [9].
The idea is to base the search-space traversal on the explicit
principle of branching on literals that reduce maximally the
remaining search space. In addition to SAT solvers, the heuris-
tic has been implemented in SMT solvers such as Z3 [20],
where it serves for in- and pre-processing, and by us in
OpenSMT [11], [12] as an alternative implementation for the
main SAT solver.

This paper studies how the literals chosen by lookahead
algorithm for SMT affect the difficulty of the instance from
the perspective of a standard CDCL-based SMT solver. This
question is central to divide-and-conquer-style parallel SMT
solving, where the lookahead heuristic is used to build a binary
lookahead tree of depth d, with nodes labeled by the literals
chosen with the lookahead heuristic, and root labeled with the
true literal ⊤. Conjoining the literals in each rooted path to
the leaves with the original instance produces 2d−1 partitioned
instances that do not share models. The resulting instances can
be solved in parallel, and the original instance is satisfiable if
and only if one of the partitioned instances is satisfiable.

Our main contributions are rigorously defining what we
mean by lookahead heuristic for an SMT solver, and an
experimental study on how the use of this heuristic affects
the difficulty of the partitions. In defining the heuristic, we
show that lookahead can be integrated tightly into a CDCL(T)-
style algorithm that fully leverages learned clauses, including
determining unsatisfiability while constructing partitions. We
summarize our experimental results as follows. First, in many
cases the heuristic runs in seconds when producing a non-
trivial number of partitions (say, 16). This is already a non-
trivial observation given that the full lookahead heuristic in
SAT is known to be in most cases prohibitively expensive. Sec-
ond, usually the approach results in partitions that are easier to
solve than the original. While this result seems rather implicit
and obvious, it is made interesting by the next observation:
There are instances where the above described lookahead-
based parallel algorithm’s run time increases compared to the
original instance even when no overhead from partitioning or
communication is considered, and the number of partitions is
in the thousands. We show some details on the latter cases that
help to understand the underlying phenomena, and identify
a possible reason arising from the way the theory solving
algorithm for linear real arithmetics is implemented in most
SMT solvers. These cases serve to illustrate the complexity of
the ultimate goal of an efficient and general parallel solver.

Combining a lookahead algorithm with a CDCL-based SMT
solver in a meaningful way is not straightforward. First, the
lookahead heuristics assumes that the clauses of an instance
are known at computing time. In contrast, an SMT solver
produces a new clause whenever a propositional model is
inconsistent in the theory. A potentially very large number
of clauses remain invisible for the heuristic. Second, the ex-
planation clauses guide the search through non-chronological
backtracking. This means that the heuristic scores of vari-
ables change with each backtrack, and the algorithm may
determine unsatisfiable entire sub-trees of the lookahead tree.
The subtrees need to be re-computed to ensure that the
approach produces 2d partitions. Finally, it is not clear how
SMT solver’s theory specific reasoning part interacts with the
lookahead-heuristic that only measures the reduction in the
propositional space.

To the best of our knowledge, this paper is the first to build
lookahead partitioning into the SMT framework in a way that
observes the search space reduction resulting from learned
clauses, and guarantees the unit-propagation consistency of
the resulting partitions in case instance satisfiability is not de-

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 37 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://orcid.org/0000-0001-6672-5109
https://orcid.org/0000-0003-4478-9931
https://orcid.org/0000-0002-8872-4913
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_37
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_37
https://creativecommons.org/licenses/by/4.0/

termined. We consider the theories of uninterpreted functions
with equality [3] and linear real arithmetic [4]. These are the
two central algorithms that constitute, together with a SAT
solver, the core of most SMT solvers. Combinations of these
two theories with pre-processing techniques are capable of
handling the quantifier-free subset of the SMT-LIB benchmark
library instances. The algorithm either produces exactly 2d−1

instances none of which can be shown unsatisfiable through
(theory-aware) unit-propagation in the current state of the SMT
solver; or shows the original instance either satisfiable or un-
satisfiable. The partitioning algorithm compromises in certain
cases the exactness of the lookahead scores for decreased run
time. We believe that the efficiency of our proof-of-concept
implementation forms a solid basis for future research in this
direction. Since the approach also sheds light to the observed
slowdowns, we believe that the work will prove useful for
designing more general parallelization algorithms for SMT.

The paper is organized as follows. After discussing related
work, in Sec. III we define our SMT-related logical notation. In
Sec. IV we adapt the rule-based description of SMT from [25]
to the specific case of lookahead and introduce a running
example. In Sec. V we present our lookahead partitioning
algorithm, then provide experimental results in Sec. VI, and
conclude in Sec. VII.1

II. RELATED WORK

The lookahead heuristic was first introduced in the context
of DPLL-based SAT solving in [27]. The original idea uses
the number of propagated literals as a measure of search
space reduction [23], and is further extended to consider, e.g.,
equivalence reasoning [5], the clause-based Jeroslow-Wang
heuristic [16], and approaches for choosing which variables
to consider for lookahead [7].

Lookahead as a pre- and in-processor for clause-learning
SAT solvers was formalized in [6]. However, it was not
integrated into the CDCL algorithm in the sense that is done
in this work. A similar pre- and in-processing approach was
recently implemented for the SMT solver Z3 [20]. When
used as a pre- and in-processor for an ordinary, CDCL-based
solver, the lookahead implementation can be conceptually
fairly straightforward. Lookahead is not directly involved in
the CDCL search, and therefore the artifacts related to non-
chronological backtracking need not be necessarily considered.
In [12] we formalized an algorithm inspired by the lookahead
heuristic for solving quantifier-free first-order formulas based
on CDCL SMT solving. The approach is implemented in our
SMT solver OpenSMT [11] and was shown experimentally to
be efficient for solving linear integer arithmetic problems with
Boolean structure. Compared to the publication, in the current
work we give a more formal treatment of the implementation,

1An extended version of the paper, available at https:
//usi-verification-and-security.github.io/opensmt-doc/publications/
lookahead-in-partitioning-smt-extended.pdf, provides an appendix detailing
some of the optimizations we implemented for the lookahead approach,
further experiments, and a comparison to an alternate scoring for the
lookahead algorithm.

define the lookahead algorithm for partitioning, and provide
experimental data and analysis for parallel solving based on
cube-and-conquer.

Our focus is in how SMT lookahead can implement parti-
tioning in divide-and-conquer for parallel solving. The idea
was introduced for parallel SAT solving in [10], and an
implementation for parallel SMT solving was used in [13],
[17]. However, the details of this partitioning approach have
not been discussed before. The lookahead-based partitioning
implementation in [10] applies essentially lookahead-based
binary partitioning recursively. The downside of this design is
that it does not use the full information in the CDCL solver,
and producing the partitions might miss an unsatisfiability high
up in the tree. As a result it construct partitions that are known
to be unsatisfiable in an intermediate state of the partitioning
algorithm.

The substantial amount of research in SAT heuristics,
overviewed in [1] from the perspective of parallel solving,
provides a promising foundation for partitioning in SMT.
Recent relevant approaches include [15], where the authors
recognize high-level information that can be used for better
clause learning.

III. PRELIMINARIES

The Satisfiability Modulo Theories (SMT) problem [22],
[3] consists of determining whether a propositional formula is
satisfiable, given that some of the atoms have an interpretation
in first-order logic. A conflict-driven clause learning (CDCL)
SMT solver searches first for propositional models, which
are then checked for consistency with respect to the theory.
If found inconsistent, the propositional structure is enriched
with an explanation, that is, a clause containing in general
theory atoms. If instead during the process the propositional
part becomes unsatisfiable, the solver has shown the whole
formula unsatisfiable. The formula is satisfiable if the solver
finds a theory-consistent model.

1) SMT solving: This section fixes the notation for first-
order logic and SMT. We define sets of function symbols,
terms, constants, and predicate symbols as usual, the last
containing the special symbols ⊤, ⊥, and = that represent,
respectively true, false, and equality. We call applications of
predicate symbols on terms atoms. Let U be a possibly infinite
set of elements containing at least the truth values true and
false. A model M assigns to each constant a unique element
from U , to each function symbol of arity n ≥ 1 a total function
Un → U , to each predicate symbol of arity zero a truth value
true or false, and to each predicate symbol of arity n ≥ 1
a total function Un → {true, false}. An interpretation A is
the extension of M to general terms in the usual sense.

Given a finite set of atoms At, a clause is a set of literals,
that is, positive and negative atoms x,¬x, x ∈ At. We extend
the negation to clauses, and write ¬(l1 ∨ . . . ∨ ln) for ¬l1 ∧
. . .∧¬ln. A propositional formula in conjunctive normal form
(CNF) is a conjunction of clauses. Throughout the text we use
both a set of literals and disjunction, and a set of clauses and
a conjunction, interchangeably. We also treat conjunctions of

272

https://usi-verification-and-security.github.io/opensmt-doc/publications/lookahead-in-partitioning-smt-extended.pdf
https://usi-verification-and-security.github.io/opensmt-doc/publications/lookahead-in-partitioning-smt-extended.pdf
https://usi-verification-and-security.github.io/opensmt-doc/publications/lookahead-in-partitioning-smt-extended.pdf

unit clauses (cubes) as sets of literals when this cannot be
confused with a disjunction. A sequence of literals is written
l1 . . . ln, and when the order plays no role, we equate the
sequence with the corresponding set {l1, . . . , ln}.

A set of literals X is consistent if for no x both x ∈ X
and ¬x ∈ X . A consistent set σ is called an assignment. An
assignment is total if for all atoms x ∈ At either x ∈ σ or
¬x ∈ σ. An atom x is assigned if either x ∈ σ or ¬x ∈ σ.
The assignment σ satisfies a clause c when σ ∩ c ̸= ∅, and
a formula ϕ if it satisfies all clauses of ϕ. A theory T is a
non-empty set of models. A CNF formula ϕ is T -satisfiable
if (i) there exists a satisfying total assignment σ for ϕ and
an interpretation A that is an extension of a model M ∈ T ,
and (ii) for each l ∈ σ, lA ≡ true if l is of the form x; and
lA ≡ false if l is of the form ¬x, where x is an atom of ϕ.
In particular, given a formula ϕ and an assignment σ that is
total (with respect to ϕ), we write σ |=T ϕ if σ is such an
assignment. In addition we write ϕ′ |=p ϕ if all assignments
that satisfy ϕ′ also satisfy ϕ propositionally, and |=T c if c is
entailed by the theory, that is, a theory lemma of a theory T .
For a formula, clause, literal, or assignment ξ we denote by
Ats(ξ) the set of atoms appearing in ξ.

In this work we study two theories: the theory of linear real
arithmetic (LRA) and the theory of uninterpreted functions
with equality (EUF). The universe of LRA consists of real
numbers, function symbols ∗ and + of arity two restricted to
expressing linear terms, and the predicate symbol ≤; all three
have their usual interpretations. The EUF theory places no
restrictions on the interpretations of constants, functions, or
predicates (apart from the inherent ones for equality, ⊤, and
⊥).

2) Parallel SMT solving: Given an SMT instance ϕ, par-
titioning produces instances ϕ1, . . . , ϕk such that the satisfi-
ability of ϕ is equal to the satisfiability of the disjunction
ϕ1∨. . .∨ϕk. In addition, we are interested in partitionings such
that no two partitions ϕi, ϕj , i ̸= j, share a total satisfying
assignment. The partitioning approach Part(k) consists of
solving an SMT instance ϕ by first constructing the partitions
ϕ1, . . . , ϕk, and then solving each resulting partition ϕi in
parallel until one of them is shown satisfiable, or all of them
are shown unsatisfiable.

IV. CONFLICT-DRIVEN CLAUSE-LEARNING LOOKAHEAD
IN SMT

The CDCL lookahead algorithm intuitively guides an SMT
solver in a binary tree, using the solver’s state to determine
how to expand the tree. To more precisely describe the algo-
rithm, we adapt here the rule-based presentation of CDCL(T)
from [25], [21] to our needs. As usual, in the first phase an
input SMT formula is converted into an equisatisfiable propo-
sitional formula ϕ in CNF while preserving the atoms in the
theories T . The state ⟨σ | F ⟩ of an SMT solver consists of σ,
an initially empty assignment, and F , a set of clauses initially
consisting of ϕ. The execution of the solver proceeds according
to a set of rules described below. In general, the algorithm
alternates between propagation, choosing a decision literal,

denoted by xδ , and analysing conflicts found in propagation.
The labels L and E refer to learned and explanation clauses.
When they appear on the left side of ·−→, the corresponding
rule matches only to clauses that have the label.

• The propagation rule ⟨σ | F ∧ (c ∨ l)⟩ Prop−−→ ⟨σl | F ∧
(c ∨ l)⟩ where c is a clause, and ¬c ⊆ σ, l ̸∈ σ and
¬l ̸∈ σ, expands the assignment with literals that are
logical consequences in the current state.

• The theory propagation rule ⟨σ | F ⟩ TProp−−−→ ⟨σl | F ∧
(c ∨ l)L⟩ uses theory lemmas to lift information to the
propositional level allowing new literals to propagate. It
can be applied if σ |=T l, l or ¬l appears in F , l ̸∈ σ
and ¬l ̸∈ σ, and c is a clause such that σ |=T ¬c and
|=T c ∨ l.

• The decision rule ⟨σ | F ⟩ Dec−−→ ⟨σlδ | F ⟩ decides a literal
l, where l or ¬l appears in F , and l ̸∈ σ and ¬l ̸∈ σ.

• The theory explanation rule ⟨σ | F ⟩ TExp−−−→ ⟨σ | F ∧
cE⟩ is used to lift theory to propositional level based on
observed conflicts in the theory solver. It can be applied
when each atom of c appears in ⟨σ | F ⟩, σ |=T ¬c, and
|=T c.

• the propositional explanation rule ⟨σ | F ⟩ PExp−−−→ ⟨σ |
F ∧ (c1∨c2)

E⟩ is the standard resolution rule, which can
be applied if c1 ∨x ∈ F and c2 ∨¬x ∈ F . However, due
to the invariants of the underlying SAT solver, we require
in addition that ¬c1 ⊆ σ and ¬c2 ⊆ σ.

• the backjump rule ⟨σlδσ′ | F ∧ cE⟩ BJ−→ ⟨σl′ | F ∧ (c′ ∨
l′)L⟩ learns clauses that steer the search. It is applicable if
¬c ⊆ σlδσ′, there is a clause c′∨ l′ such that (1) F, c |=p

c′ ∨ l′ and ¬c′ ⊆ σ; (2) l′ ̸∈ Ats(σ) and ¬l′ ̸∈ Ats(σ);
and (3) l′ or ¬l′ occurs in σlδσ′ or F ∧ c.

• The fail rule ⟨σ | F ∧ c⟩ Fail−−→ ⊥ corresponds to
determining unsatisfiability. It is applicable if ¬c ⊆ σ,
and σ contains no decision literals.

• The reset rule ⟨σ | F ⟩ Reset−−−→ ⟨∅ | F ⟩ can be applied at
any time.

• the forget rule ⟨σ | F ∧ cL⟩ Forget−−−→ ⟨σ | F ⟩ is used for
forgetting learned clauses, essentially to keep memory
usage in control

• The undo rule ⟨σlδσ′ | F ⟩ Undo−−−→ ⟨σ | F ⟩ is finally
required to implement the backtracking while computing
lookahead.

A CDCL(T)-based SMT solver works by applying the
above rules with two restrictions. (i) The solver always com-
putes the unit propagation closure before deciding a new
literal, i.e. the rule Dec is never applied if the rule Prop is
applicable; and (ii) to notice any theory inconsistencies when
a propositional assignment is found, if the rule Dec cannot be
applied (i.e., all atoms are assigned) the solver applies the rule
TProp. The solver always terminates if both the rules Reset
and Forget are applied with an increasing interval [2].

Since the unit-propagation closure has a central role in com-
puting lookahead, we give here two useful, related definitions
in the above notation. Given a solver state ⟨σ | ϕ⟩, the unit

273

propagation closure UP(σ, ϕ) is the set of literals σ′ ⊇ σ,
where ⟨σ′ | ϕ⟩ is the state obtained by applying the rules Prop
and TProp until neither one applies. A solver state ⟨σ | ϕ⟩
is called unit propagation consistent or consistent if the set
UP(σ, ϕ) is consistent.

The following running example illustrates the use of the
rules. The notation Prop∗ indicates a sequence of propagations.

Example 1: Consider the conjunction F =
(︁
¬x ∨ (b ≤

c)
)︁(1) ∧ (︁

¬x ∨ (a ≤ b)
)︁(2) ∧ (︁

¬(a ≤ d) ∨ ¬(a ≤ b) ∨ ¬(a ≤
c)
)︁(3) ∧ (︁

(c ≤ d) ∨ ¬(b ≤ c) ∨ (a ≤ d)
)︁(4) ∧ (︁

(c ≤ d) ∨
¬(a ≤ d) ∨ (a ≤ c)

)︁(5)
where the numbers in parentheses

label the clauses. The following is a possible computation of
the CDCL(T) system.

⟨∅ | F ⟩ Dec−−→ ⟨xδ | F ⟩ Prop∗−−−→ ⟨xδ(b ≤ c)(a ≤ b) | F ⟩ Dec−−→
⟨xδ(b ≤ c)(a ≤ b)¬(c ≤ d)δ | F ⟩ Prop∗−−−→
⟨xδ(b ≤ c)(a ≤ b)¬(c ≤ d)δ(a ≤ d)¬(a ≤ c) | F ⟩ PExp−−−→
⟨xδ(b ≤ c)(a ≤ b)¬(c ≤ d)δ(a ≤ d)¬(a ≤ c) |

F ∧
(︁
(c ≤ d) ∨ ¬(b ≤ c) ∨ (a ≤ c)

)︁E⟩ BJ−→
⟨xδ(b ≤ c)(a ≤ b) | F ∧ CL

1 ⟩

where the learned clause, obtained by resolution, is CL
1 :=

(c ≤ d∨¬b ≤ c∨¬a ≤ b)L. Continuing the example, we get

TProp−−−→ ⟨xδ(b ≤ c)(a ≤ b)(c ≤ d)(a ≤ c) | F ′⟩

where F ′ := F ∧ CL
1 ∧

(︁
¬(a ≤ b) ∨ ¬(b ≤ c) ∨ (a ≤ c)

)︁L
,

the last being a valid clause in the theory, and

Prop∗−−−→ ⟨xδ(b ≤ c)(a ≤ b)(c ≤ d)(a ≤ c)¬(a ≤ d) | F ′⟩
TExp−−−→ ⟨xδ(b ≤ c)(a ≤ b)(c ≤ d)(a ≤ c)¬(a ≤ d) |

F ′ ∧
(︁
¬(a ≤ c) ∨ ¬(c ≤ d) ∨ (a ≤ d)

)︁E⟩
BJ−→ ⟨¬x | F ′ ∧ ¬xL⟩

where ¬xL is obtained through a resolution derivation on
clauses in F ′ and the explanation.

V. LOOKAHEAD-BASED PARTITIONING FOR SMT

This section describes the lookahead-based algorithm for
partitioning an SMT instance into 2d partitions or determining
whether the instance is satisfiable.

A. The Lookahead Score

Lookahead in a backtracking search consists in general of
repeated trial and backtracking on all available branches at
a certain point of the search, and committing to the one
that seems most promising. We define the relation between
SMT solver states before and after the trial branch, and
the lookahead score as the difference between the two. The
approach is oblivious to the details on how the lookahead score
between two states s and s′ is defined. Our implementation
supports two scoring functions, one based on the number
of free atoms in the instance globally [23], and the other
on unassigned atoms in the clauses of the instance [8]. Our
examples and experiments in this paper use the former.

Lookahead aims to assign with the rule Dec the literal that
minimizes the upper bound for the remaining search space.
Given a state s where neither Prop nor TProp applies, we
define the lookahead step on a literal l as the sequence of rules
starting from s, having Dec on l as the first rule, followed by
unit propagation closure computation resulting in the state s′,
and finally an Undo on l ending in state s. This sequence is not
always possible, and we describe in Sec. V how we handle the
failed cases. For a consistent state ⟨σ | ϕ⟩, the set UP(σ, ϕ)
is unique. Therefore we can define the lookahead score of
a literal l based on a difference between ⟨UP(σ, ϕ) | ϕ⟩ and
⟨UP(σl, ϕ) | ϕ⟩. We denote the lookahead score of literal l by
score(l) = |UP(σ∪{l}, ϕ)\UP(σ, ϕ)|, that is, the number of
propagated literals after deciding l, and extend the definition
to atoms x as

score(x) = min
(︁
score(x), score(¬x)

)︁
, (1)

which minimizes the sum of the upper bounds for the remain-
ing search spaces [23].2

B. Lookahead-Based Partitioning

Algorithm 1: The lookahead partitioning algorithm.
Input : An SMT instance ϕ in CNF; Tree depth d
Output: Sat, Unsat, or a balanced binary tree of depth d
Data : Solver s, DFS stack stack

1 restart← true
2 while restart do
3 restart← false;
4 r ← empty node;
5 stack .push(r);
6 while stack .size ̸= 0 do
7 n← stack .pop();
8 res ← setSolverToNode(s, n);
9 if res = Unsat then return Unsat;

10 if res = BackJump then
11 restart ← true;
12 break;
13 if Depth of n is d then continue;
14 c, c′, res ← expandTree(s);
15 if res = Unsat then return Unsat;
16 if res = Sat then return Sat;
17 if res = BackJump then
18 restart ← true;
19 break;
20 stack .push(c);
21 stack .push(c′);
22 end
23 end
24 return the tree rooted at r;

The approach is presented in Alg. 1. The algorithm con-
structs a tree with nodes labelled with literals. The tree is
constructed depth-first using the stack , with the help of a
CDCL(T) SMT solver s. The intuition is that the tree is
being built by guiding the SMT solver along the rooted paths
and lookahead heuristic is used to expand a leaf node. The

2There are other definitions for lookahead score, but they all favor atoms
that minimize the remaining search space on both polarities [8].

274

algorithm limits the search depth to the input value d , and is
also a sound but incomplete (if |Atsϕ| > d) SMT solver.

Let ni denote a node n at depth i in the tree. Then each
path in the tree from the root n0 to a leaf ni corresponds
to a partition as follows. We label the nodes n with a literal
Lab(n), and n0 is labelled Lab(n0) = ⊤. A path n0 . . . ni is
interpreted as a cube, and n0 . . . nd in the tree corresponds to
the partition ϕ ∧ Lab(n0) ∧ . . . ∧ Lab(nd).

The main work, done in the loop between lines 6 – 22,
consists of two phases: setting the solver s to a given node
on Line 8, and expanding the lookahead tree on Line 14. We
describe both phases, referring to the rules in Sec. III.

1) Expanding the lookahead tree: The lookahead tree is
expanded with new nodes c, c′ by the function expandTree
on Line 14. Using the solver s the function computes the
lookahead step for each literal x,¬x not assigned in σ as
described in Sec. V-A. The process may be interrupted by
three special conditions:

• The rule Fail becomes applicable. In this case the function
returns Unsat.

• A total assignment is found: the function returns Sat.
• The rule BJ becomes applicable. In this case:

– If BJ becomes applicable with lδ = x or lδ = ¬x,
the function does a local restart: it forgets the com-
puted lookahead scores and restarts the lookahead
computation.

– If BJ is applicable with lδ = y or lδ = ¬y for some
earlier decision literal y ̸= x, the function does a
complete restart by returning BackJump.

If expandTree determines satisfiability, the algorithm ter-
minates and reports the result immediately. The distinction
between local and complete restarts is motivated by efficiency
and has deep implications to the algorithm. We discuss this
point in Sec. V-B3.

2) Setting the solver to a given node: A lookahead path
obtained from the stack is used to set the solver s to the
correct state where the lookahead scores of literals can be
computed. This is done in Line 8 by the call to the function
setSolverToNode that takes as arguments the solver s = ⟨σ |
F ⟩, and the current node n = nk. The function initially
applies the rule Reset on the solver, and computes the unit
propagation closure at the root by σ = UP(∅, F). Then, for
each n0 . . . nk the function applies Dec with l = Lab(ni), and
sets σ = UP(σl, F). The process may be interrupted in two
cases:

• Fail becomes applicable. This corresponds to the deriva-
tion of unsatisfiability, and the process returns Unsat.

• BJ becomes applicable. The node is locally unsatisfiable
and our implementation restarts the construction of the
lookahead tree to avoid unbalancedness.

Otherwise, setting solver to the node succeeds and the algo-
rithm proceeds with expanding the tree.

To clarify the behavior of the algorithm, we show its
execution on the running example (Example 1).

Example 2: Let ϕ = F from Ex. 1 and d = 2 for Alg. 1.
The algorithm advances to line 14 to compute the lookahead
scores of the variables using solver s. No conflicts are detected
by s, literal x propagates {b ≤ c, a ≤ b}, and literals ¬b ≤
c and ¬a ≤ b propagate {¬x}. No other branch results in
propagations. Hence the score from Eq. (1) is zero for all
atoms.

Say the algorithm expands the tree, that up to now consisted
only of the empty root, with nodes labeled ¬x, x, and pushes
both nodes to the DFS stack. Assume that the algorithm first
branches on ¬x. None of the free literals propagate, and tree
is expanded for example with ¬a ≤ d and a ≤ d. Once these
are popped from the stack, the tree would consist so far of
branches

(︁
¬x(a ≤ d)

)︁
,
(︁
¬x¬(a ≤ d)

)︁
, and (x).

The algorithm will now pop x on line 7. On line 14, during
the execution of the lookahead heuristic, the algorithm will do
the lookahead step on b ≤ c. This triggers the conflict-handling
sequence shown in Ex. 1 resulting in the solver state ⟨¬x |
F ∧

(︁
(c ≤ d) ∨ ¬(b ≤ c) ∨ ¬(a ≤ b)

)︁L ∧
(︁
¬(a ≤ b) ∨ ¬(b ≤

c) ∨ (a ≤ c)
)︁L⟩. Backjump is on the earlier decision literal

a ≤ c, not on the most recent decision literal b ≤ c (see the
description above for expandTree), and therefore expandTree
will return BackJump, restarting the tree construction.

The algorithm builds now the tree similar to the first time,
but when computing lookahead in state ⟨x(b ≤ c)(a ≤ b)(c ≤
d)(a ≤ c)¬(a ≤ d) | F ′⟩ there are no free variables, and the
algorithm reports satisfiability.

3) Observations on the backjumps: The backjump during
the above execution is critical for the partition quality. It is
relatively easy to see that applying recursively a lookahead al-
gorithm on the original problem, as in [10], produces partitions
that in a later state of the solver would not be unit-propagation
consistent.

First, one could imagine a version of the algorithm that
backtracks to the level indicated by the backjump, similar
to the underlying SMT solver. This choice would intuitively
result in less repeated work as the previously built lookahead
tree would be preserved, and therefore conceivably in a more
efficient algorithm. However, there are two reasons why the
restart is necessary. First, a clause c learned in a backjump
at expandTree on node ni alters the lookahead scores in an
unpredictable way in the solver states closer to the root. The
current lookahead tree becomes in general invalid from the
heuristic perspective. Without the restart, the clause should be
considered in all previous invocations of expandTree at least
in the nodes n0 . . . ni−1, and tracking such propagations would
be expensive. Second, allowing backjumps in the lookahead
tree means that when setting the solver to a new node (Line 8),
a learned clause can cause a conflict not present when the node
was pushed (lines 20 and 21). In this case it is unclear how
the algorithm should proceed to construct the balanced binary
tree with consistent partitions.

The distinction between local and complete restarts stems
from the above two observations. Complete restarts are too
expensive to be performed on every conflict, a relatively

275

common event during the lookahead computation. Instead,
they are done only on the long backjumps that are rare in
lookahead-based branching. The consequence of having the
local restarts is that setSolverToNode may result in a conflict.
While this introduces a performance overhead, it turns out to
be very rare and therefore insignificant in practice.3

We still recompute the lookahead scores in a local restart,
since the error caused by omitting this may grow very large, as
shown by this example where not recomputing the lookahead
after a conflict would mis-calculate a literal’s score with a
maximum possible error.

Example 3: Consider the following derivation, where a
lookahead at ⟨σ | G⟩ on xd fails with the learned clause
(c ∨ ¬x)L:

⟨σxd | G⟩ PExp−−−→ ⟨σxd | G ∧ c′E⟩ BJ−→ ⟨σ¬x | G ∧ (c ∨ ¬x)L⟩
Prop−−→ ⟨σ¬xσ′ | G ∧ (c ∨ ¬x)L⟩.

Assume now that G has as a subformula (x∨v∨p1)∧ . . .∧
(x∨ v∨ pn)∧ (x∨¬v∨ q1)∧ . . .∧ (x∨¬v∨ qn), where pi, qi
and v do not appear in Ats(σ′). Then the lookahead score of
v at ⟨σ | G⟩ is 0 but in the state ⟨σ¬xσ′ | G∧ (c∨¬x)L⟩ the
score is n. Note that n is upper bounded by |Atsϕ| which in
our scoring is also the highest heuristic value.

4) Correctness and termination: We finish the discussion
with proofs on correctness and termination for Alg. 1

Theorem 1: The algorithm either determines the satisfiability
of the instance or constructs a balanced binary tree with each
rooted path leading to the leaves corresponding to a unit-
propagation consistent SMT instance.
Proof. The correctness of the Sat and Unsat results reported
by the algorithm follow immediately from the observation
that the result is obtained by modifying the solver state with
the rules outlined in Sec. IV. Each rooted path of the tree
corresponds to a unit propagation consistent instance. This
follows from two observations. First, if setSolverToNode
succeeds on a node n, the instance corresponding to the node is
unit propagation consistent. Second, if expandTree succeeds,
similarly by construction the instances corresponding to the
nodes c and c′ are consistent. The resulting tree is balanced,
since unless the execution terminates in lines 9, 15, or 16, the
algorithm performs a DFS with a cutoff at depth d . □

Theorem 2: The algorithm terminates.
Proof. The procedure setSolverToNode terminates since it
performs a sequence that is bounded by the depth of the
node and consists of rules Dec and unit propagation closure
computations that both terminate. The procedure expandTree
terminates in quadratic number of applications of Dec, Undo
and unit propagation closure computations: the computation
consists of lookahead steps each bounded by the number of
atoms |Ats(ϕ)|. The local restart at a node n can be done at
most |Ats(ϕ)| times, since each related backjump will assign
at least one atom in the truth assignment of the solver state at
node n.

3We observed three conflicts while partitioning over 9000 instances in
different ways.

0.01

0.1

1

10

100

1000

10000

1000 2000 3000 4000 5000

100 200 300 400 500 600 700 800

a
b

c

d

e

f

g
h
i

a’b’
c’

ti
m
e

QF UF instance number

QF LRA instance number

QF LRA
QF UF

Fig. 1. Runtime for lookahead partitioning to 16 for QF LRA and QF UF.
Labeled boxes and crosses refer to specific instances discussed below. Un-
satisfiable instances are denoted with boxes (⊡), and satisfiable with crosses
(×).

The restarts in tree construction on lines 11 and 18 will
not cause non-termination since the solver state is persistent
(modulo possible applications of Reset) over such restarts.
Following [18], the assignments of the solver together with
the literals can be seen as a finite ordered sequence that is
increased by every backjump and has a maximum element
where every atom is assigned with no decision literals. □

VI. EXPERIMENTS

We report experiments on our implementation on the non-
incremental benchmark divisions QF UF and QF LRA of
SMT-LIB.4 The two divisions are chosen since they constitute
the foundation of most other SMT logics and allow us to
directly observe the behaviour of the congruence closure
(egraph) and the Simplex algorithms under lookahead. All the
experiments were run using the SMT solver OpenSMT [13].
The partitions are constructed with the implementation of
Alg. 1, and, when applicable, solved with OpenSMT’s default
CDCL(T) engine running the VSIDS heuristic [19], a setup
similar to most CDCL(T) solvers. The CPU time consumed
by the experiments is slightly under 338 CPU days. We used
a Linux cluster, equipped with two Intel Xeon E5-2650 v3
@ 2.30GHz CPUs, yielding (2 × 10) cores per node. Each
node has 64GB of DDR4@2133MHz memory. We ran at most
ten solvers on each node simultaneously, limiting the memory
available for a solver to 4GB. The time out was 7200 s for both
the partitioning and solving, except in Fig. 2 where the timeout
was 1200 s. We first report on the efficiency of the partitioning
implementation, and then show that the partitioning in general
works well. Finally we study instances showing a slowdown
anomaly. All times are given in seconds and refer to wall-clock
times.

1) Lookahead partitioning efficiency: The plots in Fig. 1
illustrate the run times of Alg. 1 on the QF LRA and QF UF

4The benchmarks are available at https://clc-gitlab.cs.uiowa.edu:2443/
SMT-LIB-benchmarks under commit hash 33961bc4.

276

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

100

1000

100 1000

a

b

c
d

e

f

g
h

i

P
a
rt
(2
)

Sequential

QF LRA

100

1000

100 1000

a’

a’

b’

b’

c’

c’

P
a
rt
(2
)

Sequential

QF UF

Fig. 2. Comparing sequential and Part(2) run times for QF LRA (top) and
QF UF (bottom). On the top figure the boxes pointed to by the arrows are
from Part(64) and show the approach efficient. The efficiency for QF LRA
is studied separately.

instances when partitioning into 16. The instances are ordered
based on the run time. We only report the instances not solved
during partitioning. The implementation is efficient in partic-
ular for QF UF, where the maximum stays in the majority
of cases within a few seconds. The lookahead on QF LRA is
much more involved, perhaps due to the more expensive theory
solving. Our implementation partitions 98% of the benchmarks
within two hours, showing that the approach is realistic.

2) Effect of partitioning on instance difficulty: To mea-
sure how partitioning affects the instance difficulty, we study
instances that OpenSMT can solve between 100 and 1000
seconds sequentially, a range where parallelization is useful
but the baseline can still be computed within a reasonable time.
This resulted in 13 instances for QF UF and 144 instances
for QF LRA. The reported times do not include partitioning.

Figure 2 compares Part(2) to sequential solving for
QF LRA (top) and QF UF (bottom). We plot the line y = x
corresponding to no speed-up, and the dashed line y = 2x
corresponding to two-fold slowdown. The dashed horizontal
and vertical lines in the top figure show the timeout of 1200
seconds. Crosses (×) and boxes (⊡) indicate satisfiable and
unsatisfiable instances, respectively.

Except for three cases, Part(2) provides a consistent speed-
up in QF UF. We ran these instances in Part(64) and each
became easer to solve than the original instance (as shown
by the downwards arrows that point to the corresponding
Part(64) measurement). As a conclusion, it seems that looka-
head is efficient when combined with the congruence closure
algorithm. This is somewhat expected since lookahead is
efficient in purely propositional solving, and the congruence
closure algorithm is scalable.

It is interesting to compare these results to QF LRA, where
lookahead is efficient in 60% of the instances, but we also
observe significant slowdowns, corresponding to up to 6-fold
increase in run time. Repeating the experiment of partitioning
with Part(64) did not result in a positive result similar to
QF UF (see figures 3 – 4), suggesting that this phenomenon
has a different origin.

The partitioning run times for the anomalies are shown with
the labels in Fig. 1. Typically their run times are above the
average.

3) Slowdown analysis for partitioning: Despite Part re-
sulting in most cases in a consistent speed-up, the significant
slowdowns in QF LRA warrant a separate study, as it poses
a threat for lookahead partitioning in SMT. We label with
(a) – (i) in Fig. 2 (top) nine instances where the run time
more than doubles. We removed the randomness common in
heuristic search by solving each partition several times with
the OpenSMT VSIDS engine while changing the branching
heuristic’s random seed. We refer to this approach as the
simulated parallel solver.

We ran as a pre-processing phase Part(k) for k =
2, 4, 8, . . . , 2048 for the instances (a) – (i) and stored the
resulting partitions if the instance was not solved by Part .
As a result of time outs and one of the instances being solved
during partitioning, we could run the full experiment set only
for the instances (a), (d), and (f). We concentrate on these
three instances since they seem representative for the others
as well.

Figure 3 (top) shows run times for the simulated par-
allel solver on the only satisfiable instance (f). While the
slowdown is consistent for Part(2), we observe speedup for
Part(k), k ≥ 4. Figure 3 (bottom) shows the simulated parallel
median run times on instance (d). The partitions are easy only
once a big number, 1024, is reached. We show in addition
run time ranges (green bars) and medians (blue starts) for
the individual partitions. The instance (i) behaves similarly to
this. Figure 4 shows the results for the instance (a), where
the minimum, median, and maximum run times consistently
increase. We show also the individual Part runs as yellow
boxes. Instances (b), (c), (e), (g), and (h) behave similarly to
(a). While the lookahead clearly identifies easier partitions,
the hardest partitions seem to get more difficult. In particular
Figs. 3 (bottom) and 4 show a significant amount of partitions
having the median time higher than the sequential median. The
slowdown can be argued to result in part directly from these
partitions.

The slowdown, affecting not uniformly all instances, seems

277

200
300
400
500
600
700
800
900
1000
1100
1200
1300

2 8 32 128 512 2048

(f)

Min
Median

Max

0

500

1000

1500

2000

2500

3000

3500

4000

2 8 32 128 512 2048

(d)

Median

Fig. 3. Scalability for a satisfiable instance (top) and partition difficulty for
an unsatisfiable instance (bottom). The horizontal axis refers to number of
partitions produced, and the vertical axis to run time in seconds.

to be the result of an intricate interaction between lookahead
and the incremental Simplex implementation typically used in
SMT solvers [4]. The implementation maintains an internal
model for its real valued variables that satisfies all currently
asserted inequalities. If a new inequality is not satisfied in the
model, this triggers the pivoting sequence of Simplex that is
in the worst-case exponential. SMT solvers try to avoid this
behavior by branching as much as possible on inequalities that
are consistent with the model. Because of lookahead, Simplex
is sometimes forced to follow such a sequence, causing the
increasing run times for some of the partitions. It is a natural
further question how to generalize lookahead to mitigate or
avoid these cases.

To conclude, we note that the lookahead partitioning pro-
duces in the vast majority of cases very balanced partitions and
good speed-up. Nevertheless, the instance run times increase
in a significant portion of the benchmarks. In the studied
SMT-LIB benchmark divisions, we observed slowdown only
for QF LRA. We believe that it is possible to obtain speed-
up also for these instances by developing a version of the
lookahead heuristic that considers also the configuration of

0

200

400

600

800

1000

1200

2 8 32 128 512 2048

(a)

Median

Fig. 4. Scalability and partition difficulty for an unsatisfiable instance. The
horizontal axis refers to number of partitions produced, and the vertical axis
to run time in seconds.

the theory solvers run inside the SMT solver.

VII. CONCLUSIONS

We present an algorithm for partitioning SMT with looka-
head based on CDCL(T) calculus and show experimentally
that the approach is highly promising. We also demonstrate
that the classical propositional lookahead is not in general
sufficient in SMT, where the theory reasoning engines may
unexpectedly interfere with lookahead heuristic’s view of the
search space. In particular we found that in combination with
Simplex as implemented in many SMT solvers, lookahead
partitioning sometimes creates instances that are increasingly
difficult to solve.

In future we plan to extend the lookahead heuristic to better
consider the theories. In parallel, we will also study looka-
head partitioning in a more applied setting, including theory
combinations and non-convex theories, when new atoms are
introduced.

Acknowledgements. This research was supported by
the Swiss National Science Foundation grant number
200021 185031.

REFERENCES

[1] Balyo, T., Sinz, C.: Parallel satisfiability. In: Hamadi, Y., Sais, L. (eds.)
Handbook of Parallel Constraint Reasoning, pp. 3–29. Springer (2018)

[2] Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability
modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T.
(eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 825–885. IOS Press (2009)

[3] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for
program checking. Journal of the ACM 52(3), 365–473 (2005)

[4] Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for
DPLL(T). In: Proc. CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer
(2006)

[5] Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March eq:
Implementing additional reasoning into an efficient look-ahead SAT
solver. In: Hoos, H.H., Mitchell, D.G. (eds.) Proc. SAT2004. LNCS,
vol. 3542, pp. 345–359. Springer (2005)

278

[6] Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In: Proc. HVC 2011. LNCS,
vol. 7261, pp. 50–65. Springer (2012)

[7] Heule, M., van Maaren, H.: March dl: Adding adaptive heuristics and
a new branching strategy. JSAT 2(1-4), 47–59 (2006)

[8] Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 155–
184. IOS Press (2009)

[9] Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying
the Boolean Pythagorean triples problem via Cube-and-Conquer. In:
Proc. SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer (2016)

[10] Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Partitioning SAT instances
for distributed solving. In: Proc. LPAR 2010. LNCS, vol. 6397, pp. 372–
386. Springer (2010)

[11] Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2:
An SMT solver for multi-core and cloud computing. In: Proc. SAT 2016.
pp. 547 – 553. No. 9710 in LNCS, Springer (2016)

[12] Hyvärinen, A.E.J., Marescotti, M., Sadigova, P., Chockler, H., Shary-
gina, N.: Lookahead-based SMT solving. In: Barthe, G., Sutcliffe, G.,
Veanes, M. (eds.) Proc. LPAR-22. EPiC Series in Computing, vol. 57,
pp. 418–434. EasyChair (2018)

[13] Hyvärinen, A.E.J., Marescotti, M., Sharygina, N.: Search-space par-
titioning for parallelizing SMT solvers. In: Proc. SAT 2015. LNCS,
vol. 9340, pp. 369–386. Springer (2015)

[14] Hyvärinen, A.E.J., Wintersteiger, C.M.: Parallel satisfiability modulo
theories. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint
Reasoning, pp. 141 – 178. Springer (2018)

[15] Iser, M., Kutzner, F., Sinz, C.: Using gate recognition and random
simulation for under-approximation and optimized branching in SAT
solvers. In: Proc. ICTAI 2017. pp. 1029–1036. IEEE Press (2017)

[16] Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems.
Ann. Math. Artif. Intell. 1, 167–187 (1990)

[17] Marescotti, M., Hyvärinen, A.E.J., Sharygina, N.: Clause sharing and
partitioning for cloud-based SMT solving. In: Proc. ATVA 2016. pp.
428–443 (2016)

[18] Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers 48(5), 506–
521 (1999)

[19] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an efficient SAT solver. In: Proc. DAC 2001. pp. 530–535.
ACM (2001)

[20] de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In:
Proc. TACAS 2008. LNCS, vol. 4963, pp. 337 – 340. Springer (2008)

[21] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T). J. ACM 53(6), 937 – 977 (2006)

[22] Sebastiani, R.: Lazy satisability modulo theories. JSAT 3(3-4), 141–224
(2007)

[23] Simons, P.: Extending and Implementing the Stable Model Semantics.
Ph.D. thesis, Helsinki University of Technology (2000)

[24] van der Tak, P., Heule, M., Biere, A.: Concurrent cube-and-conquer -
(poster presentation). In: Proc. SAT 2012. LNCS, vol. 7317, pp. 475–
476. Springer (2012)

[25] Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo
theories. In: Logics in Artificial Intelligence, European Conference,
JELIA 2002, Cosenza, Italy, September, 23-26, Proceedings. pp. 308–
319 (2002)

[26] Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: A concurrent portfolio
approach to SMT solving. In: Proc. CAV 2009. LNCS, vol. 5643, pp.
715–720. Springer (2009)

[27] Zabih, R., McAllester, D.: A rearrangement search strategy for deter-
minig propositional satisfiability. In: Proc. AAAI-88. pp. 155–160. ACM
(1988)

279

Formal Methods in Computer-Aided Design 2021

A Multithreaded Vampire
with Shared Persistent Grounding

Michael Rawson and Giles Reger
University of Manchester

Abstract—Automated theorem provers (ATPs) typically run in
a single thread. Hardware parallelism is then exploited through
portfolios, in which distinct and disjoint strategies are launched
as fully-independent processes and do not cooperate. Whilst there
has been some historic exploration of cooperation, the technical
challenge has prevented this from being fully explored in modern
ATPs. The following describes the non-trivial engineering effort
required to make the Vampire theorem prover multithreaded,
such that multiple proof attempts coexist in the same mem-
ory space. This lays the foundations for a new generation of
proof search techniques able to cooperate with other proof
attempts running in parallel. As an initial demonstration, we
implement a shared persistent grounding daemon that receives
all clauses generated by all proof attempts and checks whether
a heuristically-grounded version is unsatisfiable. The resulting
multi-threaded system achieves limited contention compared
to the previous process-based implementation, and persistent
grounding improves performance in certain cases.

I. INTRODUCTION

Whilst parallel computational resources have become abun-
dant and used with effect in many areas of computer science,
they are yet to make a significant impact on automated theorem
proving. We have seen substantial developments in SAT solv-
ing [1], [2], [3] and progress within SMT [4], [5], [6] but, to
date, parallel automated theorem proving is typically historic
with no modern implementation [7], [8], [9], or parallel at the
level of portfolios without shared memory. The popularity of
parallel portfolios is likely due to their ease of implementation
and practical impact: it is common folklore that a good way
to combat explosive proof search is a set of complementary
search strategies. This success goes some way to explaining
why research in other directions has been slow.

In this paper we discuss our initial work on a new shared-
memory architecture for the VAMPIRE automated first-order
theorem prover [10]. VAMPIRE is a saturation-based theorem
prover that implements the superposition calculus [11] as
its main mode, but also contains routines for instance-based
reasoning [12] and finite model building [13]. It has won first
place in the main track of the CASC competition for over
20 years [14] and implements advanced reasoning techniques
for theory reasoning [15], [16], [17], inductive reasoning [18]
and higher-order reasoning [19]. It consists of over 200k lines
of C++ with contributions from over 15 developers and a
permissive licence [20]. As such, it is a mature and highly-
complex piece of software.

Since 2010, VAMPIRE has supported some form of multi-
process parallelism where a portfolio of predetermined (and
automatically generated) strategies (sets of proof search

heuristics) could be implemented by forked processes. This
achieves good results, but limits options for cooperation be-
tween proof attempts due to reliance on inter-process commu-
nication. In 2015, we proposed a concurrent architecture [21]
that interleaved proof attempts within a single process whilst
sharing (some) memory to explore a novel method for coop-
eration. Our conclusion at the time was that we needed true
shared-memory parallelism to make progress.

We experienced two main difficulties with such an approach
in VAMPIRE. The first is that it is difficult to implement
correctly: this is a well-known feature of parallel program-
ming, and we discuss our approach and experience below.
The second is contention, which for our purposes is negative
performance impact caused by multiple threads using the same
resource simultaneously, typically by having to wait for a lock
held by another thread. Avoiding contention requires careful
design of shared-memory schemes within an ATP.

A reasonable line of questioning raised in review asks
whether it would be easier to start from scratch. It would
probably be technically easier to do so: however, ATP sys-
tems at VAMPIRE’s level of maturity take significant time to
develop, even with the benefit of hindsight, so instead we offer
pragmatic suggestions to convert existing systems.

The two main contributions of this paper are (1) A de-
tailed discussion of the technical challenges and experience
involved in transitioning a complex, mature theorem prover
from a process-based model to a thread-based, shared-memory
architecture (Section II), and (2) A new persistent grounding
technique designed to take advantage of the shared memory
concurrency provided by the architecture (Section III).

II. CHALLENGES AND EXPERIENCE

This section reflects on the engineering challenges we faced
when converting Vampire into a multi-threaded solver, and the
approach we took to overcome them. We include this discus-
sion to provide guidance for others attempting to complete
a similarly-challenging task. Currently, the implementation is
available in a branch of the VAMPIRE repository1.

A. Design

The architecture is based on the previous process-based ar-
chitecture, which has not previously been described elsewhere.
As illustrated in Fig. 1, the input problem is first parsed into
a set of initial formulas over a signature (that is, the symbols

1https://github.com/vprover/Vampire/tree/caps

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4 38 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD21
https://github.com/vprover/Vampire/tree/caps
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_38
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_38
https://creativecommons.org/licenses/by/4.0/

Fig. 1. Schematic of Architecture.

appearing in the problem) shared between all proof attempts.
A strategy scheduler uses a portfolio of strategies to generate
a set of k threads. The parent scheduler supervises the child
threads, reporting success if any child succeeds and spawning
new threads to keep available CPU cores busy. Each thread
preprocesses the problem, potentially extending the signature
by e.g. introducing names for subformulas, and then performs
proof search. This typically involves the use of complex data
structures (term indices) for storing and searching for relevant
clauses. VAMPIRE’s complex custom memory allocator is
disabled for this work, incurring a small performance hit.

Two complex parts of the architecture are currently pro-
tected by a coarse-grained lock. Only one proof attempt should
print a proof, so this process is gated such that subsequent
successful attempts block forever. A more difficult issue is
term sharing. Part of the standard VAMPIRE is a hash-consing
structure used to implement perfect term sharing, i.e. avoid
duplication of terms. This is very convenient as it allows
rapid identification of terms by pointer comparison, a property
which is assumed throughout VAMPIRE. In our multithreaded
architecture we share this structure and protect it by a lock.
Term sharing must be able to distinguish between terms built
solely from the shared signature and terms involving thread-
specific symbols: that is, terms that could appear in any attempt
versus terms that only have meaning in a single attempt.

B. Approach

Converting a large, complex and performance-sensitive sys-
tem such as VAMPIRE to work in thread-parallel is not es-
pecially easy. The approach outlined previously [21] in which
proof attempts interleave in a single thread of execution, rather
than exist concurrently, at first seemed like a good intermediate
step before starting work on a fully thread-parallel, shared-

memory system. However, we found that bugs introduced by
interleaved proof attempts were very difficult to track down,
not least because very often they had no observable effect.

Instead we take a more chaotic approach, leaning heavily on
tooling for developing multi-threaded applications, particularly
tools for detecting data races. Data races, for our purposes,
are execution scenarios in which two threads access shared
memory without synchronisation, and at least one access is a
write. Detection of races is extremely useful in our case as it
provides a good proxy for identifying when one proof attempt
influences the execution of another. Nearly all thread-related
bugs — of which there were many — could then be squashed
by examining the context in which races occur and introducing
synchronisation or data reorganisation where appropriate.

Tools for detecting dubious constructs and execution states
in low-level programming have improved significantly. We
were particularly impressed by the LLVM-based [22] linter
clang-tidy [23], which helped to identify and remove ex-
isting discouraged constructs in VAMPIRE’s codebase, and
the ThreadSanitiser [24] compiler instrumentation for the
detection of data races. Armed with these tools, we simply
introduced threads into VAMPIRE and waited for the tool
reports. Races happened frequently in VAMPIRE at first, where
code written under the implicit assumption of single-threaded
execution breaks down, triggering a ThreadSanitiser report.

In general, data races tend to lead to crashes rather than
unsound behaviour but to avoid the latter we rely on (i)
existing mechanisms for automated testing utilising large sets
of labelled benchmarks [25], and (ii) VAMPIRE’s support for
proof checking which allows us to independently verify the
correctness of proof search [26].

C. Thread-Local Storage, Atomics and Locking

The most common source of the races was the re-use
of heap-allocated temporaries such as stacks or maps, often
used in iterative translations of recursive algorithms present
throughout the system. Reusing these values once allocated
can improve performance in the single-threaded case by
avoiding repeated (de)allocations. The majority of such cases
can be resolved by the use of thread-local storage as a
compromise, incurring one allocation per thread. The 2011
C++ standard [27] provides a thread_local keyword and
associated machinery.

Another problem area is integer counters, often used for
computing statistics and satisfying freshness constraints such
as “select a fresh symbol for the Skolem function”. Usually the
only operation required is “read-and-increment”, but this must
sometimes be reflected across threads to maintain soundness
of e.g. Section III. This operation can be safely achieved
atomically: C++’s <atomic> proved useful here.

Only surprisingly rarely was a full lock required to synchro-
nise compound operations. This relatively-coarse technique
was only required for widely-used modules with non-trivial
internal invariants such as the implementation of term sharing.
Due to the small number of locks, deadlock was mostly
avoided.

281

D. Data Organisation and Partitioning

Significant headaches can be avoided by carefully choosing
which data are shared between proof attempts. A clever im-
plementation could aggressively share all common data using
very fine-grained synchronisation. For example, VAMPIRE
maintains various term indices to quickly retrieve various
syntactic data that satisfy some condition, like “retrieve all the
literals that unify with L”. In principle it would be possible
to share at least some of these and save some memory, but
in practice this is enormously difficult to implement correctly
and efficiently. However, we remain interested in parallel term
indices and may investigate these independently in future.

Currently, each proof attempt maintains its own clause
space, computed properties and statistics, indices, introduced
definitions, and ground reasoning systems such as those used
in global subsumption [28] or AVATAR [29]. They do however
share synchronised access to creating fresh symbols (although
not all symbols are used in all proof attempts), term sharing,
and persistent grounding (Section III). We feel this is a good
initial trade-off.

E. Timing and Internal Control

One crucial difference between the multi-processing and
multi-threading approaches to portfolio modes is that pro-
cesses can be signalled to stop execution in a timely manner,
whereas most threading abstractions do not have this ability.
Threaded proof attempts must therefore frequently check for
exit conditions, e.g. another proof attempt succeeded/time is
up. Making these checks can be tricky: too frequently and
there will be some performance impact; too infrequently and
user experience or portfolio performance will begin to degrade.
VAMPIRE executes a series of loops in its internal search
routines: each iteration of these loops can take drastically
different lengths of time depending upon the input problem.

F. Synchronisation and Performance

All the synchronisation measures introduced do incur some
performance impact. Atomic operations are not quite free,
but are very close in practice. Thread-local storage requires
some checks for lazy initialisation, which can occur frequently
if the compiler is unable to elide them, and is therefore
not as cheap as we would like. VAMPIRE uses a global
“environment” structure which was made thread-local: C++
semantics mean that this is considerably more efficient if an
extra level of indirection is added such that the environment is
accessed via thread-local pointer. Locks are currently a major
bottleneck: while contention was expected to be high, another
problem is that the locked sections are typically relatively
short and inexpensive compared to the locking overhead. We
will investigate finer-grained locking and alternative locking
strategies in future.

G. Experimental Evaluation

To validate the resulting system we carry out two experi-
ments using the 500 first-order problems from the 2020 first-
order theorem division of CASC. All experiments in this paper

TABLE I
EVALUATING SCALABILITY OF THREADED ARCHITECTURE.

Threads # solved Avg time (s) Total/Avg (s) on ∩ Speedup
1 399 7.05 2187 / 6.21 -
2 413 4.80 987 / 2.80 2.22
4 412 3.49 520 / 1.48 4.21
6 413 2.79 539 / 1.53 4.06
8 402 3.27 533 / 1.51 4.10
10 404 3.26 534 / 1.52 4.10

are run for 60 seconds per problem on a Ubuntu desktop
machine with an 8-core CPU2 and 16GB RAM.

Firstly, we compare the new thread-based architecture
with the previous process-based implementation. The thread-
based architecture solves 413 problems (10 uniquely) and the
process-based architecture solves 424 problems (21 uniquely).
The slight degradation in performance is unsurprising given
the additional contention in the thread-based approach. The
symmetric difference reflects the sensitivity of VAMPIRE to
variations in timing and memory usage. On average, the new
thread-based architecture took 1.25x longer to solve problems.
However, this is heavily influenced by short-running problems.
Excluding problems solved in under 1s, the slowdown is 1.02x.

Secondly, we examine the scalability of the thread-based
solution using the same set of problems whilst varying the
number of threads. The results are in Table I. The number of
problems solved peaks between 2 and 6 threads. We achieve
approximately-linear speedup with 2 and then 4 threads, but
then plateau (based on the total time taken to solve the 352
problems solved by all attempts). The average solution time
overall was the lowest for 6 threads — the lower average
solution times for the intersection of solved problems suggests
that these were the easier problems.

In summary, performance degrades slightly when replacing
processes by threads (most likely due to contention) but the
overhead is acceptable (∼ 2% on longer running problems).

III. PERSISTENT GROUNDING

As a first step to explore the benefits of the new architecture,
we introduce a lightweight form of clause sharing. All clauses
produced by all proof attempts are grounded, shared, and
passed to a SAT solver to detect a form of global inconsistency,
i.e. an inconsistency in the ground abstraction of the full search
space explored by all proof attempts, past and present.

The idea of grounding the search space of a first-order
prover in an attempt to detect inconsistency is not novel [30],
[31] and some methods, such as instance generation [12]
perform grounding as part of proof search already. What is new
in our approach is the persistence of the grounding: grounded
clauses escape from and outlive their thread, allowing clauses
from different proof attempts to interact.

A. Extension to Architecture

We introduce a queue (synchronised by single lock) that
proof attempts add produced (and grounded) clauses to and a

2Intel® Core™ i7-6700 CPU @ 3.40GHz

282

thread that loops, adding the grounded clauses to the MiniSAT
solver [32] — yielding if the queue is empty — and checking
for unsatisfiability. If the grounding is inconsistent the thread
will report this immediately, interrupting other threads. Cur-
rently, full proof printing is not implemented and only the
unsatisfiable core of grounded first-order clauses is identified.
It is work-in-progress to rebuild the derivations that produced
these clauses as a separate post-processing step.

We maintain a mapping from (grounded) first-order literals
to SAT literals such that a fresh first-order literal leads to
a fresh SAT literal, with the mapping stored for later. This
mapping relies on the shared term indexing structure to effi-
ciently identify atoms that are shared between proof attempts,
ensuring they are represented using the same SAT variables.

B. Grounding Choices

There are numerous ways in which we could choose to
ground first-order clauses. We implement three alternatives:

• fresh: all variables are replaced by a single fresh constant.
• common: all variables are replaced by the most common

constant from the input problem.
• input: the clause is grounded repeatedly for every con-

stant in the input problem.

Where the input problem is multi-sorted the above constants
are selected per-sort. We compute constant frequency on
the problem before preprocessing i.e. before subformulas are
copied or reduced.

C. Experimental Analysis

We use the same 500 problems and experimental setup as
above to analyse the impact of this new addition. Our first
experiment is to isolate the impact of persistent grounding
from threading by running with a single thread. In this setting,
we solve 399 problems without persistent grounding and
398 with (using the fresh grounding) but with a symmetric
difference of 11 problems — persistent grounding allows
us to solve 5 problems we did not solve without it. Some
problems were also solved significantly faster: for 8 problems
the speedup was > 2×, with one problem (SWB105+1) solved
15× faster (from 25s to 1.6s).

Next, we compare the different grounding mechanisms
(using 6 threads). The results are given in Table II (top 4 rows).
The first observation is that we solve 8 problems that we did
not solve without persistent grounding, and each grounding
mechanism solves some problems uniquely.

However, the average time to solve each problem increases.
The fresh grounding mechanism fares the worst with the
common grounding mechanism producing proofs more than
a second before other mechanisms 5 times. Within this there
are some notable interesting cases. For example, GRP667+1
was solved using input in 15s whilst others failed to solve it
using persistent grounding and it was eventually solved in the
normal way after 50s. Similarly, ITP006+4 was solved using
common in 9s rather than the 25s elsewhere.

TABLE II
PERSISTENT GROUNDING EVALUATION.

solved (uniq) Best by >1s Avg. time (s)
none 413 (6) - 2.79
fresh 410 (1) 0 3.09
common 411 (2) 5 2.95
input 411 (2) 3 3.11
fresh 410 (2) 4 2.94
active-only 412 (3) 0 3.01
no-splitting 393 (5) 16 3.19
combination of PG 421 (12) - 2.84 (best)

We explore two further variants (rows 5–7 of Table II):
in active-only we restrict persistent grounding only to so-
called active clauses [10] and in no-splitting we turned clause
splitting off for all strategies. Clause splitting introduces
additional (per proof attempt) propositional literals into split
clauses, potentially reducing the amount of sharing between
proof attempts. Active-only solves more problems and (not
shown in the table) enjoys a slight reduction in solving times
in cases where persistent grounding is not used to solve the
problem. Turning clause splitting off solves fewer problems
but is nicely complementary (solving 5 problems uniquely).

In summary, the persistent grounding method can drastically
speed up proof search when it finds a proof but it generally
adds a noticeable overhead. Overall, we solve 12 problems
with variants of persistent grounding that we were unable to
solve without it. The main observation is that it is possible
to prove more by sharing information between proof attempts
than simply running the union of proof attempts separately but
more work is required to make this approach efficient.

IV. REFLECTION AND FUTURE WORK

We describe our initial efforts transforming VAMPIRE to
a multi-threaded architecture and show how this new shared
memory architecture can easily support methods for clause
sharing. Whilst the concepts involved are straightforward, the
engineering effort required to transform a mature codebase
from a process-based single memory architecture to a thread-
based shared-memory one is large. We have described our
experience for others. Our general findings are:

1) It is more important to find a clean way to separate
data and isolate points of sharing than it is to intro-
duce “clever” fine-grained synchronisation. This ensures
that debugging is manageable. We achieved a lot with
thread_local and atomic.

2) In a large codebase like VAMPIRE there are tens or
hundreds of little bottlenecks rather than few big ones
and they interact in complex ways. Simply optimising
one bottleneck rarely gives overall gains, improvements
must be more architecturally-focussed.

3) Portfolio strategies are typically very short (often <1s)
so “small” performance hits can have a large impact.
Work is required to make portfolios robust to this setting.

The new shared persistent grounding method gave lacklustre
results but only represents a first step in a number of oppor-

283

tunities presented by the new architecture. Directions we plan
to pursue in the future include:

• Extending the shared signature. Currently, if two proof
attempts introduce a definition for the same subformula
this will be added to each local extended signature and the
overlap will not be shared. A shared definition manager
could increase the size of the shared signature, increasing
the opportunity for cooperation.

• As originally proposed in [21], sharing the SAT solver
used for clause splitting in AVATAR. Within a single
proof attempt, this SAT solver is used to enumerate sub-
problems. When shared, it can share information about
previously proved sub-problems between proof attempts
(similar to sharing learned clauses in parallel SAT [2]).

• Sharing simplification mechanisms (and associated data
structures e.g. term indices). VAMPIRE contains a number
of mechanisms for removing redundant parts of the search
space. By sharing these mechanisms we can import
information from other proof attempts that makes the
current problem easier.

• Other clause sharing mechanisms. Whilst sharing many
clauses risks proof attempts converging (undoing the
complementary power), we can explore methods that aim
to identify useful clauses to share. A fashionable approach
would be to employ machine learning techniques to learn
which clauses are good to share. Alternatively, we could
take inspiration from SAT’s lazy clause exchange [33]
where clauses are only shared if useful locally. Finally,
it is likely that not all clauses will be equally useful to
all other proof attempts, which suggests a setting where
clauses are pulled rather than pushed based on a local
assessment of usefulness.

ACKNOWLEDGEMENT

This work was funded by EPSRC project EP/V000209/1:
CAPS: Collaborative Architectures for Proof Search.

REFERENCES

[1] Y. Hamadi, S. Jabbour, and L. Sais, “ManySAT: a parallel SAT solver,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 6,
no. 4, pp. 245–262, 2010.

[2] T. Balyo and C. Sinz, “Parallel satisfiability,” in Handbook of Parallel
Constraint Reasoning. Springer, 2018, pp. 3–29.

[3] M. J. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and con-
quer: Guiding CDCL SAT solvers by lookaheads,” in Haifa Verification
Conference. Springer, 2011, pp. 50–65.

[4] C. M. Wintersteiger, Y. Hamadi, and L. Moura, “A concurrent portfolio
approach to SMT solving,” in CAV ’09, 2009, pp. 715–720. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-02658-4 60

[5] A. E. Hyvärinen, M. Marescotti, L. Alt, and N. Sharygina, “OpenSMT2:
An SMT solver for multi-core and cloud computing,” in Interna-
tional Conference on Theory and Applications of Satisfiability Testing.
Springer, 2016, pp. 547–553.

[6] A. E. Hyvärinen and C. M. Wintersteiger, “Parallel satisfiability modulo
theories,” in Handbook of Parallel Constraint Reasoning. Springer,
2018, pp. 141–178.

[7] J. Denzinger and I. Dahn, “Cooperating theorem provers,” in Automated
Deduction—A Basis for Applications. Springer, 1998, pp. 383–416.

[8] M. P. Bonacina, “Parallel theorem proving,” Handbook of Parallel
Constraint Reasoning, pp. 179–235, 2018.

[9] J. Schumann and R. Letz, “PARTHEO: a high performance parallel
theorem prover,” in CADE, ser. LNAI, vol. 449, Kaiserslautern, 1990,
pp. 40–56.

[10] L. Kovács and A. Voronkov, “First-order theorem proving and Vampire,”
in CAV 2013, ser. LNCS, vol. 8044, 2013, pp. 1–35.

[11] R. Nieuwenhuis and A. Rubio, “Paramodulation-based theorem prov-
ing,” in Handbook of Automated Reasoning, A. Robinson and
A. Voronkov, Eds., 2001, vol. I, ch. 7, pp. 371–443.

[12] K. Korovin, “Inst-Gen – a modular approach to instantiation-based
automated reasoning,” in Programming Logics, 2013, pp. 239–270.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-37651-1 10

[13] G. Reger and M. Suda, “The uses of SAT solvers in Vampire,” in
Proceedings of the 1st and 2nd Vampire Workshops, ser. EPiC Series
in Computing, L. Kovács and A. Voronkov, Eds., vol. 38. EasyChair,
2015, pp. 63–69.

[14] [Online]. Available: http://www.tptp.org/CASC/
[15] G. Reger, N. Bjørner, M. Suda, and A. Voronkov, “AVATAR modulo

theories,” in GCAI 2016, ser. EPiC, vol. 41. EasyChair, 2016, pp.
39–52.

[16] G. Reger, M. Suda, and A. Voronkov, “Unification with abstraction and
theory instantiation in saturation-based reasoning,” in TACAS 2018, ser.
LNCS, 2018.

[17] G. Reger, J. Schoisswohl, and A. Voronkov, “Making theory reasoning
simpler,” in Tools and Algorithms for the Construction and Analysis
of Systems - 27th International Conference, TACAS 2021, ser. Lecture
Notes in Computer Science, J. F. Groote and K. G. Larsen,
Eds., vol. 12652. Springer, 2021, pp. 164–180. [Online]. Available:
https://doi.org/10.1007/978-3-030-72013-1 9

[18] G. Reger and A. Voronkov, “Induction in saturation-based proof search,”
in International Conference on Automated Deduction. Springer, 2019,
pp. 477–494.

[19] A. Bhayat and G. Reger, “A combinator-based superposition
calculus for higher-order logic,” in Automated Reasoning - 10th
International Joint Conference, IJCAR, ser. Lecture Notes in
Computer Science, N. Peltier and V. Sofronie-Stokkermans, Eds.,
vol. 12166. Springer, 2020, pp. 278–296. [Online]. Available:
https://doi.org/10.1007/978-3-030-51074-9 16

[20] [Online]. Available: https://vprover.github.io/
[21] G. Reger, D. Tishkovsky, and A. Voronkov, “Cooperating proof

attempts,” in International Conference on Automated Deduction.
Springer, 2015, pp. 339–355.

[22] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[23] B. Babati, G. Horváth, V. Májer, and N. Pataki, “Static analysis toolset
with Clang,” in Proceedings of the 10th International Conference on
Applied Informatics (30 January–1 February, 2017, Eger, Hungary),
2017, pp. 23–29.

[24] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov, “Dy-
namic race detection with LLVM compiler,” in International Conference
on Runtime Verification. Springer, 2011, pp. 110–114.

[25] G. Reger, M. Suda, and A. Voronkov, “Testing a saturation-based
theorem prover,” in TAP 2017. Springer, 2017, pp. 152–161.

[26] G. Reger, “Better proof output for vampire,” in Vampire 2016, ser. EPiC,
vol. 44. EasyChair, 2017, pp. 46–60.

[27] ISO, ISO/IEC 14882:2011 Information technology — Programming
languages — C++, 3rd ed. ISO, Sep. 2011.

[28] G. Reger and M. Suda, “Global subsumption revisited (briefly),” in
Vampire 2016., ser. EPiC, 2017.

[29] A. Voronkov, “AVATAR: The architecture for first-order theorem
provers,” in CAV. Springer, 2014.

[30] S. Schulz, “A comparison of different techniques for grounding near-
propositional CNF formulae.” in FLAIRS Conference, 2002, pp. 72–76.

[31] ——, “Light-weight integration of SAT solving into first-order reasoners
— first experiments,” in Vampire Workshop, 2017, pp. 9–19.

[32] N. Eén and N. Sörensson, “An extensible SAT solver,” in International
conference on theory and applications of satisfiability testing. Springer,
2003, pp. 502–518.

[33] G. Audemard and L. Simon, “Lazy clause exchange policy for parallel
SAT solvers,” in International Conference on Theory and Applications
of Satisfiability Testing. Springer, 2014, pp. 197–205.

284

http://dx.doi.org/10.1007/978-3-642-02658-4_60
http://dx.doi.org/10.1007/978-3-642-37651-1_10
http://www.tptp.org/CASC/
https://doi.org/10.1007/978-3-030-72013-1_9
https://doi.org/10.1007/978-3-030-51074-9_16
https://vprover.github.io/

ISBN 978-3-85448-046-4

www.tuwien.at/academicpress

The Conference on Formal Methods in Computer-Aided
Design (FMCAD) is an annual conference on the theory
and applications of formal methods in hardware and system
verification. FMCAD provides a leading forum to researchers
in academia and industry for presenting and discussing
groundbreaking methods, technologies, theoretical results,
and tools for reasoning formally about computing systems.
FMCAD covers formal aspects of computer-aided system
design including verification, specification, synthesis, and
testing.

	Cover_Einzeln_Weissenbacher_20211005
	Weissenabcher_Titelei_Einzeln_20210820.pdf
	PROCEEDINGS OF THE 21ST CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2021.pdf
	Preface
	Organizing Committee
	Program Committee
	Additional Reviewers
	Table of Contents
	Reactive Synthesis Beyond Realizability
	Stainless Verification System Tutorial
	Formal Methods for the Security Analysis of Smart Contracts
	Active Automata Learning: from L* to L#
	From Viewstamped Replication to Blockchains
	Algorithms for the People
	Engineering with Full-scale Formal Architecture: Morello, CHERI, Armv8-A, and RISC-V
	The FMCAD 2021 Student Forum
	Coco-Alma: A Versatile Masking Verifier
	End-to-End Formal Verification of a RISC-V Processor Extended with Capability Pointers
	Hardware Security Leak Detection by Symbolic Simulation
	Scaling Up Hardware Accelerator Verification using A-QED with Functional Decomposition
	Sound and Automated Verification of Real-World RTL Multipliers
	IC3 with Internal Signals
	Single Clause Assumption without Activation Literals to Speed-up IC3
	Logical Characterization of Coherent Uninterpreted Programs
	Data-driven Optimization of Inductive Generalization
	Model Checking AUTOSAR Components with CBMC
	Automating System Configuration
	Towards an Automatic Proof of Lamport's Paxos
	Refinement-Based Verification of Device-to-Device Information Flow
	Celestial: A Smart Contracts Verification Framework
	The Civl Verifier
	Synthesizing Pareto-Optimal Interpretations for Black-Box Models
	Dynamic Partial Order Reductions for Spinloops
	Robustness between Weak Memory Models
	Pruning and Slicing Neural Networks using Formal Verification
	Towards Scalable Verification of Deep Reinforcement Learning
	Exploiting Isomorphic Subgraphs in SAT
	On Decomposition of Maximal Satisfiable Subsets
	Designing Samplers is Easy: The Boon of Testers
	SAT-Inspired Eliminations for Superposition
	SAT Solving in the Serverless Cloud
	Induction with Recursive Definitions in Superposition
	Fair and Adventurous Enumeration of Quantifier Instantiations
	Mathematical Programming Modulo Strings
	Lookahead in Partitioning SMT
	A Multithreaded Vampire with Shared Persistent Grounding

	Cover_Einzeln_Weissenbacher_20211005.pdf

